1
|
Bastia L, Rozé H, Brochard L. Asymmetrical Lung Injury: Management and Outcome. Semin Respir Crit Care Med 2022; 43:369-378. [PMID: 35785812 DOI: 10.1055/s-0042-1744303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Among mechanically ventilated patients, asymmetrical lung injury is probably extremely frequent in the intensive care unit but the lack of standardized measurements does not allow to describe any prevalence among mechanically ventilated patients. Many past studies have focused only on unilateral injury and have mostly described the effect of lateral positioning. The good lung put downward might receive more perfusion while the sick lung placed upward receive more ventilation than supine. This usually results in better oxygenation but can also promote atelectasis in the healthy lung and no consensus has emerged on the clinical indication of this posture. Recently, electrical impedance tomography (EIT) has allowed for the first time to precisely describe the distribution of ventilation in each lung and to better study asymmetrical lung injury. At low positive-end-expiratory pressure (PEEP), a very heterogeneous ventilation exists between the two lungs and the initial increase in PEEP first helps to recruit the sick lung and protect the healthier lung. However, further increasing PEEP distends the less injured lung and must be avoided. The right level can be found using EIT and transpulmonary pressure. In addition, EIT can show that in the two lungs, airway closure is present but with very different airway opening pressures (AOPs) which cannot be identified on a global assessment. This may suggest a very different PEEP level than on a global assessment. Lastly, epidemiological studies suggest that in hypoxemic patients, the number of quadrants involved has a strong prognostic value. The number of quadrants is more important than the location of the unilateral or bilateral nature of the involvement for the prognosis, and hypoxemic patients with unilateral lung injury should probably be considered as requiring lung protective ventilation as classical acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Luca Bastia
- Neurointensive Care Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
| | - Hadrien Rozé
- Thoracic Surgery and Lung Transplant Unit, Department of Anesthesiology and Critical Care, Bordeaux University Hospital, Haut Leveque Hospital, Pessac, France.,Centre de Recherche Cardio Thoracique INSERM 1045, Pessac, France
| | - Laurent Brochard
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, Canada
| |
Collapse
|
2
|
Bastia L, Engelberts D, Osada K, Katira BH, Damiani LF, Yoshida T, Chen L, Ferguson ND, Amato MBP, Post M, Kavanagh BP, Brochard L. Role of Positive End-Expiratory Pressure and Regional Transpulmonary Pressure in Asymmetrical Lung Injury. Am J Respir Crit Care Med 2021; 203:969-976. [PMID: 33091317 DOI: 10.1164/rccm.202005-1556oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Asymmetrical lung injury is a frequent clinical presentation. Regional distribution of Vt and positive end-expiratory pressure (PEEP) could result in hyperinflation of the less-injured lung. The validity of esophageal pressure (Pes) is unknown.Objectives: To compare, in asymmetrical lung injury, Pes with directly measured pleural pressures (Ppl) of both sides and investigate how PEEP impacts ventilation distribution and the regional driving transpulmonary pressure (inspiratory - expiratory).Methods: Fourteen mechanically ventilated pigs with lung injury were studied. One lung was blocked while the contralateral one underwent surfactant lavage and injurious ventilation. Airway pressure and Pes were measured, as was Ppl in the dorsal and ventral pleural space adjacent to each lung. Distribution of ventilation was assessed by electrical impedance tomography. PEEP was studied through decremental steps.Measurements and Results: Ventral and dorsal Ppl were similar between the injured and the noninjured lung across all PEEP levels. Dorsal Ppl and Pes were similar. The driving transpulmonary pressure was similar in the two lungs. Vt distribution between lungs was different at zero end-expiratory pressure (≈70% of Vt going in noninjured lung) owing to different respiratory system compliance (8.3 ml/cm H2O noninjured lung vs. 3.7 ml/cm H2O injured lung). PEEP at 10 cm H2O with transpulmonary pressure around zero homogenized Vt distribution opening the lungs. PEEP ≥16 cm H2O equalized distribution of Vt but with overdistension for both lungs.Conclusions: Despite asymmetrical lung injury, Ppl between injured and noninjured lungs is equalized and esophageal pressure is a reliable estimate of dorsal Ppl. Driving transpulmonary pressure is similar for both lungs. Vt distribution results from regional respiratory system compliance. Moderate PEEP homogenizes Vt distribution between lungs without generating hyperinflation.
Collapse
Affiliation(s)
- Luca Bastia
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,School of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Doreen Engelberts
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kohei Osada
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bhushan H Katira
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Division of Pediatric Critical Care Medicine, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science
| | - L Felipe Damiani
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Departamento Ciencias de la Salud, Carrera de Kinesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Takeshi Yoshida
- The Department of Anesthesiology and Intensive Care Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Niall D Ferguson
- Interdepartmental Division of Critical Care Medicine.,Division of Respirology, Department of Medicine, University Health Network and Sinai Health System, Toronto, Ontario, Canada; and
| | - Marcelo B P Amato
- Laboratório de Pneumologia LIM-09, Disciplina de Pneumologia, Instituto do Coração (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Martin Post
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,The Institute of Medical Science
| | - Brian P Kavanagh
- Translational Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada.,Interdepartmental Division of Critical Care Medicine.,The Institute of Medical Science.,Department of Critical Care Medicine, Hospital for Sick Children, and.,Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Driving-pressure-independent protective effects of open lung approach against experimental acute respiratory distress syndrome. Crit Care 2018; 22:228. [PMID: 30243301 PMCID: PMC6151188 DOI: 10.1186/s13054-018-2154-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/08/2018] [Indexed: 12/16/2022] Open
Abstract
Background The open lung approach (OLA) reportedly has lung-protective effects against acute respiratory distress syndrome (ARDS). Recently, lowering of the driving pressure (ΔP), rather than improvement in lung aeration per se, has come to be considered as the primary lung-protective mechanism of OLA. However, the driving pressure-independent protective effects of OLA have never been evaluated in experimental studies. We here evaluated whether OLA shows protective effects against experimental ARDS even when the ΔP is not lowered. Methods Lipopolysaccharide was intratracheally administered to rats to establish experimental ARDS. After 24 h, rats were mechanically ventilated and randomly allocated to the OLA or control group. In the OLA group, 5 cmH2O positive end-expiratory pressure (PEEP) and recruitment maneuver (RM) were applied. Neither PEEP nor RM was applied to the rats in the control group. Dynamic ΔP was kept at 15 cmH2O in both groups. After 6 h of mechanical ventilation, rats in both groups received RM to inflate reversible atelectasis of the lungs. Arterial blood gas analysis, lung computed tomography, histological evaluation, and comprehensive biochemical analysis were performed. Results OLA significantly improved lung aeration, arterial oxygenation, and gas exchange. Even after RM in both groups, the differences in these parameters between the two groups persisted, indicating that the atelectasis-induced respiratory dysfunction observed in the control group is not an easily reversible functional problem. Lung histological damage was severe in the dorsal dependent area in both groups, but was attenuated by OLA. White blood cell counts, protein concentrations, and tissue injury markers in the broncho-alveolar lavage fluid (BALF) were higher in the control than in the OLA group. Furthermore, levels of CXCL-7, a platelet-derived chemokine, were higher in the BALF from the control group, indicating that OLA protects the lungs by suppressing platelet activation. Conclusions OLA shows protective effects against experimental ARDS, even when the ΔP is not decreased. In addition to reducing ΔP, maintaining lung aeration seems to be important for lung protection in ARDS. Electronic supplementary material The online version of this article (10.1186/s13054-018-2154-2) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
Setzer F, Schmidt B, Hueter L, Schwarzkopf K, Sänger J, Schreiber T. Characterization of the seven-day course of pulmonary response following unilateral lung acid injury in rats. PLoS One 2018; 13:e0198440. [PMID: 29864150 PMCID: PMC5986146 DOI: 10.1371/journal.pone.0198440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/18/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Aspiration of gastric acid is an important cause of acute lung injury. The time course of the pulmonary response to such an insult beyond the initial 48 hours is incompletely characterized. The purpose of this study was to comprehensively describe the pulmonary effects of focal lung acid injury over a seven day period in both directly injured and not directly injured lung tissue. METHODS Male Wistar rats underwent left-endobronchial instillation with hydrochloric acid and were sacrificed at 4, 24, 48, 96 or 168 h after the insult. Healthy non-injured animals served as controls. We assessed inflammatory cell counts and cytokine levels in right and left lung lavage fluid and blood, arterial oxygen tension, alterations in lung histology, lung wet-to-dry weight ratio and differential lung perfusion. RESULTS Lung acid instillation induced an early strong inflammatory response in the directly affected lung, peaking at 4-24 hours, with only partial resolution after 7 days. A less severe response with complete resolution after 4 days was seen in the opposite lung. Alveolar cytokine levels, with exception of IL-6, only partially reflected the localization of lung injury and the time course of the functional and histologic alterations. Alveolar leucocyte subpopulations exhibited different time courses in the acid injured lung with persistent elevation of alveolar lymphocytes and macrophages. After acid instillation there was an early transient decrease in arterial oxygen tension and lung perfusion was preferentially distributed to the non-injured lung. CONCLUSION These findings provide a basis for further research in the field of lung acid injury and for studies exploring effects of mechanical ventilation on injured lungs. Incomplete recovery in the directly injured lung 7 days after acid instillation suggests that increased vulnerability and susceptibility to further noxious stimuli are still present at that time.
Collapse
Affiliation(s)
- Florian Setzer
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- * E-mail:
| | - Barbara Schmidt
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Lars Hueter
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Department of Anesthesia and Intensive Care, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Konrad Schwarzkopf
- Department of Anesthesia and Intensive Care, Klinikum Saarbrücken, Winterberg, Saarbrücken, Germany
| | - Jörg Sänger
- Laboratory for Pathology and Cytology, Zentralklinik Bad Berka, Bad Berka, Germany
| | - Torsten Schreiber
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
- Department of Anesthesia and Intensive Care, Zentralklinik Bad Berka, Bad Berka, Germany
| |
Collapse
|
5
|
Richter T, Bergmann R, Pietzsch J, Mueller MP, Koch T. Effects of pulmonary acid aspiration on the regional pulmonary blood flow within the first hour after injury: An observational study in rats. Clin Hemorheol Microcirc 2015; 60:253-62. [PMID: 25171591 DOI: 10.3233/ch-141867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Gastric aspiration events are recognized as a major cause of pneumonitis and the development of acute respiratory distress syndrome. The first peak in the inflammatory response has been observed one hour after acid-induced lung injury in rats. The spatial pulmonary blood flow (PBF) distribution after an acid aspiration event within this time frame has not been adequately studied. We determined therefore PBF pattern within the first hour after acid aspiration. METHODS Anesthetized, spontaneous breathing rats (n = 8) underwent unilateral endobronchial hydrochlorid acid instillation so that the PBF distributions between the injured and non-injured lungs could be compared. The signal intensity of the lung parenchyma after injury was measured by magnetic resonance tomography. PBF distribution was determined by measuring the concentration of [68Ga]-radiolabeled microspheres using positron emission tomography. RESULTS Following acid aspiration, magnetic resonance images revealed increased signal intensity in the injured regions accompanied by reduced oxygenation. PBF was increased in all injured lungs (171 [150; 196], median [25%; 75%]) compared to the blood flow in all uninjured lungs (141 [122; 159], P = 0.0078). CONCLUSIONS From the first minute until fifty minutes after acid-induced acute lung injury, the PBF was consistently increased in the injured lung. These blood flow elevation was accompanied by significant hypoxemia.
Collapse
Affiliation(s)
- Torsten Richter
- Department of Anesthesia and Intensive Care, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Ralf Bergmann
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum, Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum, Dresden-Rossendorf, Dresden, Germany
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Michael Patrick Mueller
- Department of Anesthesia and Intensive Care, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Thea Koch
- Department of Anesthesia and Intensive Care, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
6
|
Fodor GH, Peták F, Erces D, Balogh AL, Babik B. Lung mechanical changes following bronchoaspiration in a porcine model: differentiation of direct and indirect mechanisms. Respir Physiol Neurobiol 2014; 199:41-9. [PMID: 24814560 DOI: 10.1016/j.resp.2014.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 04/01/2014] [Accepted: 05/02/2014] [Indexed: 01/13/2023]
Abstract
Bronchoaspiration results in local deterioration of lung function through direct damage and/or indirect systemic effects related to neurohumoral pathways. We distinguished these effects by selectively intubating the two main bronchi in pigs while a PEEP of 4 or 10cm H2O was maintained. Gastric juice was instilled only into the right lung. Lung mechanical and ventilation defects were assessed by measuring unilateral pulmonary input impedance (ZL,s) and the third phase slope of the capnogram (SIII) for each lung side separately before the aspiration and for 120min thereafter. Marked transient elevations in ZL,s parameters and SIII were observed in the affected lung after aspiration. Elevating PEEP did not affect these responses in the ZL,s parameters, whereas it prevented the SIII increases. None of these indices changed in the intact left lung. These findings furnish evidence of the predominance of the local direct damage over the indirect systemic effects in the development of the deterioration of lung function, and demonstrate the benefit of an initially elevated PEEP following aspiration.
Collapse
Affiliation(s)
- Gergely H Fodor
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Peták
- Department of Medical Physics and Informatics, University of Szeged, Szeged, Hungary.
| | - Dániel Erces
- Institute of Surgical Research, University of Szeged, Szeged, Hungary
| | - Adám L Balogh
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| | - Barna Babik
- Department of Anaesthesiology and Intensive Therapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Pulmonary blood flow increases in damaged regions directly after acid aspiration in rats. Anesthesiology 2014; 119:890-900. [PMID: 23846582 DOI: 10.1097/aln.0b013e3182a17e5b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND After gastric aspiration events, patients are at risk of pulmonary dysfunction and the development of severe acute lung injury and acute respiratory distress syndrome, which may contribute to the development of an inflammatory reaction. The authors' aim in the current study was to investigate the role of the spatial distribution of pulmonary blood flow in the pathogenesis of pulmonary dysfunction during the early stages after acid aspiration. METHODS The authors analyzed the pulmonary distribution of radiolabeled microspheres in normal (n = 6) and injured (n = 12) anesthetized rat lungs using positron emission tomography, computed tomography, and histological examination. RESULTS Injured regions demonstrate increased pulmonary blood flow in association with reduced arterial pressure and the deterioration of arterial oxygenation. After acid aspiration, computed tomography scans revealed that lung density had increased in the injured regions and that these regions colocalized with areas of increased blood flow. The acid was instilled into the middle and basal regions of the lungs. The blood flow was significantly increased to these regions compared with the blood flow to uninjured lungs in the control animals (middle region: 1.23 [1.1; 1.4] (median [25%; 75%]) vs. 1.04 [1.0; 1.1] and basal region: 1.25 [1.2; 1.3] vs. 1.02 [1.0; 1.05], respectively). The increase in blood flow did not seem to be due to vascular leakage into these injured areas. CONCLUSIONS The data suggest that 10 min after acid aspiration, damaged areas are characterized by increased pulmonary blood flow. The results may impact further treatment strategies, such as drug targeting.
Collapse
|
8
|
Collins SR, Blank RS, Deatherage LS, Dull RO. Special article: the endothelial glycocalyx: emerging concepts in pulmonary edema and acute lung injury. Anesth Analg 2013; 117:664-674. [PMID: 23835455 PMCID: PMC3790575 DOI: 10.1213/ane.0b013e3182975b85] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The endothelial glycocalyx is a dynamic layer of macromolecules at the luminal surface of vascular endothelium that is involved in fluid homeostasis and regulation. Its role in vascular permeability and edema formation is emerging but is still not well understood. In this special article, we highlight key concepts of endothelial dysfunction with regards to the glycocalyx and provide new insights into the glycocalyx as a mediator of processes central to the development of pulmonary edema and lung injury.
Collapse
Affiliation(s)
- Stephen R Collins
- From the Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia; Department of Anesthesiology, University of Utah, Salt Lake City, Utah; and Department of Anesthesiology and Bioengineering, University of Illinois at Chicago College of Medicine, Chicago, Illinois
| | | | | | | |
Collapse
|
9
|
Setzer F, Oschatz K, Hueter L, Schmidt B, Schwarzkopf K, Schreiber T. Susceptibility to ventilator induced lung injury is increased in senescent rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R99. [PMID: 23710684 PMCID: PMC4056597 DOI: 10.1186/cc12744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 05/27/2013] [Indexed: 01/05/2023]
Abstract
Introduction The principal mechanisms of ventilator induced lung injury (VILI) have been investigated in numerous animal studies. However, prospective data on the effect of old age on VILI are limited. Under the hypothesis that susceptibility to VILI is increased in old age, we investigated the pulmonary and extrapulmonary effects of mechanical ventilation with high tidal volume (VT) in old compared to young adult animals. Interventions Old (19.1 ± 3.0 months) and young adult (4.4 ± 1.3 months) male Wistar rats were anesthetized and mechanically ventilated (positive end-expiratory pressure 5 cmH2O, fraction of inspired oxygen 0.4, respiratory rate 40/minute) with a tidal volume (VT) of either 8, 16 or 24 ml/kg for four hours. Respiratory and hemodynamic variables, including cardiac output, and markers of systemic inflammation were recorded throughout the ventilation period. Lung histology and wet-to-dry weight ratio, injury markers in lung lavage and respiratory system pressure-volume curves were assessed post mortem. Basic pulmonary characteristics were assessed in non-ventilated animals. Results Compared to young adult animals, high VT (24 ml/kg body weight) caused more lung injury in old animals as indicated by decreased oxygenation (arterial oxygen tension (PaO2): 208 ± 3 vs. 131 ± 20 mmHg; P <0.05), increased lung wet-to-dry-weight ratio (5.61 ± 0.29 vs. 7.52 ± 0.27; P <0.05), lung lavage protein (206 ± 52 mg/l vs. 1,432 ± 101; P <0.05) and cytokine (IL-6: 856 ± 448 vs. 3,283 ± 943 pg/ml; P <0.05) concentration. In addition, old animals ventilated with high VT had more systemic inflammation than young animals (IL-1β: 149 ± 44 vs. 272 ± 36 pg/ml; P <0.05 - young vs. old, respectively). Conclusions Ventilation with unphysiologically large tidal volumes is associated with more lung injury in old compared to young rats. Aggravated pulmonary and systemic inflammation is a key finding in old animals developing VILI.
Collapse
|
10
|
Heuer JF, Sauter P, Pelosi P, Herrmann P, Brück W, Perske C, Schöndube F, Crozier TA, Bleckmann A, Beißbarth T, Quintel M. Effects of pulmonary acid aspiration on the lungs and extra-pulmonary organs: a randomized study in pigs. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R35. [PMID: 22380702 PMCID: PMC3681347 DOI: 10.1186/cc11214] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/21/2012] [Accepted: 03/01/2012] [Indexed: 01/09/2023]
Abstract
Introduction There is mounting evidence that injury to one organ causes indirect damage to other organ systems with increased morbidity and mortality. The aim of this study was to determine the effects of acid aspiration pneumonitis (AAP) on extrapulmonary organs and to test the hypothesis that these could be due to circulatory depression or hypoxemia. Methods Mechanically ventilated anesthetized pigs were randomized to receive intrabronchial instillation of hydrochloric acid (n = 7) or no treatment (n = 7). Hydrochloric acid (0.1 N, pH 1.1, 2.5 ml/kg BW) was instilled into the lungs during the inspiratory phase of ventilation. Hemodynamics, respiratory function and computer tomography (CT) scans of lung and brain were followed over a four-hour period. Tissue samples of lung, heart, liver, kidney and hippocampus were collected at the end of the experiment. Results Acid instillation caused pulmonary edema, measured as increased extravascular lung water index (ELWI), impaired gas exchange and increased mean pulmonary artery pressure. Gas exchange tended to improve during the course of the study, despite increasing ELWI. In AAP animals compared to controls we found: a) cardiac leukocyte infiltration and necrosis in the conduction system and myocardium; b) lymphocyte infiltration in the liver, spreading from the periportal zone with prominent areas of necrosis; c) renal inflammation with lymphocyte infiltration, edema and necrosis in the proximal and distal tubules; and d) a tendency towards more severe hippocampal damage (P > 0.05). Conclusions Acid aspiration pneumonitis induces extrapulmonary organ injury. Circulatory depression and hypoxemia are unlikely causative factors. ELWI is a sensitive bedside parameter of early lung damage.
Collapse
Affiliation(s)
- Jan Florian Heuer
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen Medical Center, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim YI, Park JS, Choi JS, Jou SS, Gil HW, Hong SY. Five Successful Experiences in the Treatment of Charcoal Aspiration with Bronchoscopic Toilet - A Case Report -. Korean J Crit Care Med 2012. [DOI: 10.4266/kjccm.2012.27.3.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Young Il Kim
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jae-Seok Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Jae Sung Choi
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Sung-Shik Jou
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Sae-Yong Hong
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| |
Collapse
|
12
|
Francis RCE, Schefold JC, Bercker S, Temmesfeld-Wollbrück B, Weichert W, Spies CD, Weber-Carstens S. Acute respiratory failure after aspiration of activated charcoal with recurrent deposition and release from an intrapulmonary cavern. Intensive Care Med 2009; 35:360-3. [PMID: 18795259 DOI: 10.1007/s00134-008-1259-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 08/20/2008] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To report on the recurrent release of charcoal from an intrapulmonary cavern in a case of acute respiratory failure after charcoal aspiration. DESIGN Case report. SETTING Anaesthesiological ICU, university hospital. PATIENT An 18-year-old ethanol intoxicated comatose patient regurgitated and aspirated activated charcoal during orotracheal intubation. TREATMENT After 2 days of mechanical ventilation, the patient was transferred to a tertiary care university hospital. On admission, acute respiratory distress syndrome with bilateral pulmonary infiltrations was diagnosed. The patient's recovery was hampered by recurrent release of charcoal from an intrapulmonary cavern. Sophisticated ventilatory support, prone positioning, secretolytics, repetitive bronchoscopy, and antibiotic therapy may have facilitated bronchoalveolar clearance and weaning after 18 days. CONCLUSION Aspiration may be a dramatic complication if charcoal is administered in comatose patients without airway protection. In this case report, advanced intensive care measures were necessary to tackle the special feature of charcoal release from an intrapulmonary cavern.
Collapse
Affiliation(s)
- Roland C E Francis
- Department of Anesthesiology and Intensive Care Medicine, Campus Virchow-Klinikum and Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
BU X, WANG C, CAO Z, PANG B, WANG S. Effects of independent lung ventilation and lateral position on cytokine markers of inflammation after unilateral lung acid injury in dogs. Respirology 2008; 13:233-9. [DOI: 10.1111/j.1440-1843.2008.01233.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Oliveira-Júnior IS, Maganhin CC, Carbonel AAF, Monteiro CMR, Cavassani SS, Oliveira-Filho RM. Effects of pentoxifylline on TNF-alpha and lung histopathology in HCL-induced lung injury. Clinics (Sao Paulo) 2008; 63:77-84. [PMID: 18297211 PMCID: PMC2664181 DOI: 10.1590/s1807-59322008000100014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/05/2007] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To evaluate the effects of pentoxifylline on hydrochloric acid-induced lung lesions in rats subjected to mechanical ventilation. METHODS Twenty male, adult Wistar-EPM-1 rats were anesthetized and randomly grouped (n=5 animals per group) as follows: control-MV (mechanical ventilation, MV group); bilateral instillation of HCl (HCl group); bilateral instillation of HCl followed by pentoxifylline (50 mg/kg bw) infusion (HCl+PTX group) and pentoxifylline infusion followed by bilateral instillation of HCl (PTX+HCl group). At 20, 30, 90 and 180 min after treatments, the blood partial pressures of CO2 and O2 were measured. The animals were euthanized, and bronchoalveolar lavages were taken to determine the contents of total proteins, corticosterone [corrected] and TNF-alpha. Samples of lung tissue were used for histomorphometric studies and determining the wet-to-dry (W/D) lung weight ratio. RESULTS In the MV group, rats had alveolar septal congestion, and, in the HCl group, a remarkable recruitment of neutrophils and macrophages into the alveoli was noticed; these events were reduced in the animals with PTX+HCl. The partial pressure of oxygen increased in PTX+HCl animals (121+/-5 mmHg) as compared with the HCl (62+/-6 mmHg) and HCl+PTX (67+/-3 mmHg) groups within 30 minutes. TNF-alpha levels in bronchoalveolar lavage were significantly higher in the HCl group (458+/-50 pg/mL), reduced in the HCl+PTX group (329+/-45 pg/mL) and lowest in the PTX+HCl group (229+/-41 pg/mL). The levels of corticosterone [corrected] in bronchoalveolar lavage were significantly lower in the HCl (8+/-1.3 ng/mL) and HCl+PTX group (16+/-2 ng/mL) and were highest in the PTX+HCl (27+/-1.9 ng/mL). CONCLUSION Pretreatment with PTX improves oxygenation, reduces TNF-alpha concentration and increases the concentration of corticosterone [corrected] in bronchoalveolar lavage upon lung lesion induced by HCl.
Collapse
|
15
|
Schreiber T, Hueter L, Gaser E, Schmidt B, Schwarzkopf K, Karzai W. Effects of a catecholamine-induced increase in cardiac output on lung injury after experimental unilateral pulmonary acid instillation. Crit Care Med 2007; 35:1741-8. [PMID: 17522573 DOI: 10.1097/01.ccm.0000269374.85160.bf] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Increasing pulmonary blood flow aggravated ventilation-associated lung injury in ex vivo animal experiments, but data were less consistent in an in vivo animal model and do not reflect redistributed lung perfusion seen in clinical acute lung injury. We sought to determine the effects of increased cardiac output on markers of lung injury in an in vivo model of inhomogeneous lung perfusion and injury. DESIGN Prospective, controlled animal study. SETTING Experimental research laboratory of a university hospital. SUBJECTS A total of 50 anesthetized, mechanically ventilated, male Wistar rats. INTERVENTIONS Unilateral lung injury was induced in rats by left lung acid instillation. After 24 hrs, animals were anesthetized and subjected to mechanical ventilation (tidal volume, 8 mL/kg; positive end-expiratory pressure, 7 cm H2O; FIO2, 0.4) and continuous infusion of either 10 microg x kg x min dobutamine or isotonic saline (control) for 4 hrs. MEASUREMENTS AND MAIN RESULTS Cardiac output and differential lung perfusion were recorded throughout the ventilation period. Right and left lung wet-to-dry weight ratio, cytokines and inflammatory cells in lung lavage, and histologic lung injury were measured postmortem. After acid injury, lung perfusion was preferentially distributed to the noninjured lung. Dobutamine increased baseline cardiac output (>70%) and perfusion of both lungs (left, acid-instilled lung: from 16 +/- 2 to 29 +/- 6 mL/min; right, non-acid-instilled lung: from 54 +/- 3 to 98 +/- 7 mL/min). There was no difference in left lung injury between dobutamine- and saline-infused animals, but right lung injury was aggravated in dobutamine-infused animals, as indicated by increased lung edema, histologic lung injury, and cell counts in lavage. CONCLUSIONS In the setting of unilateral lung injury and uneven lung perfusion, a dobutamine-induced increase in cardiac output has potentially detrimental effects on the opposite lung.
Collapse
Affiliation(s)
- Torsten Schreiber
- Department of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-Universität Jena, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Andrews P, Azoulay E, Antonelli M, Brochard L, Brun-Buisson C, De Backer D, Dobb G, Fagon JY, Gerlach H, Groeneveld J, Macrae D, Mancebo J, Metnitz P, Nava S, Pugin J, Pinsky M, Radermacher P, Richard C. Year in review in Intensive Care Medicine, 2006. I. Experimental studies. Clinical studies: brain injury, renal failure and endocrinology. Intensive Care Med 2007; 33:49-57. [PMID: 17180391 DOI: 10.1007/s00134-006-0501-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 12/31/2022]
Affiliation(s)
- Peter Andrews
- Intensive Care Medicine Unit, Western General Hospital, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|