1
|
Petitjeans F, Longrois D, Ghignone M, Quintin L. Combining O 2 High Flow Nasal or Non-Invasive Ventilation with Cooperative Sedation to Avoid Intubation in Early Diffuse Severe Respiratory Distress Syndrome, Especially in Immunocompromised or COVID Patients? J Crit Care Med (Targu Mures) 2024; 10:291-315. [PMID: 39916864 PMCID: PMC11799322 DOI: 10.2478/jccm-2024-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/01/2024] [Indexed: 02/09/2025] Open
Abstract
This overview addresses the pathophysiology of the acute respiratory distress syndrome (ARDS; conventional vs. COVID), the use of oxygen high flow (HFN) vs. noninvasive ventilation (NIV; conventional vs. helmet) and a multi-modal approach to avoid endotracheal intubation ("intubation"): low normal temperature, cooperative sedation, normalized systemic and microcirculation, anti-inflammation, reduced lung water, upright position, lowered intra-abdominal pressure. Increased ventilatory muscle activity ("respiratory drive") is observed in early ARDS, at variance with ventilatory fatigue observed in decompensated chronic obstructive pulmonary disease (COPD). This increased drive leads to impending then overt ventilatory failure. Therefore, muscle relaxation presents little rationale and should be replaced by lowering the excessive respiratory drive, increased work of breathing, continued or increased labored breathing, self-induced lung injury (SILI), i.e. preserving spontaneous breathing. As CMV is a lifesaver in the setting of failure but does not heal the lung, side-effects of intubation, controlled mechanical ventilation (CMV), paralysis and deep sedation are to be avoided. Additionally, critical care resources shortage requires practice changes. Therefore, NIV should be routine when addressing immune-compromised patients. The SARS-CoV2 pandemics extended this approach to most patients, which are immune-compromised: elderly, obese, diabetic, etc. The early COVID is a pulmonary vascular endothelial inflammatory disease requiring lower positive-end-expiratory pressure than the typical pulmonary alveolar epithelial inflammatory diffuse ARDS. This leads one to reassess a) the technique of NIV b) the sedation regimen facilitating continuous and extended NIV to avoid intubation. Autonomic, circulatory, respiratory, ventilatory physiology is hierarchized under HFN/NIV and cooperative sedation (dexmedetomidine, clonidine). A prospective randomized pilot trial, then a larger trial are required to ascertain our working hypotheses.
Collapse
Affiliation(s)
- Fabrice Petitjeans
- Department of Anesthesia-Critical Care, Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| | - Dan Longrois
- Bichat-Claude Bernard and Louis Mourier Hospitals, Assistance Publique-Hôpitaux de Paris, Paris Cité University, Paris, France
| | - Marco Ghignone
- Department of Anesthesia-Critical Care, JF Kennedy North Hospital, W Palm Beach, Fl, USA
| | - Luc Quintin
- Department of Anesthesia-Critical Care, Hôpital d’Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|
2
|
Simonte R, Cammarota G, Vetrugno L, De Robertis E, Longhini F, Spadaro S. Advanced Respiratory Monitoring during Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:2541. [PMID: 38731069 PMCID: PMC11084162 DOI: 10.3390/jcm13092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced respiratory monitoring encompasses a diverse range of mini- or noninvasive tools used to evaluate various aspects of respiratory function in patients experiencing acute respiratory failure, including those requiring extracorporeal membrane oxygenation (ECMO) support. Among these techniques, key modalities include esophageal pressure measurement (including derived pressures), lung and respiratory muscle ultrasounds, electrical impedance tomography, the monitoring of diaphragm electrical activity, and assessment of flow index. These tools play a critical role in assessing essential parameters such as lung recruitment and overdistention, lung aeration and morphology, ventilation/perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator synchrony. In contrast to conventional methods, advanced respiratory monitoring offers a deeper understanding of pathological changes in lung aeration caused by underlying diseases. Moreover, it allows for meticulous tracking of responses to therapeutic interventions, aiding in the development of personalized respiratory support strategies aimed at preserving lung function and respiratory muscle integrity. The integration of advanced respiratory monitoring represents a significant advancement in the clinical management of acute respiratory failure. It serves as a cornerstone in scenarios where treatment strategies rely on tailored approaches, empowering clinicians to make informed decisions about intervention selection and adjustment. By enabling real-time assessment and modification of respiratory support, advanced monitoring not only optimizes care for patients with acute respiratory distress syndrome but also contributes to improved outcomes and enhanced patient safety.
Collapse
Affiliation(s)
- Rachele Simonte
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Università della Magna Graecia, 88100 Catanzaro, Italy
- Anesthesia and Intensive Care Unit, “R. Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44100 Ferrara, Italy;
| |
Collapse
|
3
|
Zhou Y, Wang X, Du W, He H, Wang X, Cui N, Long Y. The level of partial pressure of carbon dioxide affects respiratory effort in COVID-19 patients undergoing pressure support ventilation with extracorporeal membrane oxygenation. BMC Anesthesiol 2024; 24:23. [PMID: 38216876 PMCID: PMC10785506 DOI: 10.1186/s12871-023-02382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/12/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Patients with COVID-19 undergoing pressure support ventilation (PSV) with extracorporeal membrane oxygenation (ECMO) commonly had high respiratory drive, which could cause self-inflicted lung injury. The aim of this study was to evaluate the influence of different levels of partial pressure of carbon dioxide(PaCO2) on respiratory effort in COVID-19 patients undergoing PSV with ECMO. METHODS ECMO gas flow was downregulated from baseline (respiratory rate < 25 bpm, peak airway pressure < 25 cm H2O, tidal volume < 6 mL/kg, PaCO2 < 40 mmHg) until PaCO2 increased by 5 - 10 mmHg. The pressure muscle index (PMI) and airway pressure swing during occlusion (ΔPOCC) were used to monitor respiratory effort, and they were measured before and after enforcement of the regulations. RESULTS Ten patients with COVID-19 who had undergone ECMO were enrolled in this prospective study. When the PaCO2 increased from 36 (36 - 37) to 42 (41-43) mmHg (p = 0.0020), there was a significant increase in ΔPOCC [from 5.6 (4.7-8.0) to 11.1 (8.5-13.1) cm H2O, p = 0.0020] and PMI [from 3.0 ± 1.4 to 6.5 ± 2.1 cm H2O, p < 0.0001]. Meanwhile, increased inspiratory effort determined by elevated PaCO2 levels led to enhancement of tidal volume from 4.1 ± 1.2 mL/kg to 5.3 ± 1.5 mL/kg (p = 0.0003) and respiratory rate from 13 ± 2 to 15 ± 2 bpm (p = 0.0266). In addition, the increase in PaCO2 was linearly correlated with changes in ΔPOCC and PMI (R2 = 0.7293, p = 0.0003 and R2 = 0.4105, p = 0.0460, respectively). CONCLUSIONS In patients with COVID-19 undergoing PSV with ECMO, an increase of PaCO2 could increase the inspiratory effort.
Collapse
Affiliation(s)
- Yuankai Zhou
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xinchen Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Du
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huaiwu He
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaoting Wang
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Na Cui
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yun Long
- Department of Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
4
|
Petitjeans F, Leroy S, Pichot C, Ghignone M, Quintin L, Longrois D, Constantin JM. Improved understanding of the respiratory drive pathophysiology could lead to earlier spontaneous breathing in severe acute respiratory distress syndrome. EUROPEAN JOURNAL OF ANAESTHESIOLOGY AND INTENSIVE CARE 2023; 2:e0030. [PMID: 39916810 PMCID: PMC11783659 DOI: 10.1097/ea9.0000000000000030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Optimisation of the respiratory drive, as early as possible in the setting of severe acute respiratory distress syndrome (ARDS) and not its suppression, could be a new paradigm in the management of severe forms of ARDS. Severe ARDS is characterised by tachypnoea and hyperpnoea, a consequence of a high respiratory drive. Some patients require endotracheal intubation, controlled mechanical ventilation (CMV) and paralysis to prevent overt ventilatory failure and self-inflicted lung injury. Nevertheless, intubation, CMV and paralysis do not address per se the high respiratory drive, they only suppress it. Optimisation of the respiratory drive could be obtained by a multimodal approach that targets attenuation of fever, agitation, systemic and peripheral acidosis, inflammation, extravascular lung water and changes in carbon dioxide levels. The paradigm we present, based on pathophysiological considerations, is that as soon as these factors have been controlled, spontaneous breathing could resume because hypoxaemia is the least important input to the respiratory drive. Hypoxaemia could be handled by combining positive end-expiratory pressure (PEEP) to prevent early expiratory closure and low pressure support to minimise the work of breathing (WOB). 'Cooperative' sedation with alpha-2 agonists, supplemented with neuroleptics if required, is the pharmacological adjunct, administered immediately after intubation as the first-line sedation regimen during the multimodal approach. Given relative contraindications (hypovolaemia, auriculoventricular block, sick sinus syndrome), alpha-2 agonists can help attenuate or moderate fever, increased oxygen consumption VO2, agitation, high cardiac output, inflammation and acidosis. They may also help to preserve microcirculation, cognition and respiratory rhythm generation, thus promoting spontaneous breathing. Returning the physiology of respiratory, ventilatory, circulatory and autonomic systems to normal will support the paradigm of optimised respiratory drive favouring early spontaneous ventilation, at variance with deep sedation, extended paralysis, CMV and use of the prone position as therapeutic strategies in severe ARDS. GLOSSARY Glossary and Abbreviations_SDC.
Collapse
Affiliation(s)
- Fabrice Petitjeans
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Sandrine Leroy
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Cyrille Pichot
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Marco Ghignone
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Luc Quintin
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Dan Longrois
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| | - Jean-Michel Constantin
- From the Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France (FP, LQ), Environmental Justice Program, Georgetown University, Washington, DC (SL), Hôpital Louis Pasteur, Dole (CP), Université de Paris (Diderot, Sorbonne), Hôpital Bichat and UMR 5698 and GRC 29, DMU DREAM (DL), Hôpital Pitié-Salpêtrière, Paris, France (J-MC) and JF Kennedy North Hospital, West Palm Beach, Florida, USA (MG)
| |
Collapse
|
5
|
Colombo SM, Scaravilli V, Castagna L, Zanella A, Brioni M, Abbruzzese C, Grasselli G. Neural pressure support ventilation as a novel strategy to improve patient-ventilator synchrony in adult respiratory distress syndrome. Br J Anaesth 2023; 130:e430-e432. [PMID: 36725377 DOI: 10.1016/j.bja.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/01/2023] [Accepted: 01/01/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Sebastiano M Colombo
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittorio Scaravilli
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Luigi Castagna
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Zanella
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Matteo Brioni
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Abbruzzese
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anaesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Martin AK, Feinman JW, Bhatt HV, Fritz AV, Subramani S, Malhotra AK, Townsley MM, Sharma A, Patel SJ, Ha B, Gui JL, Zaky A, Labe S, Teixeira MT, Morozowich ST, Weiner MM, Ramakrishna H. The Year in Cardiothoracic and Vascular Anesthesia: Selected Highlights from 2022. J Cardiothorac Vasc Anesth 2023; 37:201-213. [PMID: 36437141 DOI: 10.1053/j.jvca.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
This special article is the 15th in an annual series for the Journal of Cardiothoracic and Vascular Anesthesia. The authors thank the editor-in-chief Dr. Kaplan and the editorial board for the opportunity to continue this series, namely the research highlights of the past year in the specialties of cardiothoracic and vascular anesthesiology. The major themes selected for 2022 are outlined in this introduction, and each highlight is reviewed in detail in the main body of the article. The literature highlights, in the specialties for 2022, begin with an update on COVID-19 therapies, with a focus on the temporal updates in a wide range of therapies, progressing from medical to the use of extracorporeal membrane oxygenation and, ultimately, with lung transplantation in this high-risk group. The second major theme is focused on medical cardiology, with the authors discussing new insights into the life cycle of coronary disease, heart failure treatments, and outcomes related to novel statin therapy. The third theme is focused on mechanical circulatory support, with discussions focusing on both right-sided and left-sided temporary support outcomes and the optimal timing of deployment. The fourth and final theme is an update on cardiac surgery, with a discussion of the diverse aspects of concomitant valvular surgery and the optimal approach to procedural treatment for coronary artery disease. The themes selected for this 15th special article are only a few of the diverse advances in the specialties during 2022. These highlights will inform the reader of key updates on a variety of topics, leading to the improvement of perioperative outcomes for patients with cardiothoracic and vascular disease.
Collapse
Affiliation(s)
- Archer Kilbourne Martin
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL.
| | - Jared W Feinman
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Himani V Bhatt
- Department of Anesthesiology, Perioperative, and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ashley Virginia Fritz
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL
| | - Sudhakar Subramani
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Anita K Malhotra
- Division of Cardiothoracic Anesthesiology and Critical Care, Penn State Hershey Medical Center, Hershey, PA
| | - Matthew M Townsley
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL; Bruno Pediatric Heart Center, Children's of Alabama, Birmingham, AL
| | - Archit Sharma
- Department of Anesthesiology, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Saumil J Patel
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bao Ha
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jane L Gui
- Department of Anesthesiology, Perioperative, and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ahmed Zaky
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Shelby Labe
- Division of Cardiothoracic Anesthesiology and Critical Care, Penn State Hershey Medical Center, Hershey, PA
| | - Miguel T Teixeira
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| | - Steven T Morozowich
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Scottsdale, AZ
| | - Menachem M Weiner
- Department of Anesthesiology, Perioperative, and Pain Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Harish Ramakrishna
- Division of Cardiovascular and Thoracic Anesthesiology, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Longhini F, Bruni A, Garofalo E, Tutino S, Vetrugno L, Navalesi P, De Robertis E, Cammarota G. Monitoring the patient-ventilator asynchrony during non-invasive ventilation. Front Med (Lausanne) 2023; 9:1119924. [PMID: 36743668 PMCID: PMC9893016 DOI: 10.3389/fmed.2022.1119924] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Patient-ventilator asynchrony is a major issue during non-invasive ventilation and may lead to discomfort and treatment failure. Therefore, the identification and prompt management of asynchronies are of paramount importance during non-invasive ventilation (NIV), in both pediatric and adult populations. In this review, we first define the different forms of asynchronies, their classification, and the method of quantification. We, therefore, describe the technique to properly detect patient-ventilator asynchronies during NIV in pediatric and adult patients with acute respiratory failure, separately. Then, we describe the actions that can be implemented in an attempt to reduce the occurrence of asynchronies, including the use of non-conventional modes of ventilation. In the end, we analyzed what the literature reports on the impact of asynchronies on the clinical outcomes of infants, children, and adults.
Collapse
Affiliation(s)
- Federico Longhini
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy,*Correspondence: Federico Longhini,
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Simona Tutino
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care Unit, SS Annunziata Hospital, Chieti, Italy,Department of Medical, Oral and Biotechnological Sciences, “Gabriele D’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Anaesthesia and Intensive Care, Padua Hospital, Department of Medicine, University of Padua, Padua, Italy
| | | | | |
Collapse
|
8
|
A model of the pulmonary acinar circulatory system with gas exchange function to explore the influence of alveolar diameter. Respir Physiol Neurobiol 2022; 300:103883. [PMID: 35247623 DOI: 10.1016/j.resp.2022.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022]
Abstract
Lung diseases such as acute respiratory distress syndrome affect the patient's lung compliance, which in turn affects the ability of gas exchange. Changes in alveolar diameter relate to local lung compliance. How alveolar diameter affects gas exchange, particularly oxygen concentrations in alveolar capillaries, is a topic of concern for researchers, and can be studied using mathematical models. The level of small-scale mathematical models of the pulmonary circulatory system was the alveolar capillaries, but existing models do not consider the gas-exchange function and fail to reflect the influence of alveolar diameter. Therefore, we proposed a pulmonary acinar capillary model with gas exchange function, and most importantly, introduced alveolar diameter into the model, to analyze the effect of alveolar diameter on the gas exchange function of the pulmonary acini. The model was tested by three respiratory function simulation experiments. According to the simulation results of changing diameter, we found that the alveolar diameter mainly affects the alveolar gas exchange function of lung acinar inlets and the middle section compared with the peripheral section.
Collapse
|
9
|
Wu M, Yuan X, Liu L, Yang Y. Neurally Adjusted Ventilatory Assist vs. Conventional Mechanical Ventilation in Adults and Children With Acute Respiratory Failure: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:814245. [PMID: 35273975 PMCID: PMC8901502 DOI: 10.3389/fmed.2022.814245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Patient-ventilator asynchrony is a common problem in mechanical ventilation (MV), resulting in increased complications of MV. Despite there being some pieces of evidence for the efficacy of improving the synchronization of neurally adjusted ventilatory assist (NAVA), controversy over its physiological and clinical outcomes remain. Herein, we conducted a systematic review and meta-analysis to determine the relative impact of NAVA or conventional mechanical ventilation (CMV) modes on the important outcomes of adults and children with acute respiratory failure (ARF). Methods Qualified studies were searched in PubMed, EMBASE, Medline, Web of Science, Cochrane Library, and additional quality evaluations up to October 5, 2021. The primary outcome was asynchrony index (AI); secondary outcomes contained the duration of MV, intensive care unit (ICU) mortality, the incidence rate of ventilator-associated pneumonia, pH, and Partial Pressure of Carbon Dioxide in Arterial Blood (PaCO2). A statistical heterogeneity for the outcomes was assessed using the I 2 test. A data analysis of outcomes using odds ratio (OR) for ICU mortality and ventilator-associated pneumonia incidence and mean difference (MD) for AI, duration of MV, pH, and PaCO2, with 95% confidence interval (CI), was expressed. Results Eighteen eligible studies (n = 926 patients) were eventually enrolled. For the primary outcome, NAVA may reduce the AI (MD = -18.31; 95% CI, -24.38 to -12.25; p < 0.001). For the secondary outcomes, the duration of MV in the NAVA mode was 2.64 days lower than other CMVs (MD = -2.64; 95% CI, -4.88 to -0.41; P = 0.02), and NAVA may decrease the ICU mortality (OR =0.60; 95% CI, 0.42 to 0.86; P = 0.006). There was no statistically significant difference in the incidence of ventilator-associated pneumonia, pH, and PaCO2 between NAVA and other MV modes. Conclusions Our study suggests that NAVA ameliorates the synchronization of patient-ventilator and improves the important clinical outcomes of patients with ARF compared with CMV modes.
Collapse
Affiliation(s)
- Mengfan Wu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xueyan Yuan
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Graf PT, Boesing C, Brumm I, Biehler J, Müller KW, Thiel M, Pelosi P, Rocco PRM, Luecke T, Krebs J. Ultraprotective versus apneic ventilation in acute respiratory distress syndrome patients with extracorporeal membrane oxygenation: a physiological study. J Intensive Care 2022; 10:12. [PMID: 35256012 PMCID: PMC8900404 DOI: 10.1186/s40560-022-00604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Even an ultraprotective ventilation strategy in severe acute respiratory distress syndrome (ARDS) patients treated with extracorporeal membrane oxygenation (ECMO) might induce ventilator-induced lung injury and apneic ventilation with the sole application of positive end-expiratory pressure may, therefore, be an alternative ventilation strategy. We, therefore, compared the effects of ultraprotective ventilation with apneic ventilation on oxygenation, oxygen delivery, respiratory system mechanics, hemodynamics, strain, air distribution and recruitment of the lung parenchyma in ARDS patients with ECMO. Methods In a prospective, monocentric physiological study, 24 patients with severe ARDS managed with ECMO were ventilated using ultraprotective ventilation (tidal volume 3 ml/kg of predicted body weight) with a fraction of inspired oxygen (FiO2) of 21%, 50% and 90%. Patients were then treated with apneic ventilation with analogous FiO2. The primary endpoint was the effect of the ventilation strategy on oxygenation and oxygen delivery. The secondary endpoints were mechanical power, stress, regional air distribution, lung recruitment and the resulting strain, evaluated by chest computed tomography, associated with the application of PEEP (apneic ventilation) and/or low VT (ultraprotective ventilation). Results Protective ventilation, compared to apneic ventilation, improved oxygenation (arterial partial pressure of oxygen, p < 0.001 with FiO2 of 50% and 90%) and reduced cardiac output. Both ventilation strategies preserved oxygen delivery independent of the FiO2. Protective ventilation increased driving pressure, stress, strain, mechanical power, as well as induced additional recruitment in the non-dependent lung compared to apneic ventilation. Conclusions In patients with severe ARDS managed with ECMO, ultraprotective ventilation compared to apneic ventilation improved oxygenation, but increased stress, strain, and mechanical power. Apneic ventilation might be considered as one of the options in the initial phase of ECMO treatment in severe ARDS patients to facilitate lung rest and prevent ventilator-induced lung injury. Trial registration: German Clinical Trials Register (DRKS00013967). Registered 02/09/2018. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00013967. Supplementary Information The online version contains supplementary material available at 10.1186/s40560-022-00604-9.
Collapse
|
11
|
Menga LS, Berardi C, Ruggiero E, Grieco DL, Antonelli M. Noninvasive respiratory support for acute respiratory failure due to COVID-19. Curr Opin Crit Care 2022; 28:25-50. [PMID: 34694240 PMCID: PMC8711305 DOI: 10.1097/mcc.0000000000000902] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Noninvasive respiratory support has been widely applied during the COVID-19 pandemic. We provide a narrative review on the benefits and possible harms of noninvasive respiratory support for COVID-19 respiratory failure. RECENT FINDINGS Maintenance of spontaneous breathing by means of noninvasive respiratory support in hypoxemic patients with vigorous spontaneous effort carries the risk of patient self-induced lung injury: the benefit of averting intubation in successful patients should be balanced with the harms of a worse outcome in patients who are intubated after failing a trial of noninvasive support.The risk of noninvasive treatment failure is greater in patients with the most severe oxygenation impairment (PaO2/FiO2 < 200 mmHg).High-flow nasal oxygen (HFNO) is the most widely applied intervention in COVID-19 patients with hypoxemic respiratory failure. Also, noninvasive ventilation (NIV) and continuous positive airway pressure delivered with different interfaces have been used with variable success rates. A single randomized trial showed lower need for intubation in patients receiving helmet NIV with specific settings, compared to HFNO alone.Prone positioning is recommended for moderate-to-severe acute respiratory distress syndrome patients on invasive ventilation. Awake prone position has been frequently applied in COVID-19 patients: one randomized trial showed improved oxygenation and lower intubation rate in patients receiving 6-h sessions of awake prone positioning, as compared to conventional management. SUMMARY Noninvasive respiratory support and awake prone position are tools possibly capable of averting endotracheal intubation in COVID-19 patients; carefully monitoring during any treatment is warranted to avoid delays in endotracheal intubation, especially in patients with PaO2/FiO2 < 200 mmHg.
Collapse
Affiliation(s)
- Luca S. Menga
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cecilia Berardi
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Ersilia Ruggiero
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenico Luca Grieco
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimo Antonelli
- Istituto di Anestesiologia e Rianimazione, Università Cattolica del Sacro Cuore
- Dipartimento di Scienze dell’Emergenza, Anestesiologiche e della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
12
|
Mojoli F, Pozzi M, Orlando A, Bianchi IM, Arisi E, Iotti GA, Braschi A, Brochard L. Timing of inspiratory muscle activity detected from airway pressure and flow during pressure support ventilation: the waveform method. Crit Care 2022; 26:32. [PMID: 35094707 PMCID: PMC8802480 DOI: 10.1186/s13054-022-03895-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Whether respiratory efforts and their timing can be reliably detected during pressure support ventilation using standard ventilator waveforms is unclear. This would give the opportunity to assess and improve patient–ventilator interaction without the need of special equipment.
Methods In 16 patients under invasive pressure support ventilation, flow and pressure waveforms were obtained from proximal sensors and analyzed by three trained physicians and one resident to assess patient’s spontaneous activity. A systematic method (the waveform method) based on explicit rules was adopted. Esophageal pressure tracings were analyzed independently and used as reference. Breaths were classified as assisted or auto-triggered, double-triggered or ineffective. For assisted breaths, trigger delay, early and late cycling (minor asynchronies) were diagnosed. The percentage of breaths with major asynchronies (asynchrony index) and total asynchrony time were computed. Results Out of 4426 analyzed breaths, 94.1% (70.4–99.4) were assisted, 0.0% (0.0–0.2) auto-triggered and 5.8% (0.4–29.6) ineffective. Asynchrony index was 5.9% (0.6–29.6). Total asynchrony time represented 22.4% (16.3–30.1) of recording time and was mainly due to minor asynchronies. Applying the waveform method resulted in an inter-operator agreement of 0.99 (0.98–0.99); 99.5% of efforts were detected on waveforms and agreement with the reference in detecting major asynchronies was 0.99 (0.98–0.99). Timing of respiratory efforts was accurately detected on waveforms: AUC for trigger delay, cycling delay and early cycling was 0.865 (0.853–0.876), 0.903 (0.892–0.914) and 0.983 (0.970–0.991), respectively. Conclusions Ventilator waveforms can be used alone to reliably assess patient’s spontaneous activity and patient–ventilator interaction provided that a systematic method is adopted. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-022-03895-4.
Collapse
|
13
|
De Oliveira B, Aljaberi N, Taha A, Abduljawad B, Hamed F, Rahman N, Mallat J. Patient-Ventilator Dyssynchrony in Critically Ill Patients. J Clin Med 2021; 10:4550. [PMID: 34640566 PMCID: PMC8509510 DOI: 10.3390/jcm10194550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
Patient-ventilator dyssynchrony is a mismatch between the patient's respiratory efforts and mechanical ventilator delivery. Dyssynchrony can occur at any phase throughout the respiratory cycle. There are different types of dyssynchrony with different mechanisms and different potential management: trigger dyssynchrony (ineffective efforts, autotriggering, and double triggering); flow dyssynchrony, which happens during the inspiratory phase; and cycling dyssynchrony (premature cycling and delayed cycling). Dyssynchrony has been associated with patient outcomes. Thus, it is important to recognize and address these dyssynchronies at the bedside. Patient-ventilator dyssynchrony can be detected by carefully scrutinizing the airway pressure-time and flow-time waveforms displayed on the ventilator screens along with assessing the patient's comfort. Clinicians need to know how to depict these dyssynchronies at the bedside. This review aims to define the different types of dyssynchrony and then discuss the evidence for their relationship with patient outcomes and address their potential management.
Collapse
Affiliation(s)
- Bruno De Oliveira
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Nahla Aljaberi
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Ahmed Taha
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Baraa Abduljawad
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Fadi Hamed
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Nadeem Rahman
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
| | - Jihad Mallat
- Critical Care Institute, Cleveland Clinic Abu Dhabi, Al Maryah Island, Abu Dhabi P.O. Box 112412, United Arab Emirates; (B.D.O.); (N.A.); (A.T.); (B.A.); (F.H.); (N.R.)
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Faculty of Medicine, Normandy University, UNICAEN, ED 497, 1400 Caen, France
- Department of Anesthesiology and Critical Care Medicine, Centre Hospitalier de Lens, 62300 Lens, France
| |
Collapse
|
14
|
Does Interrupting Self-Induced Lung Injury and Respiratory Drive Expedite Early Spontaneous Breathing in the Setting of Early Severe Diffuse Acute Respiratory Distress Syndrome? Crit Care Med 2021; 50:1272-1276. [PMID: 34369430 DOI: 10.1097/ccm.0000000000005288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Extracorporeal Gas Exchange for Acute Respiratory Distress Syndrome: Open Questions, Controversies and Future Directions. MEMBRANES 2021; 11:membranes11030172. [PMID: 33670987 PMCID: PMC7997339 DOI: 10.3390/membranes11030172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023]
Abstract
Veno-venous extracorporeal membrane oxygenation (V-V ECMO) in acute respiratory distress syndrome (ARDS) improves gas exchange and allows lung rest, thus minimizing ventilation-induced lung injury. In the last forty years, a major technological and clinical improvement allowed to dramatically improve the outcome of patients treated with V-V ECMO. However, many aspects of the care of patients on V-V ECMO remain debated. In this review, we will focus on main issues and controversies on caring of ARDS patients on V-V ECMO support. Particularly, the indications to V-V ECMO and the feasibility of a less invasive extracorporeal carbon dioxide removal will be discussed. Moreover, the controversies on management of mechanical ventilation, prone position and sedation will be explored. In conclusion, we will discuss evidences on transfusions and management of anticoagulation, also focusing on patients who undergo simultaneous treatment with ECMO and renal replacement therapy. This review aims to discuss all these clinical aspects with an eye on future directions and perspectives.
Collapse
|
16
|
Extracorporeal support to achieve lung-protective and diaphragm-protective ventilation. Curr Opin Crit Care 2020; 26:66-72. [PMID: 31876625 DOI: 10.1097/mcc.0000000000000686] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Extracorporeal support allows ultraprotective controlled and assisted ventilation, which can prevent lung and diaphragm injury. We focused on most recent findings in the application of extracorporeal support to achieve lung protection and diaphragm- protection, as well as on relevant monitoring. RECENT FINDINGS A recent randomized trial comparing the efficacy of extracorporeal support as a rescue therapy to conventional protective mechanical ventilation was stopped for futility but post hoc analyses suggested that extracorporeal support is beneficial for patients with very severe acute respiratory distress syndrome. However, the optimal ventilation settings during extracorporeal support are still debated. It is conceivable that they should enable the highest amount of CO2 removal with lowest mechanical power.Extracorporeal CO2 removal can minimize acidosis and enable the use of ultra-protective lung ventilation strategies when hypoxemia is not a major issue. Moreover, it can protect lung and diaphragm function during assisted ventilation through control of the respiratory effort.Lung mechanics, gas exchange, diaphragm electrical activity, ultrasound, electrical impedance tomography could be integrated into clinical management to define lung and diaphragm protection and guide personalized ventilation settings. SUMMARY Technological improvement and the latest evidence indicate that extracorporeal support may be an effective tool for lung and diaphragm protection.
Collapse
|
17
|
Moury PH, Zunarelli R, Bailly S, Durand Z, Béhouche A, Garein M, Durand M, Vergès S, Albaladejo P. Diaphragm Thickening During Venoarterial Extracorporeal Membrane Oxygenation Weaning: An Observational Prospective Study. J Cardiothorac Vasc Anesth 2020; 35:1981-1988. [PMID: 33218955 DOI: 10.1053/j.jvca.2020.10.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The respiratory workload, according to the diaphragm thickening fraction (TF) during sweep gas flow (SGF), decrease during weaning from venoarterial extracorporeal membrane oxygenation (VA ECMO) was evaluated for the present study. DESIGN Prospective observational study. SETTING Monocentric. PARTICIPANTS Patients were included if they were suitable for a first VA ECMO weaning trial and were breathing spontaneously. INTERVENTIONS SGF was set for 15 minutes when the TF was measured at 4 L/min, 2 L/min, and 1 L/min, with a 10-minute return to baseline between each step. Mechanical ventilation, when required, was set to pressure-support ventilation mode with 7 cmH2O (pressure support) and a positive end-expiratory pressure of 0 cmH2O. Diaphragm ultrasound was used to assess the TF at the end of each step. Demographics, left ventricular ejection fraction (LVEF), and outcome were collected. MEASUREMENTS AND MAIN RESULTS Fifteen patients were included. Ten patients were extubated, and five were ventilated. TF values were 6.3% [0-10] at 4 L/min, 13.3% [10-26] at 2 L/min, and 26.7% [22-44] at 1 L/min (analysis of variance: p < 0.001 between 4 L/min and 2 L/min and p = 0.03 between 2 L/min and 1 L/min). TF did not differ whether patients were or were not ventilated or whether they were or were not weaned successfully from ECMO. TF was correlated with LVEF at 1 L/min SGF (Pearson R 0.67 [0.21-0.88]; p = 0.009) and at 2 L/min (R 0.7 [0.27-0.89]; p = 0.005) but not at 4 L/min. SGF mitigated the relationship between LVEF and TF (analysis of covariance: p < 0.005). CONCLUSIONS Diaphragm TF was related to the SGF of the venoarterial ECMO settings and LVEF at the time of weaning.
Collapse
Affiliation(s)
- Pierre Henri Moury
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France; HP2 Laboratory, Grenoble Alpes University, Grenoble, France; Réanimation, CHT Gaston-Bourret Nouméa, Nouvelle-Calédonie, France.
| | - Romain Zunarelli
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, Grenoble Alpes University, Grenoble, France; EFCR Laboratory, CHU Grenoble Alpes, Grenoble, France
| | - Zoé Durand
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | | | - Marina Garein
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Michel Durand
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Vergès
- HP2 Laboratory, Grenoble Alpes University, Grenoble, France
| | | |
Collapse
|
18
|
Luo XY, He X, Zhou YM, Wang YM, Chen JR, Chen GQ, Li HL, Yang YL, Zhang L, Zhou JX. Patient-ventilator asynchrony in acute brain-injured patients: a prospective observational study. Ann Intensive Care 2020; 10:144. [PMID: 33074406 PMCID: PMC7570406 DOI: 10.1186/s13613-020-00763-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background Patient–ventilator asynchrony is common in mechanically ventilated patients and may be related to adverse outcomes. Few studies have reported the occurrence of asynchrony in brain-injured patients. We aimed to investigate the prevalence, type and severity of patient–ventilator asynchrony in mechanically ventilated patients with brain injury. Methods This prospective observational study enrolled acute brain-injured patients undergoing mechanical ventilation. Esophageal pressure monitoring was established after enrollment. Flow, airway pressure, and esophageal pressure–time waveforms were recorded for a 15-min interval, four times daily for 3 days, for visually detecting asynchrony by offline analysis. At the end of each dataset recording, the respiratory drive was determined by the airway occlusion maneuver. The asynchrony index was calculated to represent the severity. The relationship between the prevalence and the severity of asynchrony with ventilatory modes and settings, respiratory drive, and analgesia and sedation were determined. Association of severe patient–ventilator asynchrony, which was defined as an asynchrony index ≥ 10%, with clinical outcomes was analyzed. Results In 100 enrolled patients, a total of 1076 15-min waveform datasets covering 330,292 breaths were collected, in which 70,156 (38%) asynchronous breaths were detected. Asynchrony occurred in 96% of patients with the median (interquartile range) asynchrony index of 12.4% (4.3%–26.4%). The most prevalent type was ineffective triggering. No significant difference was found in either prevalence or asynchrony index among different classifications of brain injury (p > 0.05). The prevalence of asynchrony was significantly lower during pressure control/assist ventilation than during other ventilatory modes (p < 0.05). Compared to the datasets without asynchrony, the airway occlusion pressure was significantly lower in datasets with ineffective triggering (p < 0.001). The asynchrony index was significantly higher during the combined use of opioids and sedatives (p < 0.001). Significantly longer duration of ventilation and hospital length of stay after the inclusion were found in patients with severe ineffective triggering (p < 0.05). Conclusions Patient–ventilator asynchrony is common in brain-injured patients. The most prevalent type is ineffective triggering and its severity is likely related to a long duration of ventilation and hospital stay. Prevalence and severity of asynchrony are associated with ventilatory modes, respiratory drive and analgesia/sedation strategy, suggesting treatment adjustment in this particular population. Trial registration The study has been registered on 4 July 2017 in ClinicalTrials.gov (NCT03212482) (https://clinicaltrials.gov/ct2/show/NCT03212482).
Collapse
Affiliation(s)
- Xu-Ying Luo
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Xuan He
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Yi-Min Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Yu-Mei Wang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Jing-Ran Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Guang-Qiang Chen
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Hong-Liang Li
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Yan-Lin Yang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Linlin Zhang
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China
| | - Jian-Xin Zhou
- Department of Critical Care Medicine, Beijing Tiantan Hospital, Capital Medical University, Fengtai District, No. 119, South 4th Ring West Road, Beijing, 100070, China.
| |
Collapse
|
19
|
Effect of Neurally Adjusted Ventilatory Assist on Patient-Ventilator Interaction in Mechanically Ventilated Adults: A Systematic Review and Meta-Analysis. Crit Care Med 2020; 47:e602-e609. [PMID: 30882481 DOI: 10.1097/ccm.0000000000003719] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Patient-ventilator asynchrony is common among critically ill patients undergoing mechanical ventilation and has been associated with adverse outcomes. Neurally adjusted ventilatory assist is a ventilatory mode that may lead to improved patient-ventilator synchrony. We conducted a systematic review to determine the impact of neurally adjusted ventilatory assist on patient-ventilator asynchrony, other physiologic variables, and clinical outcomes in adult patients undergoing invasive mechanical ventilation in comparison with conventional pneumatically triggered ventilatory modes. DATA SOURCES We searched Medline, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Central, CINAHL, Scopus, Web of Science, conference abstracts, and ClinicalTrials.gov until July 2018. STUDY SELECTION Two authors independently screened titles and abstracts for randomized and nonrandomized controlled trials (including crossover design) comparing the occurrence of patient-ventilator asynchrony between neurally adjusted ventilatory assist and pressure support ventilation during mechanical ventilation in critically ill adults. The asynchrony index and severe asynchrony (i.e., asynchrony index > 10%) were the primary outcomes. DATA EXTRACTION Two authors independently extracted study characteristics and outcomes and assessed risk of bias of included studies. DATA SYNTHESIS Of 11,139 unique citations, 26 studies (522 patients) met the inclusion criteria. Sixteen trials were included in the meta-analysis using random effects models through the generic inverse variance method. In several different clinical scenarios, the use of neurally adjusted ventilatory assist was associated with significantly reduced asynchrony index (mean difference, -8.12; 95% CI, -11.61 to -4.63; very low quality of evidence) and severe asynchrony (odds ratio, 0.42; 95% CI, 0.23-0.76; moderate quality of evidence) as compared with pressure support ventilation. Furthermore, other measurements of asynchrony were consistently improved during neurally adjusted ventilatory assist. CONCLUSIONS Neurally adjusted ventilatory assist improves patient-ventilator synchrony; however, its effects on clinical outcomes remain uncertain. Randomized controlled trials are needed to determine whether the physiologic efficiency of neurally adjusted ventilatory assist affects patient-important outcomes in critically ill adults.
Collapse
|
20
|
Schmidt M, Pham T, Arcadipane A, Agerstrand C, Ohshimo S, Pellegrino V, Vuylsteke A, Guervilly C, McGuinness S, Pierard S, Breeding J, Stewart C, Ching SSW, Camuso JM, Stephens RS, King B, Herr D, Schultz MJ, Neuville M, Zogheib E, Mira JP, Rozé H, Pierrot M, Tobin A, Hodgson C, Chevret S, Brodie D, Combes A. Mechanical Ventilation Management during Extracorporeal Membrane Oxygenation for Acute Respiratory Distress Syndrome. An International Multicenter Prospective Cohort. Am J Respir Crit Care Med 2020; 200:1002-1012. [PMID: 31144997 DOI: 10.1164/rccm.201806-1094oc] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Rationale: Current practices regarding mechanical ventilation in patients treated with extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome are unknown.Objectives: To report current practices regarding mechanical ventilation in patients treated with ECMO for severe acute respiratory distress syndrome (ARDS) and their association with 6-month outcomes.Methods: This was an international, multicenter, prospective cohort study of patients undergoing ECMO for ARDS during a 1-year period in 23 international ICUs.Measurements and Main Results: We collected demographics, daily pre- and per-ECMO mechanical ventilation settings and use of adjunctive therapies, ICU, and 6-month outcome data for 350 patients (mean ± SD pre-ECMO PaO2/FiO2 71 ± 34 mm Hg). Pre-ECMO use of prone positioning and neuromuscular blockers were 26% and 62%, respectively. Vt (6.4 ± 2.0 vs. 3.7 ± 2.0 ml/kg), plateau pressure (32 ± 7 vs. 24 ± 7 cm H2O), driving pressure (20 ± 7 vs. 14 ± 4 cm H2O), respiratory rate (26 ± 8 vs. 14 ± 6 breaths/min), and mechanical power (26.1 ± 12.7 vs. 6.6 ± 4.8 J/min) were markedly reduced after ECMO initiation. Six-month survival was 61%. No association was found between ventilator settings during the first 2 days of ECMO and survival in multivariable analysis. A time-varying Cox model retained older age, higher fluid balance, higher lactate, and more need for renal-replacement therapy along the ECMO course as being independently associated with 6-month mortality. A higher Vt and lower driving pressure (likely markers of static compliance improvement) across the ECMO course were also associated with better outcomes.Conclusions: Ultraprotective lung ventilation on ECMO was largely adopted across medium- to high-case volume ECMO centers. In contrast with previous observations, mechanical ventilation settings during ECMO did not impact patients' prognosis in this context.
Collapse
Affiliation(s)
- Matthieu Schmidt
- INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, UPMC Univ Paris 06, Sorbonne Université, Paris, France.,Assistance Publique-Hôpitaux de Paris, Medical Intensive Care Unit, Pitié-Salpêtrière Hospital, Paris, France
| | - Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Antonio Arcadipane
- Department of Anesthesia and Intensive Care, IRCCS-ISMETT Istituto Mediterraneo per i Trapianti e terapie ad alta specializzazione, Palermo, Italy
| | - Cara Agerstrand
- Department of Medicine, Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital, New York, New York
| | - Shinichiro Ohshimo
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | - Alain Vuylsteke
- Department of Anaesthesia and Intensive Care, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Christophe Guervilly
- Center for Studies and Research on Health Services and Quality of Life EA3279, Service de Medecine Intensive et Reanimation, CHU Hopital Nord, Assistance Publique Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Shay McGuinness
- Cardiothoracic & Vascular ICU, Auckland City Hospital, Auckland, New Zealand
| | - Sophie Pierard
- Pôle de Recherche Cardiovasculaire, Institute de Recherche Expérimentale et Clinique, Cardiothoracic Intensive Care, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Jeff Breeding
- St. Vincent's Hospital, New South Wales, Sydney, Australia
| | - Claire Stewart
- Department of Anaesthetics, Royal Prince Alfred Hospital, Sydney University Medical School, Sydney, New South Wales, Australia
| | - Simon Sin Wai Ching
- Department of Adult Intensive Care, Queen Mary Hospital, the University of Hong Kong, Hong Kong
| | - Janice M Camuso
- Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - R Scott Stephens
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Bobby King
- Department of Intensive Care, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | | | | | - Mathilde Neuville
- Bichat Hospital, Medical and Infectious Diseases Intensive Care Unit, Paris Diderot University, AP-HP, Paris, France.,UMR1148, LVTS, Sorbonne Paris Cité, Inserm/Paris Diderot University, Paris, France
| | - Elie Zogheib
- Cardiothoracic and Vascular Intensive Care Unit, Amiens University Hospital, Amiens, France.,INSERM U1088, Jules Verne University of Picardy, Amiens, France
| | - Jean-Paul Mira
- Assistance Publique des Hôpitaux de Paris, Groupe Hospitalier Universitaire de Paris Centre, Médecine Intensive RéanimationHôpital Cochin, Paris, France.,Paris Descartes Sorbonne Paris Cité University, Paris, France.,Department of Infection, Immunity and Inflammation, Cochin Institute, Inserm U1016, Paris, France
| | - Hadrien Rozé
- South Department of Anesthesiology and Critical Care, Bordeaux University Hospital, Pessac, France
| | - Marc Pierrot
- Service de Réanimation Médicale, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Anthony Tobin
- Department of Critical Care Medicine, St. Vincent's Hospital Melbourne, Fitzroy, Australia
| | - Carol Hodgson
- Intensive Care Unit, Alfred Hospital, Melbourne, Australia.,Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
| | - Sylvie Chevret
- Biostatistics Team, Saint-Louis Hospital, AP-HP, Paris, France; and.,ECSTRA Team, Biostatistics and Clinical Epidemiology, UMR 1153 (CRESS), INSERM, Paris Diderot Sorbonne University, Paris, France
| | - Daniel Brodie
- Department of Medicine, Columbia University College of Physicians and Surgeons/New York-Presbyterian Hospital, New York, New York
| | - Alain Combes
- INSERM UMRS_1166-iCAN, Institute of Cardiometabolism and Nutrition, UPMC Univ Paris 06, Sorbonne Université, Paris, France.,Assistance Publique-Hôpitaux de Paris, Medical Intensive Care Unit, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
21
|
Migdady I, Stephens RS, Price C, Geocadin RG, Whitman G, Cho SM. The use of apnea test and brain death determination in patients on extracorporeal membrane oxygenation: A systematic review. J Thorac Cardiovasc Surg 2020; 162:867-877.e1. [PMID: 32312535 DOI: 10.1016/j.jtcvs.2020.03.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To review practices of brain death (BD) determination in patients on extracorporeal membrane oxygenation (ECMO). METHODS A systematic search was applied to PubMed and 6 electronic databases from inception to May 22, 2019. Studies reporting methods of BD assessment in adult patients (>18 years old) while on ECMO were included, after which data regarding BD assessment were extracted. RESULTS Twenty-two studies (n = 177 patients) met the inclusion criteria. Eighty-eight patients (50%) in 19 studies underwent the apnea test (AT); most commonly through decreasing the ECMO sweep flow in 14 studies (n = 42, 48%), followed by providing CO2 through the ventilator in 2 studies (n = 6, 7%), and providing CO2 through the ECMO oxygenator in 1 study (n = 1, 1%). The details of the AT were not reported in 2 studies (n = 39, 44%). In 19 patients (22%), the AT was nonconfirmatory due to hemodynamic instability, hypoxia, insufficient CO2 rise, or unreliability of the AT. A total of 157 ancillary tests were performed, including electroencephalogram (62%), computed tomography angiography (22%), transcranial Doppler ultrasound (6%), cerebral blood flow nuclear study (5%), cerebral angiography (4%), and other (1%). Forty-seven patients (53% of patients with AT) with confirmatory AT still underwent additional ancillary for BD confirmation. Only 21 patients (12% of all patients) were declared brain-dead using confirmatory ATs alone without ancillary testing. CONCLUSIONS Performing AT for patients with ECMO was associated with high failure rate and hemodynamic complications. Our study highlights the variability in practice in regard to the AT and supports the use of ancillary tests to determine BD in patients on ECMO.
Collapse
Affiliation(s)
- Ibrahim Migdady
- Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert Scott Stephens
- Medical Intensive Care, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Carrie Price
- Welch Medical Library, Johns Hopkins University, Baltimore, Md
| | - Romergryko G Geocadin
- Departments of Neurology, Neurological Intensive Care, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Glenn Whitman
- Cardiovascular Surgical Intensive Care, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Sung-Min Cho
- Departments of Neurology, Neurological Intensive Care, Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
22
|
Zayton TM, El-Reweny EM, Tammam HM, Gharbeya KM. Predicting successful weaning in patients treated with venovenous extracorporeal membrane oxygenation. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1728881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Tayseer M. Zayton
- Department of Critical Care Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ehab M. El-Reweny
- Department of Critical Care Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Haitham M. Tammam
- Department of Critical Care Medicine, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Kareem M. Gharbeya
- Department of Critical Care Medicine, Alexandria Armed Forces Hospital, Alexandria, Egypt
| |
Collapse
|
23
|
Diniz-Silva F, Moriya HT, Alencar AM, Amato MBP, Carvalho CRR, Ferreira JC. Neurally adjusted ventilatory assist vs. pressure support to deliver protective mechanical ventilation in patients with acute respiratory distress syndrome: a randomized crossover trial. Ann Intensive Care 2020; 10:18. [PMID: 32040785 PMCID: PMC7010869 DOI: 10.1186/s13613-020-0638-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/02/2020] [Indexed: 01/06/2023] Open
Abstract
Background Protective mechanical ventilation is recommended for patients with acute respiratory distress syndrome (ARDS), but it usually requires controlled ventilation and sedation. Using neurally adjusted ventilatory assist (NAVA) or pressure support ventilation (PSV) could have additional benefits, including the use of lower sedative doses, improved patient–ventilator interaction and shortened duration of mechanical ventilation. We designed a pilot study to assess the feasibility of keeping tidal volume (VT) at protective levels with NAVA and PSV in patients with ARDS. Methods We conducted a prospective randomized crossover trial in five ICUs from a university hospital in Brazil and included patients with ARDS transitioning from controlled ventilation to partial ventilatory support. NAVA and PSV were applied in random order, for 15 min each, followed by 3 h in NAVA. Flow, peak airway pressure (Paw) and electrical activity of the diaphragm (EAdi) were captured from the ventilator, and a software (Matlab, Mathworks, USA), automatically detected inspiratory efforts and calculated respiratory rate (RR) and VT. Asynchrony events detection was based on waveform analysis. Results We randomized 20 patients, but the protocol was interrupted for five (25%) patients for whom we were unable to maintain VT below 6.5 mL/kg in PSV due to strong inspiratory efforts and for one patient for whom we could not detect EAdi signal. For the 14 patients who completed the protocol, VT was 5.8 ± 1.1 mL/kg for NAVA and 5.6 ± 1.0 mL/kg for PSV (p = 0.455) and there were no differences in RR (24 ± 7 for NAVA and 23 ± 7 for PSV, p = 0.661). Paw was greater in NAVA (21 ± 3 cmH2O) than in PSV (19 ± 3 cmH2O, p = 0.001). Most patients were under continuous sedation during the study. NAVA reduced triggering delay compared to PSV (p = 0.020) and the median asynchrony Index was 0.7% (0–2.7) in PSV and 0% (0–2.2) in NAVA (p = 0.6835). Conclusions It was feasible to keep VT in protective levels with NAVA and PSV for 75% of the patients. NAVA resulted in similar VT, RR and Paw compared to PSV. Our findings suggest that partial ventilatory assistance with NAVA and PSV is feasible as a protective ventilation strategy in selected ARDS patients under continuous sedation. Trial registration ClinicalTrials.gov (NCT01519258). Registered 26 January 2012, https://clinicaltrials.gov/ct2/show/NCT01519258
Collapse
Affiliation(s)
- Fabia Diniz-Silva
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politécnica da USP, Av. Prof. Luciano Gualberto, trav. 3, 158, Cidade Universitária, São Paulo, SP, CEP 05586-0600, Brazil
| | - Adriano M Alencar
- Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, São Paulo, SP, CEP 05314-970, Brazil
| | - Marcelo B P Amato
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil
| | - Carlos R R Carvalho
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil
| | - Juliana C Ferreira
- Divisao de Pneumologia, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, SP, BR, Av. Dr. Enéas de Carvalho Aguiar, 44, 5 andar, bloco 2, sala 1, São Paulo, SP, CEP 05403900, Brazil.
| |
Collapse
|
24
|
Chen C, Wen T, Liao W. Neurally adjusted ventilatory assist versus pressure support ventilation in patient-ventilator interaction and clinical outcomes: a meta-analysis of clinical trials. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:382. [PMID: 31555696 DOI: 10.21037/atm.2019.07.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background The objective of this study was to conduct a meta-analysis comparing neurally adjusted ventilatory assist (NAVA) with pressure support ventilation (PSV) in adult ventilated patients with patient-ventilator interaction and clinical outcomes. Methods The PubMed, the Web of Science, Scopus, and Medline were searched for appropriate clinical trials (CTs) comparing NAVA with PSV for the adult ventilated patients. RevMan 5.3 was performed for comparing NAVA with PSV in asynchrony index (AI), ineffective efforts, auto-triggering, double asynchrony, premature asynchrony, breathing pattern (Peak airway pressure (Pawpeek), mean airway pressure (Pawmean), tidal volume (VT, mL/kg), minute volume (MV), respiratory muscle unloading (peak electricity of diaphragm (EAdipeak), P 0.1, VT/EAdi), clinical outcomes (ICU mortality, duration of ventilation days, ICU stay time, hospital stay time). Results Our meta-analysis included 12 studies involving a total of 331 adult ventilated patients, AI was significantly lower in NAVA group [mean difference (MD) -12.82, 95% confidence interval (CI): -21.20 to -4.44, I2=88%], and using subgroup analysis, grouped by mechanical ventilation, the results showed that NAVA also had lower AI than PSV (Mechanical ventilation, MD -9.52, 95% CI: -17.85 to -1.20, I2=87%), (Non-invasive ventilation (NIV), MD -24.55, 95% CI: -35.40 to -13.70, I2=0%). NAVA was significantly lower than the PSV in auto-triggering (MD -0.28, 95% CI: -0.51 to -0.05, I2=10%), and premature triggering (MD -2.49, 95% CI: -3.77 to -1.21, I2=29%). There were no significant differences in double triggering, ineffective efforts, breathing pattern (Pawmean, Pawpeak, VT, MV), and respiratory muscle unloading (EAdipeak, P 0.1, VT/EAdi). For clinical outcomes, NAVA was significantly lower than the PSV (MD -2.82, 95% CI: -5.55 to -0.08, I2=0%) in the duration of ventilation, but two groups did not show significant differences in ICU mortality, ICU stay time, and hospital stay time. Conclusions NAVA is more beneficial in patient-ventilator interaction than PSV, and could decrease the duration of ventilation.
Collapse
Affiliation(s)
- Chongxiang Chen
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Guangzhou Institute of Respiratory Diseases, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510120, China
| | - Tianmeng Wen
- School of Public Health, Sun Yat-sen University, Guangzhou 510000, China
| | - Wei Liao
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
25
|
Fan E. "There Is Nothing New Except What Has Been Forgotten": The Story of Mechanical Ventilation during Extracorporeal Support. Am J Respir Crit Care Med 2019; 199:550-553. [PMID: 30281337 DOI: 10.1164/rccm.201809-1728ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Eddy Fan
- 1 Interdepartmental Division of Critical Care Medicine.,2 Institute of Health Policy, Management and Evaluation University of Toronto Toronto, Canada and.,3 University Health Network Toronto, Canada
| |
Collapse
|
26
|
Assy J, Mauriat P, Tafer N, Soulier S, El Rassi I. Neurally adjusted ventilatory assist for children on veno-venous ECMO. J Artif Organs 2019; 22:118-125. [PMID: 30610519 DOI: 10.1007/s10047-018-01087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/24/2018] [Indexed: 01/25/2023]
Abstract
NAVA may improve veno-venous ECMO weaning in children. This is a retrospective small series, describing for the first time proof-of-principle for the use of NAVA in children on VV ECMO. Six patients (age 1-48 months) needed veno-venous ECMO. Controlled conventional ventilation was replaced with assisted ventilation as soon as lung compliance improved, and could trigger initiation and termination of ventilation. NAVA was then initiated when diaphragmatic electrical activity (EAdi) allowed for triggering. NAVA was possible in all patients. Proportionate to EAdi (1.8-26 μV), initial peak inspiratory pressures ranged from 21 to 34 cm H2O, and the tidal volume (Vt) from 3 to 7 ml/kg. During weaning, peak pressures increased proportionally to EAdi increase (5.2-41 μV), with tidal volumes ranging from 6.6 to 8.6 ml/kg. ECMO was weaned after a median time of 1.75 days on NAVA. Following ECMO weaning, the median duration of mechanical ventilation, and intensive care unit stay were 4.5 days, and 13.5 days, respectively. Survival to hospital discharge was 100%. In conclusion, combining NAVA to ECMO in paediatric respiratory failure is safe and feasible, and may help in a smoother ECMO weaning, since NAVA allows the patient to drive the ventilator and regulate Vt according to needs.
Collapse
Affiliation(s)
- Jana Assy
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France.
- Department of Pediatrics, American University of Beirut Medical Center, 1107 2020, Beirut, Lebanon.
| | - Philippe Mauriat
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France
| | - Nadir Tafer
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France
| | - Sylvie Soulier
- Department of Anesthesia and Intensive Care, Hopital Haut-Lévêque, 33604, Pessac, Aquitaine, France
| | - Issam El Rassi
- Department of Surgery, American University of Beirut Medical Center, 1107 2020, Beirut, Lebanon.
| |
Collapse
|
27
|
Bruni A, Garofalo E, Pelaia C, Messina A, Cammarota G, Murabito P, Corrado S, Vetrugno L, Longhini F, Navalesi P. Patient-ventilator asynchrony in adult critically ill patients. Minerva Anestesiol 2019; 85:676-688. [PMID: 30762325 DOI: 10.23736/s0375-9393.19.13436-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Patient-ventilator asynchrony is considered a major clinical problem for mechanically ventilated patients. It occurs during partial ventilatory support, when the respiratory muscles and the ventilator interact to contribute generating the volume output. In this review article, we consider all studies published on patient-ventilator asynchrony in the last 25 years. EVIDENCE ACQUISITION We selected 62 studies. The different forms of asynchrony are first defined and classified. We also describe the methods used for detecting and quantifying asynchronies. We then outline the outcome variables considered for evaluating the clinical consequences of asynchronies. The methodology for detection and quantification of patient-ventilator asynchrony are quite heterogeneous. In particular, the Asynchrony Index is calculated differently among studies. EVIDENCE SYNTHESIS Sixteen studies established some relationship between asynchronies and one or more clinical outcomes, such as duration of mechanical ventilation (seven studies), mortality (five studies), length of intensive care and hospital stay (four studies), patient comfort (four studies), quality of sleep (three studies), and rate of tracheotomy (three studies). In patients with severe patient-ventilator asynchrony, four of seven studies (57%) report prolonged duration of mechanical ventilation, one of five (20%) increased mortality, one of four (25%) longer intensive care and hospital lengths of stay, four of four (100%) worsened comfort, three of four (75%) deteriorated quality of sleep, and one of three (33%) increased rate of tracheotomy. CONCLUSIONS Given the varying outcomes considered and the erratic results, it remains unclear whether asynchronies really affects patient outcome, and the relationship between asynchronies and outcome is causative or associative.
Collapse
Affiliation(s)
- Andrea Bruni
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Eugenio Garofalo
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | | | - Gianmaria Cammarota
- Unit of Anesthesia and Intensive Care, "Maggiore della Carità" Hospital, Novara, Italy
| | - Paolo Murabito
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", "G. Rodolico" University Policlinic, University of Catania, Catania, Italy
| | - Silvia Corrado
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| | - Luigi Vetrugno
- Department of Anesthesia and Intensive Care, University of Udine, Udine, Italy
| | - Federico Longhini
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy -
| | - Paolo Navalesi
- Intensive Care Unit, Department of Medical and Surgical Sciences, University Hospital Mater Domini, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
28
|
Lamouret O, Crognier L, Vardon Bounes F, Conil JM, Dilasser C, Raimondi T, Ruiz S, Rouget A, Delmas C, Seguin T, Minville V, Georges B. Neurally adjusted ventilatory assist (NAVA) versus pressure support ventilation: patient-ventilator interaction during invasive ventilation delivered by tracheostomy. Crit Care 2019; 23:2. [PMID: 30616669 PMCID: PMC6323755 DOI: 10.1186/s13054-018-2288-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolonged weaning is a major issue in intensive care patients and tracheostomy is one of the last resort options. Optimized patient-ventilator interaction is essential to weaning. The purpose of this study was to compare patient-ventilator synchrony between pressure support ventilation (PSV) and neurally adjusted ventilatory assist (NAVA) in a selected population of tracheostomised patients. METHODS We performed a prospective, sequential, non-randomized and single-centre study. Two recording periods of 60 min of airway pressure, flow, and electrical activity of the diaphragm during PSV and NAVA were recorded in a random assignment and eight periods of 1 min were analysed for each mode. We searched for macro-asynchronies (ineffective, double, and auto-triggering) and micro-asynchronies (inspiratory trigger delay, premature, and late cycling). The number and type of asynchrony events per minute and asynchrony index (AI) were determined. The two respiratory phases were compared using the non-parametric Wilcoxon test after testing the equality of the two variances (F-Test). RESULTS Among the 61 patients analysed, the total AI was lower in NAVA than in PSV mode: 2.1% vs 14% (p < 0.0001). This was mainly due to a decrease in the micro-asynchronies index: 0.35% vs 9.8% (p < 0.0001). The occurrence of macro-asynchronies was similar in both ventilator modes except for double triggering, which increased in NAVA. The tidal volume (ml/kg) was lower in NAVA than in PSV (5.8 vs 6.2, p < 0.001), and the respiratory rate was higher in NAVA than in PSV (28 vs 26, p < 0.05). CONCLUSION NAVA appears to be a promising ventilator mode in tracheotomised patients, especially for those requiring prolonged weaning due to the decrease in asynchronies.
Collapse
Affiliation(s)
- Olivier Lamouret
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France. .,Department of Anaesthesiology and Critical Care Unit, University Hospital of Toulouse, 31059, Toulouse Cedex 9, France.
| | - Laure Crognier
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Fanny Vardon Bounes
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Jean-Marie Conil
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Caroline Dilasser
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Thibaut Raimondi
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Stephanie Ruiz
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Antoine Rouget
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Clément Delmas
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Thierry Seguin
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Vincent Minville
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| | - Bernard Georges
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse Cedex 9, France
| |
Collapse
|
29
|
Bulleri E, Fusi C, Bambi S, Pisani L. Patient-ventilator asynchronies: types, outcomes and nursing detection skills. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:6-18. [PMID: 30539927 PMCID: PMC6502136 DOI: 10.23750/abm.v89i7-s.7737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Mechanical ventilation is often employed as partial ventilatory support where both the patient and the ventilator work together. The ventilator settings should be adjusted to maintain a harmonious patient-ventilator interaction. However, this balance is often altered by many factors able to generate a patient ventilator asynchrony (PVA). The aims of this review were: to identify PVAs, their typologies and classifications; to describe how and to what extent their occurrence can affect the patients' outcomes; to investigate the levels of nursing skill in detecting PVAs. METHODS Literature review performed on Cochrane Library, Medline and CINAHL databases. RESULTS 1610 records were identified; 43 records were included after double blind screening. PVAs have been classified with respect to the phase of the respiratory cycle or based on the circumstance of occurrence. There is agreement on the existence of 7 types of PVAs: ineffective effort, double trigger, premature cycling, delayed cycling, reverse triggering, flow starvation and auto-cycling. PVAs can be identified through the ventilator graphics monitoring of pressure and flow waveforms. The influence on patient outcomes varies greatly among studies but PVAs are mostly associated with poorer outcomes. Adequately trained nurses can learn and retain how to correctly detect PVAs. CONCLUSIONS Since its challenging interpretation and the potential advantages of its implementation, ventilator graphics monitoring can be classified as an advanced competence for ICU nurses. The knowledge and skills to adequately manage PVAs should be provided by specific post-graduate university courses.
Collapse
|
30
|
Petitjeans F, Pichot C, Ghignone M, Quintin L. Building on the Shoulders of Giants: Is the use of Early Spontaneous Ventilation in the Setting of Severe Diffuse Acute Respiratory Distress Syndrome Actually Heretical? Turk J Anaesthesiol Reanim 2018; 46:339-347. [PMID: 30263856 DOI: 10.5152/tjar.2018.01947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/13/2018] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is not a failure of the neurological command of the ventilatory muscles or of the ventilatory muscles; it is an oxygenation defect. As positive pressure ventilation impedes the cardiac function, paralysis under general anaesthesia and controlled mandatory ventilation should be restricted to the interval needed to control the acute cardio-ventilatory distress observed upon admission into the critical care unit (CCU; "salvage therapy" during "shock state"). Current management of early severe diffuse ARDS rests on a prolonged interval of controlled mechanical ventilation with low driving pressure, paralysis (48 h, too often overextended), early proning and positive end-expiratory pressure (PEEP). Therefore, the time interval between arrival to the CCU and switching to spontaneous ventilation (SV) is not focused on normalizing the different factors involved in the pathophysiology of ARDS: fever, low cardiac output, systemic acidosis, peripheral shutdown (local acidosis), supine position, hypocapnia (generated by hyperpnea and tachypnea), sympathetic activation, inflammation and agitation. Then, the extended period of controlled mechanical ventilation with paralysis under general anaesthesia leads to CCU-acquired pathology, including low cardiac output, myoneuropathy, emergence delirium and nosocomial infection. The stabilization of the acute cardio-ventilatory distress should primarily itemize the pathophysiological conditions: fever control, improved micro-circulation and normalized local acidosis, 'upright' position, minimized hypercapnia, sympathetic de-activation (normalized sympathetic activity toward baseline levels resulting in improved micro-circulation with alpha-2 agonists administered immediately following optimized circulation and endotracheal intubation), lowered inflammation and 'cooperative' sedation without respiratory depression evoked by alpha-2 agonists. Normalised metabolic, circulatory and ventilatory demands will allow one to single out the oxygenation defect managed with high PEEP (diffuse recruitable ARDS) under early spontaneous ventilation (airway pressure release ventilation+SV or low-pressure support). Assuming an improved overall status, PaO2/FiO2≥150-200 allows for extubation and continuous non-invasive ventilation. Such fast-tracking may avoid most of the CCU-acquired pathologies. Evidence-based demonstration is required.
Collapse
|
31
|
Pham T, Telias I, Piraino T, Yoshida T, Brochard LJ. Asynchrony Consequences and Management. Crit Care Clin 2018; 34:325-341. [DOI: 10.1016/j.ccc.2018.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
Mechanical Ventilation in Adults with Acute Respiratory Distress Syndrome. Summary of the Experimental Evidence for the Clinical Practice Guideline. Ann Am Thorac Soc 2018; 14:S261-S270. [PMID: 28985479 DOI: 10.1513/annalsats.201704-345ot] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE The American Thoracic Society/European Society for Intensive Care Medicine/Society of Critical Care Medicine guidelines on mechanical ventilation in adult patients with acute respiratory distress syndrome (ARDS) provide treatment recommendations derived from a thorough analysis of the clinical evidence on six clinical interventions. However, each of the recommendations contains areas of uncertainty and controversy, which may affect their appropriate clinical application. OBJECTIVES To provide a critical review of the experimental evidence surrounding the pathophysiology of ventilator-induced lung injury and to help clinicians apply the clinical recommendations to individual patients. METHODS We conducted a literature search and narrative review. RESULTS A large number of experimental studies have been performed with the aim of improving understanding of the pathophysiological effects of mechanical ventilation. These studies have formed the basis for the design of many clinical trials. Translational research has fundamentally advanced understanding of the mechanisms of ventilator-induced lung injury, thus informing the design of interventions that improve survival in patients with ARDS. CONCLUSIONS Because daily management of patients with ARDS presents the challenge of competing considerations, clinicians should consider the mechanism of ventilator-induced lung injury, as well as the rationale for interventions designed to mitigate it, when applying evidence-based recommendations at the bedside.
Collapse
|
33
|
Garofalo E, Bruni A, Pelaia C, Liparota L, Lombardo N, Longhini F, Navalesi P. Recognizing, quantifying and managing patient-ventilator asynchrony in invasive and noninvasive ventilation. Expert Rev Respir Med 2018; 12:557-567. [DOI: 10.1080/17476348.2018.1480941] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Eugenio Garofalo
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Andrea Bruni
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Corrado Pelaia
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Luisa Liparota
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Nicola Lombardo
- Otolaryngology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Federico Longhini
- Anesthesia and Intensive Care, Sant’Andrea Hospital, Vercelli, Italy
| | - Paolo Navalesi
- Anesthesia and Intensive Care, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
34
|
Petitjeans F, Leroy S, Pichot C, Geloen A, Ghignone M, Quintin L. Hypothesis: Fever control, a niche for alpha-2 agonists in the setting of septic shock and severe acute respiratory distress syndrome? Temperature (Austin) 2018; 5:224-256. [PMID: 30393754 PMCID: PMC6209424 DOI: 10.1080/23328940.2018.1453771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 03/11/2018] [Indexed: 12/12/2022] Open
Abstract
During severe septic shock and/or severe acute respiratory distress syndrome (ARDS) patients present with a limited cardio-ventilatory reserve (low cardiac output and blood pressure, low mixed venous saturation, increased lactate, low PaO2/FiO2 ratio, etc.), especially when elderly patients or co-morbidities are considered. Rescue therapies (low dose steroids, adding vasopressin to noradrenaline, proning, almitrine, NO, extracorporeal membrane oxygenation, etc.) are complex. Fever, above 38.5-39.5°C, increases both the ventilatory (high respiratory drive: large tidal volume, high respiratory rate) and the metabolic (increased O2 consumption) demands, further limiting the cardio-ventilatory reserve. Some data (case reports, uncontrolled trial, small randomized prospective trials) suggest that control of elevated body temperature ("fever control") leading to normothermia (35.5-37°C) will lower both the ventilatory and metabolic demands: fever control should simplify critical care management when limited cardio-ventilatory reserve is at stake. Usually fever control is generated by a combination of general anesthesia ("analgo-sedation", light total intravenous anesthesia), antipyretics and cooling. However general anesthesia suppresses spontaneous ventilation, making the management more complex. At variance, alpha-2 agonists (clonidine, dexmedetomidine) administered immediately following tracheal intubation and controlled mandatory ventilation, with prior optimization of volemia and atrio-ventricular conduction, will reduce metabolic demand and facilitate normothermia. Furthermore, after a rigorous control of systemic acidosis, alpha-2 agonists will allow for accelerated emergence without delirium, early spontaneous ventilation, improved cardiac output and micro-circulation, lowered vasopressor requirements and inflammation. Rigorous prospective randomized trials are needed in subsets of patients with a high fever and spiraling toward refractory septic shock and/or presenting with severe ARDS.
Collapse
Affiliation(s)
- F. Petitjeans
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - S. Leroy
- Pediatric Emergency Medicine, Hôpital Avicenne, Paris-Bobigny, France
| | - C. Pichot
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| | - A. Geloen
- Physiology, INSA de Lyon (CARMeN, INSERM U 1060), Lyon-Villeurbanne, France
| | - M. Ghignone
- Critical Care, JF Kennedy Hospital North Campus, WPalm Beach, Fl, USA
| | - L. Quintin
- Critical Care, Hôpital d'Instruction des Armées Desgenettes, Lyon, France
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW This article describes and discusses the importance of monitoring patient-ventilator asynchrony, and the advantages and limitations of the specific techniques available at the bedside to evaluate it. RECENT FINDINGS Signals provided by esophageal catheters (pressure or electromyogram) are the most reliable and accurate instruments to detect asynchronies. Esophageal signals (providing electrical activity of the diaphragm or/and esophageal pressure) have allowed the recent description of reverse triggering, a new kind of asynchrony, in which mechanical insufflation repeatedly triggers diaphragmatic contractions. However, the use of esophageal catheters is not widespread, and data on the prevalence and consequences of asynchronies are still scarce. The development of software solutions that continuously and automatically record breathing waveforms from the ventilator recording is emerging. Using this technology, recent data support the fact that asynchronies are frequent and may be negatively associated with outcome. SUMMARY The prevalence and consequences of asynchronies may be largely underestimated because of a frequent lack of monitoring. Dedicated software solutions that continuously and automatically detect asynchronies may allow both clinical research and clinical applications aimed at determining the effects of asynchronies and minimizing their incidence among critically ill patients.
Collapse
|
36
|
Nishida O, Ogura H, Egi M, Fujishima S, Hayashi Y, Iba T, Imaizumi H, Inoue S, Kakihana Y, Kotani J, Kushimoto S, Masuda Y, Matsuda N, Matsushima A, Nakada TA, Nakagawa S, Nunomiya S, Sadahiro T, Shime N, Yatabe T, Hara Y, Hayashida K, Kondo Y, Sumi Y, Yasuda H, Aoyama K, Azuhata T, Doi K, Doi M, Fujimura N, Fuke R, Fukuda T, Goto K, Hasegawa R, Hashimoto S, Hatakeyama J, Hayakawa M, Hifumi T, Higashibeppu N, Hirai K, Hirose T, Ide K, Kaizuka Y, Kan’o T, Kawasaki T, Kuroda H, Matsuda A, Matsumoto S, Nagae M, Onodera M, Ohnuma T, Oshima K, Saito N, Sakamoto S, Sakuraya M, Sasano M, Sato N, Sawamura A, Shimizu K, Shirai K, Takei T, Takeuchi M, Takimoto K, Taniguchi T, Tatsumi H, Tsuruta R, Yama N, Yamakawa K, Yamashita C, Yamashita K, Yoshida T, Tanaka H, Oda S. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). J Intensive Care 2018; 6:7. [PMID: 29435330 PMCID: PMC5797365 DOI: 10.1186/s40560-017-0270-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 and published in the Journal of JSICM, [2017; Volume 24 (supplement 2)] 10.3918/jsicm.24S0001 and Journal of Japanese Association for Acute Medicine [2017; Volume 28, (supplement 1)] http://onlinelibrary.wiley.com/doi/10.1002/jja2.2017.28.issue-S1/issuetoc.This abridged English edition of the J-SSCG 2016 was produced with permission from the Japanese Association of Acute Medicine and the Japanese Society for Intensive Care Medicine. METHODS Members of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ) and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (> 66.6%) majority vote of each of the 19 committee members. RESULTS A total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation, and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty-seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for five CQs. CONCLUSIONS Based on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals.
Collapse
Affiliation(s)
- Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Hiroshi Ogura
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Moritoki Egi
- Department of anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Seitaro Fujishima
- Center for General Medicine Education, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiro Hayashi
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hitoshi Imaizumi
- Department of Anesthesiology and Critical Care Medicine, Tokyo Medical University School of Medicine, Tokyo, Japan
| | - Shigeaki Inoue
- Department of Emergency and Critical Care Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Yasuyuki Kakihana
- Department of Emergency and Intensive Care Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Joji Kotani
- Department of Disaster and Emergency Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shigeki Kushimoto
- Division of Emergency and Critical Care Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoyuki Matsuda
- Department of Emergency & Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Asako Matsushima
- Department of Advancing Acute Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Taka-aki Nakada
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Nakagawa
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Shin Nunomiya
- Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Tomohito Sadahiro
- Department of Emergency and Critical Care Medicine, Tokyo Women’s Medical University Yachiyo Medical Center, Tokyo, Japan
| | - Nobuaki Shime
- Department of Emergency and Critical Care Medicine, Institute of Biomedical & Health Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Tomoaki Yatabe
- Department of Anesthesiology and Intensive Care Medicine, Kochi Medical School, Kochi, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Kei Hayashida
- Department of Emergency and Critical Care Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Kondo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Yuka Sumi
- Healthcare New Frontier Promotion Headquarters Office, Kanagawa Prefectural Government, Yokohama, Japan
| | - Hideto Yasuda
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Kazuyoshi Aoyama
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Canada
- Department of Anesthesia, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Takeo Azuhata
- Division of Emergency and Critical Care Medicine, Departmen of Acute Medicine, Nihon university school of Medicine, Tokyo, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo, Tokyo, Japan
| | - Matsuyuki Doi
- Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Naoyuki Fujimura
- Department of Anesthesiology, St. Mary’s Hospital, Westminster, UK
| | - Ryota Fuke
- Division of Infectious Diseases and Infection Control, Tohoku Medical and Pharmaceutical University Hospital, Sendai, Japan
| | - Tatsuma Fukuda
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA
| | - Koji Goto
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Oita University, Oita, Japan
| | - Ryuichi Hasegawa
- Department of Emergency and Intensive Care Medicine, Mito Clinical Education and Training Center, Tsukuba University Hospital, Mito Kyodo General Hospital, Mito, Japan
| | - Satoru Hashimoto
- Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Tsukuba, Japan
| | - Junji Hatakeyama
- Department of Intensive Care Medicine, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Mineji Hayakawa
- Emergency and Critical Care Center, Hokkaido University Hospital, Sapporo, Japan
| | - Toru Hifumi
- Emergency Medical Center, Kagawa University Hospital, Miki, Japan
| | - Naoki Higashibeppu
- Department of Anesthesia and Critical Care, Kobe City Medical Center General Hospital, Kobe City Hospital Organization, Kobe, Japan
| | - Katsuki Hirai
- Department of Pediatrics, Kumamoto Red cross Hospital, Kumamoto, Japan
| | - Tomoya Hirose
- Emergency and Critical Care Medical Center, Osaka Police Hospital, Osaka, Japan
| | - Kentaro Ide
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Yasuo Kaizuka
- Department of Emergency & ICU, Steel Memorial Yawata Hospital, Kitakyushu, Japan
| | - Tomomichi Kan’o
- Department of Emergency & Critical Care Medicine Kitasato University, Tokyo, Japan
| | - Tatsuya Kawasaki
- Department of Pediatric Critical Care, Shizuoka Children’s Hospital, Shizuoka, Japan
| | - Hiromitsu Kuroda
- Department of Anesthesia, Obihiro Kosei Hospital, Obihiro, Japan
| | - Akihisa Matsuda
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - Shotaro Matsumoto
- Division of Critical Care Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Masaharu Nagae
- Department of anesthesiology, Kobe University Hospital, Kobe, Japan
| | - Mutsuo Onodera
- Department of Emergency and Critical Care Medicine, Tokushima University Hospital, Tokushima, Japan
| | - Tetsu Ohnuma
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, USA
| | - Kiyohiro Oshima
- Department of Emergency Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nobuyuki Saito
- Shock and Trauma Center, Nippon Medical School Chiba Hokusoh Hospital, Inzai, Japan
| | - So Sakamoto
- Department of Emergency and Critical Care Medicine, Juntendo University Nerima Hospital, Tokyo, Japan
| | - Masaaki Sakuraya
- Department of Emergency and Intensive Care Medicine, JA Hiroshima General Hospital, Hatsukaichi, Japan
| | - Mikio Sasano
- Department of Intensive Care Medicine, Nakagami Hospital, Uruma, Japan
| | - Norio Sato
- Department of Aeromedical Services for Emergency and Trauma Care, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Atsushi Sawamura
- Division of Acute and Critical Care Medicine, Department of Anesthesiology and Critical Care Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Kentaro Shimizu
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kunihiro Shirai
- Department of Emergency and Critical Care Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tetsuhiro Takei
- Department of Emergency and Critical Care Medicine, Yokohama City Minato Red Cross Hospital, Yokohama, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women’s and Children’s Hospital, Osaka, Japan
| | - Kohei Takimoto
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Takumi Taniguchi
- Department of Anesthesiology and Intensive Care Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroomi Tatsumi
- Department of Intensive Care Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Naoya Yama
- Department of Diagnostic Radiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuma Yamakawa
- Division of Trauma and Surgical Critical Care, Osaka General Medical Center, Osaka, Japan
| | - Chizuru Yamashita
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192 Japan
| | - Kazuto Yamashita
- Department of Healthcare Economics and Quality Management, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Yoshida
- Intensive Care Unit, Osaka University Hospital, Osaka, Japan
| | - Hiroshi Tanaka
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
37
|
Nishida O, Ogura H, Egi M, Fujishima S, Hayashi Y, Iba T, Imaizumi H, Inoue S, Kakihana Y, Kotani J, Kushimoto S, Masuda Y, Matsuda N, Matsushima A, Nakada T, Nakagawa S, Nunomiya S, Sadahiro T, Shime N, Yatabe T, Hara Y, Hayashida K, Kondo Y, Sumi Y, Yasuda H, Aoyama K, Azuhata T, Doi K, Doi M, Fujimura N, Fuke R, Fukuda T, Goto K, Hasegawa R, Hashimoto S, Hatakeyama J, Hayakawa M, Hifumi T, Higashibeppu N, Hirai K, Hirose T, Ide K, Kaizuka Y, Kan'o T, Kawasaki T, Kuroda H, Matsuda A, Matsumoto S, Nagae M, Onodera M, Ohnuma T, Oshima K, Saito N, Sakamoto S, Sakuraya M, Sasano M, Sato N, Sawamura A, Shimizu K, Shirai K, Takei T, Takeuchi M, Takimoto K, Taniguchi T, Tatsumi H, Tsuruta R, Yama N, Yamakawa K, Yamashita C, Yamashita K, Yoshida T, Tanaka H, Oda S. The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016). Acute Med Surg 2018; 5:3-89. [PMID: 29445505 PMCID: PMC5797842 DOI: 10.1002/ams2.322] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/11/2022] Open
Abstract
Background and Purpose The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 in Japanese. An English-language version of these guidelines was created based on the contents of the original Japanese-language version. Methods Members of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ), and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (>66.6%) majority vote of each of the 19 committee members. Results A total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for 5 CQs. Conclusions Based on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals.
Collapse
|
38
|
López Sanchez M. Ventilación mecánica en pacientes tratados con membrana de oxigenación extracorpórea (ECMO). Med Intensiva 2017; 41:491-496. [DOI: 10.1016/j.medin.2016.12.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/14/2016] [Indexed: 01/19/2023]
|
39
|
Mauri T, Cambiaghi B, Spinelli E, Langer T, Grasselli G. Spontaneous breathing: a double-edged sword to handle with care. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:292. [PMID: 28828367 DOI: 10.21037/atm.2017.06.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In acute hypoxemic respiratory failure (AHRF) and acute respiratory distress syndrome (ARDS) patients, spontaneous breathing is associated with multiple physiologic benefits: it prevents muscles atrophy, avoids paralysis, decreases sedation needs and is associated with improved hemodynamics. On the other hand, in the presence of uncontrolled inspiratory effort, severe lung injury and asynchronies, spontaneous ventilation might also worsen lung edema, induce diaphragm dysfunction and lead to muscles exhaustion and prolonged weaning. In the present review article, we present physiologic mechanisms driving spontaneous breathing, with emphasis on how to implement basic and advanced respiratory monitoring to assess lung protection during spontaneous assisted ventilation. Then, key benefits and risks associated with spontaneous ventilation are described. Finally, we propose some clinical means to promote protective spontaneous breathing at the bedside. In summary, early switch to spontaneous assisted breathing of acutely hypoxemic patients is more respectful of physiology and might yield several advantages. Nonetheless, risk of additional lung injury is not completely avoided during spontaneous breathing and careful monitoring of target physiologic variables such as tidal volume (Vt) and driving transpulmonary pressure should be applied routinely. In clinical practice, multiple interventions such as extracorporeal CO2 removal exist to maintain inspiratory effort, Vt and driving transpulmonary pressure within safe limits but more studies are needed to assess their long-term efficacy.
Collapse
Affiliation(s)
- Tommaso Mauri
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Cambiaghi
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Thomas Langer
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giacomo Grasselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
40
|
Parekh M, Abrams D, Brodie D. Extracorporeal techniques in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:296. [PMID: 28828371 DOI: 10.21037/atm.2017.06.58] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) was first introduced for patients with acute respiratory distress syndrome (ARDS) in the 1970s. However, enthusiasm was tempered due to the high mortality seen at that time. The use of ECMO has grown considerably in recent years due to technological advances and the evidence suggesting potential benefit. While the efficacy of ECMO has yet to be rigorously demonstrated with high-quality evidence, it has the potential not only to have a substantial impact on outcomes, including mortality, but also to change the paradigm of ARDS management.
Collapse
Affiliation(s)
- Madhavi Parekh
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, USA
| | - Darryl Abrams
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, USA
| | - Daniel Brodie
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, USA
| |
Collapse
|
41
|
Doorduin J, Nollet JL, Roesthuis LH, van Hees HWH, Brochard LJ, Sinderby CA, van der Hoeven JG, Heunks LMA. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am J Respir Crit Care Med 2017; 195:1033-1042. [DOI: 10.1164/rccm.201605-1016oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | - Laurent J. Brochard
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | - Christer A. Sinderby
- Department of Critical Care Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada; and
- Keenan Research Centre for Biomedical Science, Toronto, Ontario, Canada
| | | | | |
Collapse
|
42
|
Assy J, Charafeddine L, Majdalani M, Yunis K, Skoury H, Sfeir P, El Rifai K, El Rassi I. Lessons learnt from the initiation of ECMO experience in Lebanon. Qatar Med J 2017. [PMCID: PMC5474646 DOI: 10.5339/qmj.2017.swacelso.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jana Assy
- 1Department of Paediatrics and Adolescent Medicine, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Lama Charafeddine
- 1Department of Paediatrics and Adolescent Medicine, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Marianne Majdalani
- 1Department of Paediatrics and Adolescent Medicine, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Khaled Yunis
- 1Department of Paediatrics and Adolescent Medicine, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Hady Skoury
- 2Department of Cardiac Surgery, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Pierre Sfeir
- 2Department of Cardiac Surgery, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Khaled El Rifai
- 2Department of Cardiac Surgery, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| | - Issam El Rassi
- 2Department of Cardiac Surgery, American University of Beirut Medical Centre, Riad El Solh, 1107 2020, P.O. Box 11-0236, Beirut, Lebanon
| |
Collapse
|
43
|
Control of Respiratory Drive and Effort in Extracorporeal Membrane Oxygenation Patients Recovering from Severe Acute Respiratory Distress Syndrome. Anesthesiology 2016; 125:159-67. [DOI: 10.1097/aln.0000000000001103] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Background
The amount of extracorporeal carbon dioxide removal may influence respiratory drive in acute respiratory distress syndrome (ARDS) patients undergoing extracorporeal membrane oxygenation (ECMO). The authors evaluated the effects of different levels of extracorporeal carbon dioxide removal in patients recovering from severe ARDS undergoing pressure support ventilation (PSV) and neurally adjusted ventilatory assist (NAVA).
Methods
The authors conducted a prospective, randomized, crossover study on eight spontaneously breathing ARDS patients undergoing venovenous ECMO since 28 ± 20 days. To modulate carbon dioxide extraction, ECMO gas flow (GF) was decreased from baseline resting protective conditions (i.e., GF100%, set to obtain pressure generated in the first 100 ms of inspiration against an occluded airway less than 2 cm H2O, respiratory rate less than or equal to 25 bpm, tidal volume less than 6 ml/kg, and peak airway pressure less than 25 cm H2O) to GF50%-GF25%-GF0% during both PSV and NAVA (random order for ventilation mode). Continuous recordings of airway pressure and flow and esophageal pressure were obtained and analyzed during all study phases.
Results
At higher levels of extracorporeal carbon dioxide extraction, pressure generated in the first 100 ms of inspiration against an occluded airway decreased from 2.8 ± 2.7 cm H2O (PSV, GF0%) and 3.0 ± 2.1 cm H2O (NAVA, GF0%) to 0.9 ± 0.5 cm H2O (PSV, GF100%) and 1.0 ± 0.8 cm H2O (NAVA, GF100%; P < 0.001) and patients’ inspiratory muscle pressure passed from 8.5 ± 6.3 and 6.5 ± 5.5 cm H2O to 4.5 ± 3.1 and 4.2 ± 3.7 cm H2O (P < 0.001). In time, decreased inspiratory drive and effort determined by higher carbon dioxide extraction led to reduction of tidal volume from 6.6 ± 0.9 and 7.5 ± 1.2 ml/kg to 4.9 ± 0.8 and 5.3 ± 1.3 ml/kg (P < 0.001) and of peak airway pressure from 21 ± 3 and 25 ± 4 cm H2O to 21 ± 3 and 21 ± 5 cm H2O (P < 0.001). Finally, transpulmonary pressure linearly decreased when the amount of carbon dioxide extracted by ECMO increased (R2 = 0.823, P < 0.001).
Conclusions
In patients recovering from ARDS undergoing ECMO, the amount of carbon dioxide removed by the artificial lung may influence spontaneous breathing. The effects of carbon dioxide removal on spontaneous breathing during the earlier acute phases of ARDS remain to be elucidated.
Collapse
|
44
|
New versus Conventional Helmet for Delivering Noninvasive Ventilation: A Physiologic, Crossover Randomized Study in Critically Ill Patients. Anesthesiology 2016; 124:101-8. [PMID: 26528774 DOI: 10.1097/aln.0000000000000910] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The helmet is a well-tolerated interface for noninvasive ventilation, although it is associated with poor patient-ventilator interaction. A new helmet (NH) has proven to attenuate this limitation of the standard helmet (SH) in both bench study and healthy volunteers. The authors compared a NH and a SH in intensive care unit patients receiving noninvasive ventilation for prevention of postextubation respiratory failure; both helmets were also compared with the endotracheal tube in place before extubation. METHODS Fourteen patients underwent 30-min trials in pressure support during invasive ventilation and then with a SH and a NH in a random order. The authors measured comfort, triggering delays, rates of pressurization (airway pressure-time product [PTP] of the first 300 [PTP(300-index)] and 500 [PTP(500-index)] ms from the onset of effort, and the first 200 ms from the onset of insufflation [PTP200]), time of synchrony between effort and assistance (Time(synch)/Ti(neu)), respiratory drive and frequency, arterial blood gases (ABGs), and rate of asynchrony. RESULTS Compared with SH, NH improved comfort (5.5 [5.0 to 6.0] vs. 8.0 [7.8 to 8.0]), respectively, P < 0.001), inspiratory trigger delay (0.31 [0.22 to 0.43] vs. 0.25 [0.18 to 0.31] s, P = 0.007), and pressurization (PTP(300-index): 0.8 [0.1 to 1.8] vs. 2.7 [7.1 to 10.0]%; PTP(500-index): 4.8 [2.5 to 9.9] vs. 27.3 [16.2 to 34.8]%; PTP200: 13.6 [10.1 to 19.6] vs. 30.4 [24.9 to 38.4] cm H2O/s, P < 0.01 for all comparisons) and Time(synch)/Ti(neu) (0.64 [0.48 to 0.72] vs. 0.71 [0.61 to 0.81], P = 0.007). Respiratory drive and frequency, ABGs, and rate of asynchrony were not different between helmets. Endotracheal tube outperformed both helmets with respect to all variables, except for respiratory rate, ABGs, and asynchronies. CONCLUSIONS Compared with a SH, a NH improved comfort and patient-ventilator interaction.
Collapse
|
45
|
Goto Y, Katayama S, Shono A, Mori Y, Miyazaki Y, Sato Y, Ozaki M, Kotani T. Roles of neurally adjusted ventilatory assist in improving gas exchange in a severe acute respiratory distress syndrome patient after weaning from extracorporeal membrane oxygenation: a case report. J Intensive Care 2016; 4:26. [PMID: 27057312 PMCID: PMC4823850 DOI: 10.1186/s40560-016-0153-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/31/2016] [Indexed: 02/06/2023] Open
Abstract
Background Patient-ventilator asynchrony is a major cause of difficult weaning from mechanical ventilation. Neurally adjusted ventilatory assist (NAVA) is reported useful to improve the synchrony in patients with sustained low lung compliance. However, the role of NAVA has not been fully investigated. Case presentation The patient was a 63-year-old Japanese man with acute respiratory distress syndrome secondary to respiratory infection. He was treated with extracorporeal membrane oxygenation for 7 days and survived. Dynamic compliance at withdrawal of extracorporeal membrane oxygenation decreased to 20 ml/cmH2O or less, but gas exchange was maintained by full support with assist/control mode. However, weaning from mechanical ventilation using a flow trigger failed repeatedly because of patient-ventilator asynchrony with hypercapnic acidosis during partial ventilator support despite using different types of ventilators and different trigger levels. Weaning using NAVA restored the regular respiration and stable and normal acid-base balance. Electromyographic analysis of the diaphragm clearly showed improved triggering of both the start and the end of spontaneous inspiration. Regional ventilation monitoring using electrical impedance tomography showed an increase in tidal volume and a ventilation shift to the dorsal regions during NAVA, indicating that NAVA could deliver gas flow to the dorsal regions to adjust for the magnitude of diaphragmatic excursion. NAVA was applied for 31 days, followed by partial ventilatory support with a conventional flow trigger. The patient was discharged from the intensive care unit on day 110 and has recovered enough to be able to live without a ventilatory support for 5 h per day. Conclusion Our experience showed that NAVA improved not only patient-ventilator synchrony but also regional ventilation distribution in an acute respiratory distress patient with sustained low lung compliance.
Collapse
Affiliation(s)
- Yuya Goto
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Shinshu Katayama
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Atsuko Shono
- Department of Anesthesiology, Shimane University, Shimane, 693-8501 Japan
| | - Yosuke Mori
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Yuya Miyazaki
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Yoko Sato
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Makoto Ozaki
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| | - Toru Kotani
- Department of Anesthesiology and Intensive Care Medicine, Tokyo Women's Medical University, Tokyo, 162-8666 Japan
| |
Collapse
|
46
|
Les dispositifs d’épuration extracorporelle du CO2 en réanimation : principes, indications potentielles, résultats actuels. MEDECINE INTENSIVE REANIMATION 2016. [DOI: 10.1007/s13546-015-1145-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Effects of adaptive support ventilation and synchronized intermittent mandatory ventilation on peripheral circulation and blood gas markers of COPD patients with respiratory failure. Cell Biochem Biophys 2015; 70:481-4. [PMID: 24748176 DOI: 10.1007/s12013-014-9944-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The objective of the study was to investigate the effects of adaptive support ventilation (ASV) and synchronized intermittent mandatory ventilation (SIMV) on peripheral circulation of chronic obstructive pulmonary disease (COPD) patients with respiratory failure. 86 COPD patients with respiratory failure were recruited in this study. Self-control method was used to compare the effect of ASV and SIMV on the parameters of ventilation machine, heart rate, blood pressure, central venous pressure (CVP), and blood gas markers. When the patients in ASV and SIMV groups were compared, respiratory rate, tidal volume, and peak airway pressure (PIP) showed significant difference. When minute ventilation (MV) was compared, no significant difference was shown. When peripheral circulation parameters were compared, peripheral circulation heart rate, SBP, DBP, and CVP showed significant difference. Compared with SIMV group, PaO2, pH, and SaO2 values were remarkably increased (P < 0.01) while no significant difference was found for partial pressure of carbon dioxide (pCO2) when two groups were compared. In conclusion, when mechanical ventilation was used in COPD patients with respiratory failure, ASV can significantly improve clinical outcomes.
Collapse
|
48
|
Effects of Sigh on Regional Lung Strain and Ventilation Heterogeneity in Acute Respiratory Failure Patients Undergoing Assisted Mechanical Ventilation*. Crit Care Med 2015; 43:1823-31. [DOI: 10.1097/ccm.0000000000001083] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
49
|
Abstract
Purpose of review Compared with the conventional forms of partial support, neurally adjusted ventilatory assist was repeatedly shown to improve patient–ventilator synchrony and reduce the risk of overassistance, while guaranteeing adequate inspiratory effort and gas exchange. A few animal studies also suggested the potential of neurally adjusted ventilatory assist in averting the risk of ventilator-induced lung injury. Recent work adds new information on the physiological effects of neurally adjusted ventilatory assist. Recent findings Compared with pressure support, neurally adjusted ventilatory assist has been shown to improve patient–ventilator interaction and synchrony in patients with the most challenging respiratory system mechanics, such as very low compliance consequent to severe acute respiratory distress syndrome and high resistance and air trapping due to chronic airflow obstruction; enhance redistribution of the ventilation in the dependent lung regions; avert the risk of patient–ventilator asynchrony due to sedation; avoid central apneas; limit the risk of high (injurious) tidal volumes in patients with acute respiratory distress syndrome of varied severity; and improve patient–ventilator interaction and synchrony during noninvasive ventilation, irrespective of the interface utilized. Summary Several studies nowadays prove the physiological benefits of neurally adjusted ventilatory assist, as opposed to the conventional modes of partial support. Whether these advantages translate into improvement of clinical outcomes remains to be determined.
Collapse
|
50
|
Yonis H, Crognier L, Conil JM, Serres I, Rouget A, Virtos M, Cougot P, Minville V, Fourcade O, Georges B. Patient-ventilator synchrony in Neurally Adjusted Ventilatory Assist (NAVA) and Pressure Support Ventilation (PSV): a prospective observational study. BMC Anesthesiol 2015; 15:117. [PMID: 26253784 PMCID: PMC4528778 DOI: 10.1186/s12871-015-0091-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 07/14/2015] [Indexed: 11/10/2022] Open
Abstract
Background Weaning from mechanical ventilation is associated with the presence of asynchronies between the patient and the ventilator. The main objective of the present study was to demonstrate a decrease in the total number of patient-ventilator asynchronies in invasively ventilated patients for whom difficulty in weaning is expected by comparing neurally adjusted ventilatory assist (NAVA) and pressure support ventilation (PSV) ventilatory modes. Methods We performed a prospective, non-randomized, non-interventional, single-center study. Thirty patients were included in the study. Each patient included in the study benefited in an unpredictable way from both modes of ventilation, NAVA or PSV. Patients were successively ventilated for 23 h in NAVA or in PSV, and then they were ventilated for another 23 h in the other mode. Demographic, biological and ventilatory data were collected during this period. The two modes of ventilatory support were compared using the non-parametric Wilcoxon test after checking for normal distribution by the Kolmogorov–Smirnov test. The groups were compared using the chi-square test. Results The median level of support was 12.5 cmH2O (4–20 cmH2O) in PSV and 0.8 cmH2O/μvolts (0.2–3 cmH2O/μvolts) in NAVA. The total number of asynchronies per minute in NAVA was lower than that in PSV (0.46 vs 1, p < 0.001). The asynchrony index was also reduced in NAVA compared with PSV (1.73 vs 3.36, p < 0.001). In NAVA, the percentage of ineffective efforts (0.77 vs 0.94, p = 0.036) and the percentage of auto-triggering were lower compared with PSV (0.19 vs 0.71, p = 0.038). However, there was a higher percentage of double triggering in NAVA compared with PSV (0.76 vs 0.71, p = 0.046). Conclusion The total number of asynchronies in NAVA is lower than that in PSV. This finding reflects improved patient-ventilator interaction in NAVA compared with the PSV mode, which is consistent with previous studies. Our study is the first to analyze patient-ventilator asynchronies in NAVA and PSV on such an important duration. The decrease in the number of asynchronies in NAVA is due to reduced ineffective efforts and auto-triggering.
Collapse
Affiliation(s)
- Hodane Yonis
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Laure Crognier
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Jean-Marie Conil
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Isabelle Serres
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Antoine Rouget
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Marie Virtos
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Pierre Cougot
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Vincent Minville
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Olivier Fourcade
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| | - Bernard Georges
- Service de Réanimation Polyvalente, CHU Rangueil, 1 Avenue Jean Poulhès, Pôle d'Anesthésie et Réanimation, TSA 50032, 31059, Toulouse, Cedex 9, France.
| |
Collapse
|