1
|
Tongyoo S, Chobngam S, Yolsiriwat N, Jiranakorn C. Effects of adjunctive milrinone versus placebo on hemodynamics in patients with septic shock: a randomized controlled trial. Ann Med 2025; 57:2484464. [PMID: 40138463 PMCID: PMC11948359 DOI: 10.1080/07853890.2025.2484464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Refractory septic shock can lead to multiorgan failure and death due to myocardial dysfunction-induced inadequate tissue perfusion. Current guidelines advocate inotropic adjuncts to norepinephrine, but the efficacy of milrinone remains understudied in this context. This study aimed to evaluate the hemodynamic changes in septic shock patients treated with adjunctive milrinone compared to those treated with a placebo. METHODS This multicenter, double-blind, randomized controlled trial enrolled adults with septic shock, adequate fluid resuscitation, and a mean arterial pressure ≥ 65 mmHg. Eligible patients exhibited poor tissue perfusion or impaired left ventricular systolic function. Participants were randomized 1:1 to milrinone or placebo. Echocardiographic hemodynamic assessments were performed pre- and postintervention. The primary outcome was the change in cardiac output from baseline to 6 h after drug administration. The study was prospectively registered at www.clinicaltrials.gov (NCT05122884). RESULTS Among 271 screened patients, 64 were randomized. The baseline characteristics were comparable between the groups. The milrinone group demonstrated a significantly greater change in cardiac output at 6 h (median [IQR] 0.62 L/min [-0.51 to 1.47]) than did the placebo group (0.13 L/min [-0.59 to 0.46]; p = 0.043). The percentage change in the cardiac index was also significantly greater with milrinone (median [IQR] 22.5% [-10.4% to 45.3%]) than with placebo (4.4% [-10.9% to 11.4%]; p = 0.041). There were no significant differences in complication rates between the groups. The 28-day mortality rates of the groups were also statistically nonsignificant and equivalent (16/32 [50.0%] for both; p = 1.000). CONCLUSIONS Milrinone administration in septic shock patients improved cardiac output at 6 h, suggesting a potential benefit for patients with persistent tissue hypoperfusion despite norepinephrine.
Collapse
Affiliation(s)
- Surat Tongyoo
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suratee Chobngam
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Internal Medicine, Hatyai Hospital, Hatyai, Songkla, Thailand
| | - Nutnicha Yolsiriwat
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
2
|
Chousterman BG, Leone M, Favory R. One step toward the understanding of potential albumin benefits in septic patients. J Crit Care 2025; 87:155040. [PMID: 40036992 DOI: 10.1016/j.jcrc.2025.155040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025]
Affiliation(s)
- Benjamin G Chousterman
- Department of Anesthesia and Critical Care, Lariboisière Hospital, APHP, F-75010 Paris, France; Université Paris Cité, Inserm UMRS 942 Mascot, F-75006 Paris, France.
| | - Marc Leone
- Department of Anesthesiology and Intensive Care Unit, Nord Hospital, Assistance Publique Hôpitaux de Marseille, Marseille, France; Aix Marseille University, Marseille, France
| | - Raphaël Favory
- Division of Intensive Care, Hôpital Roger Salengro, CHU de Lille, Lille F-59000; Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et Déterminants Moléculaires des Maladies liées au Vieillissement, Inserm, Lille F-59000, France
| |
Collapse
|
3
|
Datta R, Singh S. The endothelium or mitochondrial level therapy: new frontiers in sepsis? Med Intensiva 2025:502130. [PMID: 39799036 DOI: 10.1016/j.medine.2024.502130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 01/15/2025]
Abstract
The host and microbes play complex roles in balancing the pro- and anti-inflammatory pathways that cause sepsis. It is now increasingly recognized as a disorder of the mitochondrial system intrinsically or as a consequence of microcirculatory abnormalities leading to hypoperfusion/hypoxia ("microcirculatory and mitochondrial distress syndrome"). It is expected that improvements in endothelium or mitochondrial level therapy will lower sepsis-related morbidity and mortality. This article aimed to clarify the mitochondrial and microcirculation abnormalities in patients with sepsis and the futuristic research agenda for the management of sepsis.
Collapse
Affiliation(s)
- Rashmi Datta
- Intensive Care Unit, Adesh Medical College and Hospital, NH44, Mohri, Ambala, Haryana-136135, India; Department of Anaesthesiology and Critical Care, Command Hospital (NC), Udhampur 182101, India
| | - Shalendra Singh
- Intensive Care Unit, Adesh Medical College and Hospital, NH44, Mohri, Ambala, Haryana-136135, India; Department of Anaesthesiology and Critical Care, Command Hospital (NC), Udhampur 182101, India.
| |
Collapse
|
4
|
Archontakis-Barakakis P, Mavridis T, Chlorogiannis DD, Barakakis G, Laou E, Sessler DI, Gkiokas G, Chalkias A. Intestinal oxygen utilisation and cellular adaptation during intestinal ischaemia-reperfusion injury. Clin Transl Med 2025; 15:e70136. [PMID: 39724463 DOI: 10.1002/ctm2.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/06/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia). Intestinal oxygen uptake usually remains constant over a wide range of blood flows and pressures, with cellular function being substantively compromised when ischaemia leads to a >50% decline in intestinal oxygen consumption. Restoration of perfusion and oxygenation provokes additional injury, resulting in mucosal damage and disruption of intestinal barrier function. The primary cellular mechanism for sensing hypoxia and for activating a cascade of cellular responses to mitigate the injury is a family of heterodimer proteins called hypoxia-inducible factors (HIFs). The HIF system is connected to numerous biochemical and immunologic pathways induced by IRI and the concentration of those proteins increases during hypoxia and dysoxia. Activation of the HIF system leads to augmented transcription of specific genes in various types of affected cells, but may also augment apoptotic and inflammatory processes, thus aggravating gut injury. KEY POINTS: During intestinal ischaemia, mitochondrial oxygen uptake is reduced when cellular oxygen partial pressure decreases to below the threshold required to maintain normal oxidative metabolism. Upon reperfusion, intestinal hypoxia may persist because microcirculatory flow remains impaired and/or because available oxygen is consumed by enzymes, intestinal cells and neutrophils.
Collapse
Affiliation(s)
| | - Theodoros Mavridis
- Department of Neurology, Tallaght University Hospital (TUH)/The Adelaide and Meath Hospital incorporating the National Children's Hospital (AMNCH), Dublin, Ireland
| | | | - Georgios Barakakis
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Laou
- Department of Anesthesiology, Agia Sophia Children's Hospital, Athens, Greece
| | - Daniel I Sessler
- Center for Outcomes Research and Department of Anesthesiology, UTHealth, Houston, Texas, USA
- Outcomes Research Consortium®, Houston, Texas, USA
| | - George Gkiokas
- Second Department of Surgery, Aretaieion University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Chalkias
- Outcomes Research Consortium®, Houston, Texas, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Critical Care Medicine, Tzaneio General Hospital, Piraeus, Greece
| |
Collapse
|
5
|
Ding X, Zhou Y, Zhang X, Sun T, Cui N, Wang S, Su D, Yu Z. Application of microcirculatory indicators in predicting the prognosis of patients with septic shock. Heliyon 2024; 10:e38035. [PMID: 39524826 PMCID: PMC11550762 DOI: 10.1016/j.heliyon.2024.e38035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
Objective The aim of this study is to investigate the predictive value of indicators associated with microcirculation, capillary refill time (CRT), perfusion index (PI), and mottling score, on the prognosis of patients with septic shock. Method A retrospective clinical study was conducted encompassing 78 patients diagnosed with septic shock and admitted to the Department of Critical Care Medicine at our hospital from January 2019 to January 2022. The study collated the clinical data of these patients, focusing on macrocirculatory hemodynamic parameters and microcirculatory indices. The parameters of interest were recorded at 0, 6, 24, and 48 h post-admission, including heart rate, mean arterial pressure (MAP), venous-to-arterial carbon dioxide partial pressure difference, superior vena cava oxygen saturation, lactic acid (LAC), CRT, PI, and mottling score. The enrolled patients were stratified into two cohorts based on the 28-day mortality rate: a survival group and a mortality group. A non-parametric statistical test was employed to compare the CRT, PI, and mottling score between the two groups. Furthermore, the predictive value of these microcirculatory indicators for mortality in septic shock patients was assessed using receiver operating characteristic (ROC) curve analysis. This methodology allowed for the evaluation of the prognostic accuracy of CRT, PI, and mottling score as indicators for mortality in the context of septic shock. Results The vasoactive drug dose, PI, LAC, mottling score, and CRT upon admission in the survival group were significantly better than those in the mortality group at hour 6 of treatment, hour 24 of treatment, and hour 48 of treatment (P < 0.05). The predictive value of the three microcirculatory indicators at various time points was highest for the Perfusion Index (PI) at 48 h of treatment, the mottling score at 24 h of treatment, and the Capillary Refill Time (CRT) upon admission. The Area Under the Curve (AUC) for PI at 48 h of treatment was 0.941 (0.885-0.996), with a sensitivity of 90.9 % and a specificity of 94.1 %. For the mottling score at 24 h of treatment, the AUC was 0.889 (0.805-0.972), with a sensitivity of 82.4 % and a specificity of 88.6 %. The AUC for CRT upon admission was 0.872 (0.788-0.956), with a sensitivity of 91.2 % and a specificity of 77.3 %. Among the three indicators: PI, mottling score, and CRT, PI at hour 48 of treatment had the highest predictive value for the prognosis of patients with septic shock. Conclusion Microcirculatory indicators have specific predictive value for the prognosis of patients with septic shock.
Collapse
Affiliation(s)
- Xiaoxu Ding
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Yuanlong Zhou
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Xin Zhang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Tao Sun
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Na Cui
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Shenghai Wang
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Dan Su
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| | - Zhanbiao Yu
- Department of Critical Care Medicine, Affiliated Hospital of Hebei University, Baoding 071000, China
| |
Collapse
|
6
|
Park C, Ku NS, Park DW, Park JH, Ha TS, Kim DW, Park SY, Chang Y, Jo KW, Baek MS, Seo Y, Shin TG, Yu G, Lee J, Choi YJ, Jang JY, Jung YT, Jeong I, Cho HJ, Woo A, Kim S, Bae DH, Kang SW, Park SH, Suh GY, Park S. Early management of adult sepsis and septic shock: Korean clinical practice guidelines. Acute Crit Care 2024; 39:445-472. [PMID: 39622601 PMCID: PMC11617831 DOI: 10.4266/acc.2024.00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Despite recent advances and global improvements in sepsis recognition and supportive care, mortality rates remain high, and adherence to sepsis bundle components in Korea is low. To address this, the Korean Sepsis Alliance, affiliated with the Korean Society of Critical Care Medicine, developed the first sepsis treatment guidelines for Korea based on a comprehensive systematic review and meta-analysis. METHODS A de novo method was used to develop the guidelines. Methodologies included determining key questions, conducting a literature search and selection, assessing the risk of bias, synthesizing evidence, and developing recommendations. The certainty of evidence and the strength of recommendations were determined using the Grading of Recommendations, Assessment, Development, and Evaluations approach. Draft recommendations underwent internal and external review processes and public hearings. The development of these guidelines was supported by a research grant from the Korean Disease Control and Prevention Agency. RESULTS In these guidelines, we focused on early treatments for adult patients with sepsis and septic shock. Through the guideline development process, 12 key questions and their respective recommendations were formulated. These include lactate measurement, fluid therapies, target blood pressure, antibiotic administration, use of vasopressors and dobutamine, extracorporeal membrane oxygenation, and echocardiography. CONCLUSIONS These guidelines aim to support medical professionals in making appropriate decisions about treating adult sepsis and septic shock. We hope these guidelines will increase awareness of sepsis and reduce its mortality rate.
Collapse
Affiliation(s)
- Chul Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Ulsan University Hospital, Ulsan, Korea
| | - Nam Su Ku
- Division of Infective Diseases, Department of Internal Medicine and AIDS Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Won Park
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Joo Hyun Park
- Respiratory Medicine, Department of Internal Medicine, Seoul Metropolitan Seonam Hospital, Seoul, Korea
| | - Tae Sun Ha
- Department of Surgery, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Do Wan Kim
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - So Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youjin Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Inje University Sanggye Paik Hospital, College of Medicine, Inje University Seoul, Korea
| | - Kwang Wook Jo
- Department of Neurosurgery, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Moon Seong Baek
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yijun Seo
- Department of Anesthesiology and Pain Medicine, and Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Gun Shin
- Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gina Yu
- Department of Emergency Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jongmin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yong Jun Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Young Jang
- Department of Surgery, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Yun Tae Jung
- Department of Surgery, Gangneung Asan Hospital, Gangneung, Korea
| | - Inseok Jeong
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hospital and Medical School, Gwangju, Korea
| | - Hwa Jin Cho
- Department of Pediatrics, Chonnam National University Children's Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Ala Woo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sua Kim
- Department of Critical Care Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Dae-Hwan Bae
- Division of Cardiology, Department of Internal Medicine, Chungbuk National University Hospital, Cheongju, Korea
- Division of Cardiology, Department of Internal Medicine, Bucheon Sejong Hospital, Bucheon, Korea
| | - Sung Wook Kang
- Department of Pulmonary and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, Seoul, Korea
| | - Sun Hyo Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Gee Young Suh
- Department of Critical Care Medicine, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sunghoon Park
- Department of Pulmonary, Allergy and Critical Care Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| |
Collapse
|
7
|
Cherbi M, Merdji H, Labbé V, Bonnefoy E, Lamblin N, Roubille F, Levy B, Lim P, Khachab H, Schurtz G, Harbaoui B, Vanzetto G, Combaret N, Marchandot B, Lattuca B, Biendel-Picquet C, Leurent G, Gerbaud E, Puymirat E, Bonello L, Delmas C. Cardiogenic shock and infection: A lethal combination. Arch Cardiovasc Dis 2024; 117:470-479. [PMID: 39048471 DOI: 10.1016/j.acvd.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Cardiogenic shock and sepsis are severe haemodynamic states that are frequently present concomitantly, leading to substantial mortality. Despite its frequency and clinical significance, there is a striking lack of literature on the outcomes of combined sepsis and cardiogenic shock. METHODS FRENSHOCK was a prospective registry including 772 patients with cardiogenic shock from 49 centres. The primary endpoint was 1-month all-cause mortality. Secondary endpoints included heart transplantation, ventricular assistance device and all-cause death rate at 1year. RESULTS Among the 772 patients with cardiogenic shock included, 92 cases were triggered by sepsis (11.9%), displaying more frequent renal and hepatic acute injuries, with lower mean arterial pressure. Patients in the sepsis group required broader use of dobutamine (90.1% vs. 81.2%; P=0.16), norepinephrine (72.5% vs. 50.8%; P<0.01), renal replacement therapy (29.7% vs. 14%; P<0.01), non-invasive ventilation (36.3% vs. 24.4%; P=0.09) and invasive ventilation (52.7% vs. 35.9%; P=0.02). Sepsis-triggered cardiogenic shock resulted in higher 1-month (41.3% vs. 24.0%; adjusted hazard ratio: 1.94, 95% confidence interval: 1.36-2.76; P<0.01) and 1-year (62.0% vs. 42.9%; adjusted hazard ratio 1.75, 95% confidence interval 1.32-2.33; P<0.01) all-cause death rates. No significant difference was found at 1year for heart transplantation or ventricular assistance device (8.7% vs. 10.3%; adjusted odds ratio 0.72, 95% confidence interval 0.32-1.64; P=0.43). In patients with sepsis-triggered cardiogenic shock, neither the presence of a preexisting cardiomyopathy nor the co-occurrence of other cardiogenic shock triggers had any additional impact on death. CONCLUSIONS The association between sepsis and cardiogenic shock represents a common high-risk scenario, leading to higher short- and long-term death rates, regardless of the association with other cardiogenic shock triggers or the presence of preexisting cardiomyopathy.
Collapse
Affiliation(s)
- Miloud Cherbi
- Intensive Cardiac Care Unit, Rangueil University Hospital, 31059 Toulouse, France; Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR-1048, 31432 Toulouse, France
| | - Hamid Merdji
- Medical Intensive Care Unit, CHU de Strasbourg, 67000 Strasbourg, France
| | - Vincent Labbé
- Cardiology Department, Hôpital Tenon, AP-HP, 75020 Paris, France
| | - Eric Bonnefoy
- Intensive Cardiac Care Unit, Lyon University Hospital, 69500 Bron, France
| | - Nicolas Lamblin
- Urgences et Soins Intensifs de Cardiologie, CHU de Lille, University of Lille, Inserm U1167, 59000 Lille, France
| | - François Roubille
- PhyMedExp, Université de Montpellier, Inserm, CNRS, Cardiology Department, CHU de Montpellier, 34295 Montpellier, France
| | - Bruno Levy
- CHRU Nancy, Réanimation Médicale Brabois, 54511 Vandœuvre-Lès-Nancy, France
| | - Pascal Lim
- Université Paris-Est Créteil, Inserm, IMRB, 94010 Créteil, France; Service de Cardiologie, Hôpital Universitaire Henri-Mondor, AP-HP, 94010 Créteil, France
| | - Hadi Khachab
- Intensive Cardiac Care Unit, Department of Cardiology, CH d'Aix-en-Provence, 13616 Aix-en-Provence, France
| | - Guillaume Schurtz
- PhyMedExp, Université de Montpellier, Inserm, CNRS, Cardiology Department, CHU de Montpellier, 34295 Montpellier, France
| | - Brahim Harbaoui
- Cardiology Department, Hôpital Croix-Rousse and Hôpital Lyon Sud, Hospices Civils de Lyon, 69004 Lyon, France; University of Lyon, CREATIS UMR 5220, Inserm U1044, INSA-15 Lyon, 69621 Villeurbanne, France
| | - Gerald Vanzetto
- Department of Cardiology, Hôpital de Grenoble, 38700 La Tronche, France
| | - Nicolas Combaret
- Department of Cardiology, CHU de Clermont-Ferrand, CNRS, Université Clermont Auvergne, 63000 Clermont-Ferrand, France
| | - Benjamin Marchandot
- Université de Strasbourg, Pôle d'Activité Médico-Chirurgicale Cardiovasculaire, Nouvel Hôpital Civil, Centre Hospitalier Universitaire, 67091 Strasbourg, France
| | - Benoit Lattuca
- Department of Cardiology, Nîmes University Hospital, Montpellier University, 30900 Nîmes, France
| | - Caroline Biendel-Picquet
- Intensive Cardiac Care Unit, Rangueil University Hospital, 31059 Toulouse, France; Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR-1048, 31432 Toulouse, France
| | - Guillaume Leurent
- Department of Cardiology, CHU de Rennes, Inserm, LTSI UMR 1099, Université de Rennes 1, 35000 Rennes, France
| | - Edouard Gerbaud
- Intensive Cardiac Care Unit and Interventional Cardiology, Hôpital Cardiologique du Haut-Lévêque, 33604 Pessac, France; Bordeaux Cardio-Thoracic Research Centre, U1045, Bordeaux University, Hôpital Xavier-Arnozan, 33600 Pessac, France
| | - Etienne Puymirat
- Department of Cardiology, Hôpital Européen Georges-Pompidou, AP-HP, 75015 Paris, France; Université de Paris, 75006 Paris, France
| | - Laurent Bonello
- Aix-Marseille Université, 13385 Marseille, France; Intensive Care Unit, Department of Cardiology, Hôpital Nord, AP-HM, 13385 Marseille, France; Mediterranean Association for Research and Studies in Cardiology (MARS Cardio), 13015 Marseille, France
| | - Clément Delmas
- Intensive Cardiac Care Unit, Rangueil University Hospital, 31059 Toulouse, France; Institute of Metabolic and Cardiovascular Diseases (I2MC), Inserm UMR-1048, 31432 Toulouse, France.
| |
Collapse
|
8
|
Chen WY, Guo ZB, Kong TY, Chen WX, Chen XH, Yang Q, Wen YC, Wen QR, Zhou F, Xiong XM, Wen DL, Zhang ZH. ExtraCorporeal Membrane Oxygenation in the therapy for REfractory Septic shock with Cardiac function Under Estimated (ECMO-RESCUE): study protocol for a prospective, multicentre, non-randomised cohort study. BMJ Open 2024; 14:e079212. [PMID: 38858161 PMCID: PMC11168177 DOI: 10.1136/bmjopen-2023-079212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 05/10/2024] [Indexed: 06/12/2024] Open
Abstract
INTRODUCTION Severe septic cardiomyopathy (SCM) is one of the main causes of refractory septic shock (RSS), with a high mortality. The application of venoarterial extracorporeal membrane oxygenation (ECMO) to support the impaired cardiac function in patients with septic shock remains controversial. Moreover, no prospective studies have been taken to address whether venoarterial ECMO treatment could improve the outcome of patients with sepsis-induced cardiogenic shock. The objective of this study is to assess whether venoarterial ECMO treatment can improve the 30-day survival rate of patients with sepsis-induced refractory cardiogenic shock. METHODS AND ANALYSIS ExtraCorporeal Membrane Oxygenation in the therapy for REfractory Septic shock with Cardiac function Under Estimated is a prospective, multicentre, non-randomised, cohort study on the application of ECMO in SCM. At least 64 patients with SCM and RSS will be enrolled in an estimated ratio of 1:1.5. Participants taking venoarterial ECMO during the period of study are referred to as cohort 1, and patients receiving only conventional therapy without ECMO belong to cohort 2. The primary outcome is survival in a 30-day follow-up period. Other end points include survival to intensive care unit (ICU) discharge, hospital survival, 6-month survival, quality of life for long-term survival (EQ-5D score), successful rate of ECMO weaning, long-term survivors' cardiac function, the number of days alive without continuous renal replacement therapy, mechanical ventilation and vasopressor, ICU and hospital length of stay, the rate of complications potentially related to ECMO treatment. ETHICS AND DISSEMINATION The trial has been approved by the Clinical Research and Application Institutional Review Board of the Second Affiliated Hospital of Guangzhou Medical University (2020-hs-51). Participants will be screened and enrolled from ICU patients with septic shock by clinicians, with no public advertisement for recruitment. Results will be disseminated in research journals and through conference presentations. TRIAL REGISTRATION NUMBER NCT05184296.
Collapse
Affiliation(s)
- Wei-Yan Chen
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Ze-Bin Guo
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Tian-Yu Kong
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Wei-Xiao Chen
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xiao-Hua Chen
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qilin Yang
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Yi-Chao Wen
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Qi-Rui Wen
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Feng Zhou
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Xu-Ming Xiong
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - De-Liang Wen
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| | - Zhen-Hui Zhang
- Intensive Care Unit, Guangzhou Medical University Second Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Dubin A, Mugno M. The Effects of Dobutamine in Septic Shock: An Updated Narrative Review of Clinical and Experimental Studies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:751. [PMID: 38792934 PMCID: PMC11123338 DOI: 10.3390/medicina60050751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024]
Abstract
The key objective in the hemodynamic treatment of septic shock is the optimization of tissue perfusion and oxygenation. This is usually achieved by the utilization of fluids, vasopressors, and inotropes. Dobutamine is the inotrope most commonly recommended and used for this purpose. Despite the fact that dobutamine was introduced almost half a century ago in the treatment of septic shock, and there is widespread use of the drug, several aspects of its pharmacodynamics remain poorly understood. In normal subjects, dobutamine increases contractility and lacks a direct effect on vascular tone. This results in augmented cardiac output and blood pressure, with reflex reduction in systemic vascular resistance. In septic shock, some experimental and clinical research suggest beneficial effects on systemic and regional perfusion. Nevertheless, other studies found heterogeneous and unpredictable effects with frequent side effects. In this narrative review, we discuss the pharmacodynamic characteristics of dobutamine and its physiologic actions in different settings, with special reference to septic shock. We discuss studies showing that dobutamine frequently induces tachycardia and vasodilation, without positive actions on contractility. Since untoward effects are often found and therapeutic benefits are occasional, its profile of efficacy and safety seems low. Therefore, we recommend that the use of dobutamine in septic shock should be cautious. Before a final decision about its prescription, efficacy, and tolerance should be evaluated throughout a short period with narrow monitoring of its wanted and side effects.
Collapse
Affiliation(s)
- Arnaldo Dubin
- Cátedras de Terapia Intensiva y Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 60 y 120, La Plata B1902AGW, Argentina
- Sanatorio Otamendi, Azcuénaga 870, Ciudad Autónoma de Buenos Aires C1115AAB, Argentina;
| | - Matías Mugno
- Sanatorio Otamendi, Azcuénaga 870, Ciudad Autónoma de Buenos Aires C1115AAB, Argentina;
| |
Collapse
|
10
|
Hiraiwa H, Kasugai D, Okumura T, Murohara T. Clinical implications of septic cardiomyopathy: A narrative review. Medicine (Baltimore) 2024; 103:e37940. [PMID: 38669408 PMCID: PMC11049701 DOI: 10.1097/md.0000000000037940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Sepsis is caused by the body's dysregulated response to infection, which can lead to multiorgan injury and death. Patients with sepsis may develop acute cardiac dysfunction, termed septic cardiomyopathy, which is a global but reversible dysfunction of both sides of the heart. This narrative review discusses the mechanistic changes in the heart during septic cardiomyopathy, its diagnosis, existing treatment options regarding severity and course, and emerging treatment approaches. Although no standardized definition for septic cardiomyopathy exists, it is described as a reversible myocardial dysfunction that typically resolves within 7 to 10 days. Septic cardiomyopathy is often diagnosed based on electrocardiography, cardiac magnetic resonance imaging, biomarkers, and direct invasive and noninvasive measures of cardiac output. Presently, the treatment of septic cardiomyopathy is similar to that of sepsis, primarily focusing on acute interventions. Treatments for cardiomyopathy often include angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and diuretics. However, because of profound hypotension in sepsis, many cardiomyopathy treatments are contraindicated in patients with septic cardiomyopathy. Substantial efforts have been made to study the pathophysiological mechanisms and diagnostic options; however, the lack of a uniform definition for septic cardiomyopathy is challenging for physicians when considering treatments. Another challenge for physicians is that the treatment for septic cardiomyopathy has only focused on acute intervention, whereas the treatment for other cardiomyopathies has been provided on a long-term basis. A better understanding of the underlying mechanisms of septic cardiomyopathy may contribute to the development of a unified definition of the condition and novel treatment options.
Collapse
Affiliation(s)
- Hiroaki Hiraiwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Daisuke Kasugai
- Department of Emergency and Critical Care Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Okumura
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Ramasco F, Aguilar G, Aldecoa C, Bakker J, Carmona P, Dominguez D, Galiana M, Hernández G, Kattan E, Olea C, Ospina-Tascón G, Pérez A, Ramos K, Ramos S, Tamayo G, Tuero G. Hacia la personalización de la reanimación del paciente con shock séptico: fundamentos del ensayo ANDROMEDA-SHOCK-2. REVISTA ESPAÑOLA DE ANESTESIOLOGÍA Y REANIMACIÓN 2024; 71:112-124. [DOI: 10.1016/j.redar.2023.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Ramasco F, Aguilar G, Aldecoa C, Bakker J, Carmona P, Dominguez D, Galiana M, Hernández G, Kattan E, Olea C, Ospina-Tascón G, Pérez A, Ramos K, Ramos S, Tamayo G, Tuero G. Towards the personalization of septic shock resuscitation: the fundamentals of ANDROMEDA-SHOCK-2 trial. REVISTA ESPANOLA DE ANESTESIOLOGIA Y REANIMACION 2024; 71:112-124. [PMID: 38244774 DOI: 10.1016/j.redare.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/04/2023] [Indexed: 01/22/2024]
Abstract
Septic shock is a highly lethal and prevalent disease. Progressive circulatory dysfunction leads to tissue hypoperfusion and hypoxia, eventually evolving to multiorgan dysfunction and death. Prompt resuscitation may revert these pathogenic mechanisms, restoring oxygen delivery and organ function. High heterogeneity exists among the determinants of circulatory dysfunction in septic shock, and current algorithms provide a stepwise and standardized approach to conduct resuscitation. This review provides the pathophysiological and clinical rationale behind ANDROMEDA-SHOCK-2, an ongoing multicenter randomized controlled trial that aims to compare a personalized resuscitation strategy based on clinical phenotyping and peripheral perfusion assessment, versus standard of care, in early septic shock resuscitation.
Collapse
Affiliation(s)
- F Ramasco
- Hospital Universitario de La Princesa, Madrid, Spain.
| | - G Aguilar
- Hospital Clínico Universitario de Valencia, Spain
| | - C Aldecoa
- Hospital Universitario Río Hortega, Valladolid, Spain
| | - J Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Región Metropolitana, Chile; The Latin American Intensive Care Network (LIVEN); Department of Intensive Care, Erasmus MC University Medical Center, Rotterdam, Netherlands; Division of Pulmonary Critical Care, and Sleep Medicine, New York University and Columbia University, New York, USA
| | - P Carmona
- Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - D Dominguez
- Hospital Universitario Ntra. Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | - M Galiana
- Hospital General Universitario Doctor Balmis, Alicante, Spain
| | - G Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Región Metropolitana, Chile; The Latin American Intensive Care Network (LIVEN)
| | - E Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Región Metropolitana, Chile; The Latin American Intensive Care Network (LIVEN)
| | - C Olea
- Hospital Universitario 12 de Octubre, Madrid. Spain
| | - G Ospina-Tascón
- The Latin American Intensive Care Network (LIVEN); Department of Intensive Care, Fundación Valle del Lili, Cali, Colombia; Translational Research Laboratory in Critical Care Medicine (TransLab-CCM), Universidad Icesi, Cali, Colombia
| | - A Pérez
- Hospital General Universitario de Elche, Spain
| | - K Ramos
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Región Metropolitana, Chile; The Latin American Intensive Care Network (LIVEN)
| | - S Ramos
- Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - G Tamayo
- Hospital Universitario de Cruces, Baracaldo, Vizcaya, Spain
| | - G Tuero
- Hospital Can Misses, Ibiza, Spain
| |
Collapse
|
13
|
Salami OM, Habimana O, Peng JF, Yi GH. Therapeutic Strategies Targeting Mitochondrial Dysfunction in Sepsis-induced Cardiomyopathy. Cardiovasc Drugs Ther 2024; 38:163-180. [PMID: 35704247 DOI: 10.1007/s10557-022-07354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Sepsis is an increasingly worldwide problem; it is currently regarded as a complex life-threatening dysfunction of one or more organs as a result of dysregulated host immune response to infections. The heart is one of the most affected organs, as roughly 10% to 70% of sepsis cases are estimated to turn into sepsis-induced cardiomyopathy (SIC). SIC can be defined as a reversible myocardial dysfunction characterized by dilated ventricles, impaired contractility, and decreased ejection fraction. Mitochondria play a critical role in the normal functioning of cardiac tissues as the heart is highly dependent on its production of adenosine triphosphate (ATP), its damage during SIC includes morphology impairment, mitophagy, biogenesis disequilibrium, electron transport chain disturbance, molecular damage from the actions of pro-inflammatory cytokines and many other different impairments that are major contributing factors to the severity of SIC. Although mitochondria-targeted therapies usage is still inadequate in clinical settings, the preclinical study outcomes promise that the implementation of these therapies may effectively treat SIC. This review summarizes the different therapeutic strategies targeting mitochondria structure, quality, and quantity abnormalities for the treatment of SIC.
Collapse
Affiliation(s)
| | - Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Jin-Fu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
14
|
Gutiérrez-Zárate D, Rosas-Sánchez K, Zaragoza JJ. Clinical evaluation of peripheral tissue perfusion as a predictor of mortality in sepsis and septic shock in the intensive care unit: Systematic review and meta-analysis. Med Intensiva 2023; 47:697-707. [PMID: 37419840 DOI: 10.1016/j.medine.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/11/2023] [Accepted: 05/09/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVE To determine the diagnostic performance of the clinical evaluation of peripheral tissue perfusion in the prediction of mortality. DESIGN Systematic review and meta-analysis. SETTING Intensive care unit. PATIENTS AND PARTICIPANTS Patients with sepsis and septic shock. INTERVENTIONS Studies of patients with sepsis and/or septic shock that associated clinical monitoring of tissue perfusion with mortality were included. A systematic review was performed by searching the PubMed/MEDLINE, Cochrane Library, SCOPUS, and OVID databases. MAIN VARIABLES OF INTEREST The risk of bias was assessed with the QUADAS-2 tool. Sensitivity and specificity were calculated to evaluate the predictive accuracy for mortality. Review Manager software version 5.4 was used to draw the forest plot graphs, and Stata version 15.1 was used to build the hierarchical summary receiver operating characteristic model. RESULTS Thirteen studies were included, with a total of 1667 patients and 17 analyses. Two articles evaluated the temperature gradient, four evaluated the capillary refill time, and seven evaluated the mottling in the skin. In most studies, the outcome was mortality at 14 or 28 days. The pooled sensitivity of the included studies was 70%, specificity 75.9% (95% CI, 61.6%-86.2%), diagnostic odds ratio 7.41 (95% CI, 3.91-14.04), and positive and negative likelihood ratios 2.91 (95% CI, 1.80-4.72) and 0.39 (95% CI, 0.30-0.51), respectively. CONCLUSIONS Clinical evaluation of tissue perfusion at the bedside is a useful tool, with moderate sensitivity and specificity, to identify patients with a higher risk of death among those with sepsis and septic shock. REGISTRATION PROSPERO CRD42019134351.
Collapse
Affiliation(s)
| | - Karina Rosas-Sánchez
- Department of Intensive Care Medicine, Hospital Ángeles Centro Sur, Querétaro, Mexico
| | - Jose J Zaragoza
- Department of Intensive Care Medicine, Hospital H+ Querétaro, Querétaro, Mexico
| |
Collapse
|
15
|
Pei XB, Liu B. Research Progress on the Mechanism and Management of Septic Cardiomyopathy: A Comprehensive Review. Emerg Med Int 2023; 2023:8107336. [PMID: 38029224 PMCID: PMC10681771 DOI: 10.1155/2023/8107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis is defined as a kind of life-threatening organ dysfunction due to a dysregulated host immune response to infection and is a leading cause of mortality in the intensive care unit. Sepsis-induced myocardial dysfunction, also called septic cardiomyopathy, is a common and serious complication in patients with sepsis, which may indicate a bad prognosis. Although efforts have been made to uncover the pathophysiology of septic cardiomyopathy, a number of uncertainties remain. This article sought to review available literature to summarize the existing knowledge on current diagnostic tools and biomarkers, pathogenesis, and treatments for septic cardiomyopathy.
Collapse
Affiliation(s)
- Xue-Bin Pei
- Emergency Medicine Clinical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Bo Liu
- Department of Emergency Medicine, Beijing YouAn Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
16
|
Peng JC, Wu Y, Xing SP, Zhu ML, Gao Y, Li W. Development and validation of a nomogram to predict the risk of renal replacement therapy among acute kidney injury patients in intensive care unit. Clin Exp Nephrol 2023; 27:951-960. [PMID: 37498349 PMCID: PMC10581925 DOI: 10.1007/s10157-023-02383-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND There are no universally accepted indications to initiate renal replacement therapy (RRT) among patients with acute kidney injury (AKI). This study aimed to develop a nomogram to predict the risk of RRT among AKI patients in intensive care unit (ICU). METHODS In this retrospective cohort study, we extracted AKI patients from Medical Information Mart for Intensive Care III (MIMIC-III) database. Patients were randomly divided into a training cohort (70%) and a validation cohort (30%). Multivariable logistic regression based on Akaike information criterion was used to establish the nomogram. The discrimination and calibration of the nomogram were evaluated by Harrell's concordance index (C-index) and Hosmer-Lemeshow (HL) test. Decision curve analysis (DCA) was performed to evaluate clinical application. RESULTS A total of 7413 critically ill patients with AKI were finally enrolled. 514 (6.9%) patients received RRT after ICU admission. 5194 (70%) patients were in the training cohort and 2219 (30%) patients were in the validation cohort. Nine variables, namely, age, hemoglobin, creatinine, blood urea nitrogen and lactate at AKI detection, comorbidity of congestive heart failure, AKI stage, and vasopressor use were included in the nomogram. The predictive model demonstrated satisfying discrimination and calibration with C-index of 0.938 (95% CI, 0.927-0.949; HL test, P = 0.430) in training set and 0.935 (95% CI, 0.919-0.951; HL test, P = 0.392) in validation set. DCA showed a positive net benefit of our nomogram. CONCLUSION The nomogram developed in this study was highly accurate for RRT prediction with potential application value.
Collapse
Affiliation(s)
- Jiang-Chen Peng
- Department of Critical Care, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yan Wu
- Department of Critical Care, Shanghai Baoshan Luodian Hospital, 121 Luoxi Road, Baoshan District, Shanghai, 201908, China
| | - Shun-Peng Xing
- Department of Critical Care, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Ming-Li Zhu
- Department of Critical Care, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Yuan Gao
- Department of Critical Care, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Wen Li
- Department of Critical Care, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
17
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
18
|
Putowski Z, Pluta MP, Rachfalska N, Krzych ŁJ, De Backer D. Sublingual Microcirculation in Temporary Mechanical Circulatory Support: A Current State of Knowledge. J Cardiothorac Vasc Anesth 2023; 37:2065-2072. [PMID: 37330330 DOI: 10.1053/j.jvca.2023.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
Cardiogenic shock causes hypoperfusion within the microcirculation, leading to impaired oxygen delivery, cell death, and progression of multiple organ failure. Mechanical circulatory support (MCS) is the last line of treatment for cardiac failure. The goal of MCS is to ensure end-organ perfusion by maintaining perfusion pressure and total blood flow. However, machine-blood interactions and the nonobvious translation of global macrohemodynamics into the microcirculation suggest that the use of MCS may not necessarily be associated with improved capillary flow. With the use of hand-held vital microscopes, it is possible to assess the microcirculation at the bedside. The paucity of literature on the use of microcirculatory assessment suggests the need for an in-depth look into microcirculatory assessment within the context of MCS. The purpose of this review is to discuss the possible interactions between MCS and microcirculation, as well as to describe the research conducted in this area. Regarding sublingual microcirculation, 3 types of MCS will be discussed: venoarterial extracorporeal membrane oxygenation, intra-aortic balloon counterpulsation, and microaxial flow pumps (Impella).
Collapse
Affiliation(s)
- Zbigniew Putowski
- University Clinical Center of the Medical University of Silesia in Katowice, Katowice, Poland.
| | - Michał P Pluta
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Natalia Rachfalska
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
| | - Łukasz J Krzych
- Department of Anesthesiology and Intensive Care, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland; Department of Cardiac Anaesthesia and Intensive Therapy, Medical University of Silesia, Silesian Center for Heart Diseases, Zabrze, Poland
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
19
|
Shvilkina T, Shapiro N. Sepsis-Induced myocardial dysfunction: heterogeneity of functional effects and clinical significance. Front Cardiovasc Med 2023; 10:1200441. [PMID: 37522079 PMCID: PMC10375025 DOI: 10.3389/fcvm.2023.1200441] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 08/01/2023] Open
Abstract
Sepsis is a life-threatening disease state characterized by organ dysfunction and a dysregulated response to infection. The heart is one of the many organs affected by sepsis, in an entity termed sepsis-induced cardiomyopathy. This was initially used to describe a reversible depression in ejection fraction with ventricular dilation but advances in echocardiography and introduction of new techniques such as speckle tracking have led to descriptions of other common abnormalities in cardiac function associated with sepsis. This includes not only depression of systolic function, but also supranormal ejection fraction, diastolic dysfunction, and right ventricular dysfunction. These reports have led to inconsistent definitions of sepsis-induced cardiomyopathy. Just as there is heterogeneity among patients with sepsis, there is heterogeneity in the cardiac response; thus resuscitating these patients with a single approach is likely suboptimal. Many factors affect the heart in sepsis including inflammatory mediators, catecholamine responsiveness, and pathogen related toxins. This review will discuss different functional effects characterized by echocardiographic changes in sepsis and their prognostic and management implications.
Collapse
|
20
|
de Miranda AC, De Stefani FDC, Dal Vesco BC, Junior HC, Morello LG, Assreuy J, de Menezes IAC. Peripheral ischemic reserve in sepsis and septic shock as a new bedside prognostic enrichment tool: A Brazilian cohort study. PLoS One 2023; 18:e0288249. [PMID: 37406024 DOI: 10.1371/journal.pone.0288249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Microvascular dysfunctions are associated with poor prognosis in sepsis. However, the potential role of clinical assessment of peripheral ischemic microvascular reserve (PIMR), a parameter that characterizes the variation of peripheral perfusion index (PPI) after brief ischemia of the upper arm, as a tool to detect sepsis-induced microvascular dysfunction and for prognostic enrichment has not been established. To address this gap, this study investigated the association of high PIMR with mortality over time in patients with sepsis and its subgroups (with and without shock) and peripheral perfusion (capillary-refill time). This observational cohort study enrolled consecutive septic patients in four Intensive-care units. After fluid resuscitation, PIMR was evaluated using the oximetry-derived PPI and post-occlusive reactive hyperemia for two consecutive days in septic patients. Two hundred and twenty-six patients were included-117 (52%) in the low PIMR group and 109 (48%) in the high PIMR group. The study revealed differences in mortality between groups on the first day, which was higher in the high PIMR group (RR 1.25; 95% CI 1.00-1.55; p = 0.04) and maintained its prognostic significance after multivariate adjustment. Subsequently, this analysis was made for sepsis subgroups and showed significant differences in mortality only for the septic-shock subgroup, with was higher in the high PIMR group (RR 2.14; 95% CI 1.49-3.08; p = 0.01). The temporal ΔPPI peak values (%) analyses did not demonstrate maintenance of the predictive value over the first 48 h in either group (p > 0.05). A moderate positive correlation (r = 0.41) between ΔPPI peak (%) and capillary-refill time (s) was found within the first 24 hours of diagnosis (p < 0.001). In conclusion, detecting a high PIMR within 24 h appears to be a prognostic marker for mortality in sepsis. Furthermore, its potential as a prognostic enrichment tool seems to occur mainly in septic shock.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Bruna Cassia Dal Vesco
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Hipólito Carraro Junior
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Jamil Assreuy
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | |
Collapse
|
21
|
Tsolaki V, Zakynthinos GE, Papanikolaou J, Vazgiourakis V, Parisi K, Fotakopoulos G, Makris D, Zakynthinos E. Levosimendan in the Treatment of Patients with Severe Septic Cardiomyopathy. Life (Basel) 2023; 13:1346. [PMID: 37374128 DOI: 10.3390/life13061346] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/27/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
(1) Background: The optimal treatment of septic cardiomyopathy (SCM) remains questionable. The aim of the study was to compare the treatment of SCM based on levosimendan versus the best available therapy. (2) Methods: We conducted an observational study including patients with severe septic cardiomyopathy and circulatory failure. (3) Results: Fourteen patients (61%) received levosimendan, and nine received other treatments. The patients in the levosimendan group were more severely ill [APACHE II: 23.5 (14, 37) vs. 14 (13, 28), respectively, p = 0.012], and there was a trend for more decompensated LV function depicted by the LVEF [15% (10, 20) vs. 25% (5, 30), respectively, p = 0.061]. However, they presented a significantly higher increase in LVEF after seven days [15% (10, 20) to 50% (30, 68) (p < 0.0001) vs. 25% (5, 30) to 25% (15, 50) (p = 0.309), and a significantly higher decrease in lactate levels during the first 24 h [4.5 (2.5, 14.4) to 2.85 (1.2, 15), p = 0.036 vs. 2.9 (2, 18.9) to 2.8 (1, 15), p = 0.536]. Seven-day survival (64.3% vs. 33.3%, p = 0.424) and ICU survival (50% vs. 22.2%, p = 0.172) were higher in the first group, although differences did not reach statistical significance. The degree of left ventricular impairment and the magnitude of EF improvement by the seventh-day post-SCM onset were associated with mortality in regression analysis. (4) Conclusions: Our study presents main hemodynamic data supporting the possible efficacy of levosimendan treatment in patients with severe SCM.
Collapse
Affiliation(s)
- Vasiliki Tsolaki
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly Faculty of Medicine, 44110 Larissa, Greece
| | - George E Zakynthinos
- Third Cardiology Clinic, University of Athens, Sotiria Hospital, 11527 Athens, Greece
| | | | - Vasileios Vazgiourakis
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly Faculty of Medicine, 44110 Larissa, Greece
| | - Kyriaki Parisi
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly Faculty of Medicine, 44110 Larissa, Greece
| | - George Fotakopoulos
- Neurosurgical Department, University Hospital of Larissa, 44110 Larissa, Greece
| | - Demosthenes Makris
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly Faculty of Medicine, 44110 Larissa, Greece
| | - Epaminondas Zakynthinos
- Intensive Care Unit, University Hospital of Larissa, University of Thessaly Faculty of Medicine, 44110 Larissa, Greece
| |
Collapse
|
22
|
Sekino M, Murakami Y, Sato S, Shintani R, Kaneko S, Iwasaki N, Araki H, Ichinomiya T, Higashijima U, Hara T. Modifications of peripheral perfusion in patients with vasopressor-dependent septic shock treated with polymyxin B-direct hemoperfusion. Sci Rep 2023; 13:7295. [PMID: 37147345 PMCID: PMC10163011 DOI: 10.1038/s41598-023-34084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Abnormal peripheral perfusion (PP) worsens the prognosis of patients with septic shock. Polymyxin B-direct hemoperfusion (PMX-DHP) increases blood pressure and reduces vasopressor doses. However, the modification of PP following administration of PMX-DHP in patients with vasopressor-dependent septic shock have not yet been elucidated. A retrospective exploratory observational study was conducted in patients with septic shock treated with PMX-DHP. Pulse-amplitude index (PAI), vasoactive inotropic score (VIS), and cumulative fluid balance data were extracted at PMX-DHP initiation (T0) and after 24 (T24) and 48 (T48) h. Changes in these data were analyzed in all patients and two subgroups (abnormal PP [PAI < 1] and normal PP [PAI ≥ 1]) based on the PAI at PMX-DHP initiation. Overall, 122 patients (abnormal PP group, n = 67; normal PP group, n = 55) were evaluated. Overall and in the abnormal PP group, PAI increased significantly at T24 and T48 compared with that at T0, with a significant decrease in VIS. Cumulative 24-h fluid balance after PMX-DHP initiation was significantly higher in the abnormal PP group. PMX-DHP may be an effective intervention to improve PP in patients with abnormal PP; however, caution should be exercised as fluid requirements may differ from that of patients with normal PP.
Collapse
Affiliation(s)
- Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Yu Murakami
- Department of Anesthesiology, Nagasaki Harbor Medical Center, 6-39 Shinchi, Nagasaki, 850-8555, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ryosuke Shintani
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shohei Kaneko
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Naoya Iwasaki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Hiroshi Araki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Ushio Higashijima
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
23
|
De Backer D. Novelties in the evaluation of microcirculation in septic shock. JOURNAL OF INTENSIVE MEDICINE 2023; 3:124-130. [PMID: 37188120 PMCID: PMC10175708 DOI: 10.1016/j.jointm.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 05/17/2023]
Abstract
Microvascular alterations were first described in critically ill patients about 20 years ago. These alterations are characterized by a decrease in vascular density and presence of non-perfused capillaries close to well-perfused vessels. In addition, heterogeneity in microvascular perfusion is a key finding in sepsis. In this narrative review, we report our actual understanding of microvascular alterations, their role in the development of organ dysfunction, and the implications for outcome. Herein, we discuss the state of the potential therapeutic interventions and the potential impact of novel therapies. We also discuss how recent technologic development may affect the evaluation of microvascular perfusion.
Collapse
|
24
|
Bagang N, Gupta K, Singh G, Kanuri SH, Mehan S. Protease-activated receptors in kidney diseases: A comprehensive review of pathological roles, therapeutic outcomes and challenges. Chem Biol Interact 2023; 377:110470. [PMID: 37011708 DOI: 10.1016/j.cbi.2023.110470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023]
Abstract
Studies have demonstrated that protease-activated receptors (PARs) with four subtypes (PAR1-4) are mainly expressed in the renal epithelial, endothelial, and podocyte cells. Some endogenous and urinary proteases, namely thrombin, trypsin, urokinase, and kallikrein released during diseased conditions, are responsible for activating different subtypes of PARs. Each PAR receptor subtype is involved in kidney disease of distinct aetiology. PAR1 and PAR2 have shown differential therapeutic outcomes in rodent models of type-1 and type-2 diabetic kidney diseases due to the distinct etiological basis of each disease type, however such findings need to be confirmed in other diabetic renal injury models. PAR1 and PAR2 blockers have been observed to abolish drug-induced nephrotoxicity in rodents by suppressing tubular inflammation and fibrosis and preventing mitochondrial dysfunction. Notably, PAR2 inhibition improved autophagy and prevented fibrosis, inflammation, and remodeling in the urethral obstruction model. Only the PAR1/4 subtypes have emerged as a therapeutic target for treating experimentally induced nephrotic syndrome, where their respective antibodies attenuated the podocyte apoptosis induced upon thrombin activation. Strikingly PAR2 and PAR4 subtypes involvement has been tested in sepsis-induced acute kidney injury (AKI) and renal ischemia-reperfusion injury models. Thus, more studies are required to delineate the role of other subtypes in the sepsis-AKI model. Evidence suggests that PARs regulate oxidative, inflammatory stress, immune cell activation, fibrosis, autophagic flux, and apoptosis during kidney diseases.
Collapse
|
25
|
Coen D. Fluids and vasopressors in septic shock: basic knowledge for a first approach in the emergency department. EMERGENCY CARE JOURNAL 2023. [DOI: 10.4081/ecj.2023.10810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Much research, both pathophysiological and clinical, has been produced about septic shock during the last 20 years. Nevertheless, many aspects of treatment are still controversial, among these the approach to the administration of fluids and vasopressors. After the first clinical trial on Early goal-directed therapy (EGDT) was published, a liberal approach to the use of fluids and conservative use of vasopressors prevailed, but in recent years a more restrictive use of fluids and an earlier introduction of vasopressors seem to be preferred. Although both treatments are based on sound pathophysiological knowledge, clinical evidence is still inadequate and somehow controversial. In this non-systematic review, recent research on the hemodynamics of septic shock and its treatment with fluids and inotropes is discussed. As a conclusion, general indications are proposed for a practical approach to patients in septic shock.
Collapse
|
26
|
Li X, Tan T, Wu H, Zhang C, Luo D, Zhu W, Li B, Zhuang J. Characteristics of sublingual microcirculatory changes during the early postoperative period following cardiopulmonary bypass-assisted cardiac surgery-a prospective cohort study. J Thorac Dis 2022; 14:3992-4002. [PMID: 36389306 PMCID: PMC9641360 DOI: 10.21037/jtd-22-1159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/28/2022] [Indexed: 02/27/2024]
Abstract
BACKGROUND Persistent microcirculatory dysfunction associated with increased morbidity and mortality. Interventions in the early resuscitation can be tailored to the changes of microcirculation and patient's need. However, there is usually an uncoupling of macrocirculatory and microcirculatory hemodynamics during resuscitation. Current research on the patterns of microcirculatory changes and recovery after cardiopulmonary bypass (CPB)-assisted cardiac surgery is limited. This study aimed to analyze changes in the microcirculatory parameters after CPB and their correlation with macrocirculation and to explore the characteristics of microcirculatory changes following CPB-assisted cardiac surgery. METHODS Between December 2018 and January 2019, 24 adult patients with indwelling pulmonary artery catheters after elective cardiac surgery using CPB were enrolled in this study. Both microcirculatory and macrocirculatory parameters were collected at 0, 6, 16, and 24 hours after admission to the intensive care unit (ICU). Video images of sublingual microcirculation were analyzed to obtain the microcirculatory parameters, including total vascular density (TVD), perfused small vessel density (PSVD), the proportion of perfused small vessels (PPV), microvascular flow index (MFI), and flow heterogeneity index (HI). The characteristics of microcirculatory parameter change following cardiac surgery and the correlation between microcirculatory parameters and macroscopic hemodynamic indicators, oxygen metabolic indicators, and carbon dioxide partial pressure difference (PCO2gap) were analyzed. RESULTS There were significant differences in the changes of TVD (P=0.012) and PSVD (P=0.005) during the first 24 hours postoperatively in patients who underwent CPB-assisted cardiac surgery. The microcirculatory density parameters (TVD: r=-0.5059, P=0.0456; PVD: r=-0.5499, P=0.0273) were correlated with oxygen delivery index (DO2I) at 24 hours after surgery. The microcirculatory flow parameters (PPV: r=0.4370, P=0.0327; MFI: r=0.6496, P=0.0006; and HI: r=-0.5350, P=0.0071) had a strong correlation with PCO2gap at 0 hour after surgery. CONCLUSIONS TVD and PSVD might be two most sensitive indicators affected by CPB-assisted cardiac surgery. There was no consistency between microcirculation and macrocirculation until 24 hours following cardiac surgery, meaning the improvement of systemic hemodynamic indicators does not guarantee correspondently improvement in microcirculation. Early controlled oxygen supply after CPB-assisted cardiac surgery may be conducive to the resuscitation of patients to a certain extent.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Tong Tan
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Hongxiang Wu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Chongjian Zhang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Dandong Luo
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Weizhong Zhu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Boyu Li
- Department of Center for Private Medical Service & Healthcare, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jian Zhuang
- Department of Cardiovascular Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangdong Cardiovascular Institute, Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| |
Collapse
|
27
|
Seitz KP, Qian ET, Semler MW. Intravenous fluid therapy in sepsis. Nutr Clin Pract 2022; 37:990-1003. [PMID: 35801708 PMCID: PMC9463107 DOI: 10.1002/ncp.10892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Sepsis is the dysregulated immune response to severe infection that is common and lethal among critically ill patients. Fluid administration is a common treatment for hypotension and shock in early sepsis. Fluid therapy can also cause edema and organ dysfunction. Research on the best treatment strategies for sepsis has provided insights on the optimal timing, dose, and type of fluid to treat patients with sepsis. Initial research on early goal-directed therapy for sepsis included an initial bolus of 30 ml/kg of fluid, but more recent research has supported use of smaller volumes. After initial fluid resuscitation, minimizing additional fluid administration may be beneficial, but no single measure has been established as the best method to guide ongoing fluid management in sepsis. Dynamic measures of "fluid responsiveness" can predict which patients will experience an increase in cardiac output from a fluid bolus. Use of such a measure in clinical care remains limited by applicability to patient populations and uncertainty regarding the effect on clinical outcomes. Recent research informs the effect of fluid composition on outcomes for patients with sepsis. Current data support the use of balanced crystalloids, rather than saline, and the use of crystalloids, rather than semisynthetic colloids. The role for albumin administration in sepsis remains uncertain. Future research should focus on determining the optimal volume of fluid during sepsis resuscitation, the effectiveness of measures of "fluid responsiveness" in improving outcomes, the optimal composition of crystalloid solutions, the role of albumin, and the effects of "deresuscitation" after septic shock.
Collapse
Affiliation(s)
- Kevin P. Seitz
- Vanderbilt University, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Edward T. Qian
- Vanderbilt University, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| | - Matthew W. Semler
- Vanderbilt University, Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine
| |
Collapse
|
28
|
Razazi K, Labbé V, Laine L, Bedet A, Carteaux G, de Prost N, Boissier F, Bagate F, Mekontso Dessap A. Hemodynamic effects and tolerance of dobutamine for myocardial dysfunction during septic shock: An observational multicenter prospective echocardiographic study. Front Cardiovasc Med 2022; 9:951016. [PMID: 36158835 PMCID: PMC9500364 DOI: 10.3389/fcvm.2022.951016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Background The role of dobutamine during septic shock resuscitation is still controversial. Methods The aim of this prospective multicentre study was to comprehensively characterize the hemodynamic response of septic shock patients with systolic myocardial dysfunction to incremental doses of dobutamine (0, 5, 10, and 15 μg/kg/min). Results Thirty two patients were included in three centers. Dobutamine significantly increased contractility indices of both ventricles [crude and afterload-adjusted left ventricular (LV) ejection fraction, global LV longitudinal peak systolic strain, tissue Doppler peak systolic wave at mitral and tricuspid lateral annulus, and tricuspid annular plane excursion) as well as global function indices (stroke volume and cardiac index) and diastolic function (increased e' and decreased E/e' ratio at lateral mitral annulus). Dobutamine also induced a significant decrease in arterial pressure and cardiac afterload indices (effective arterial elastance, systemic vascular resistance and diastolic shock index). Oxygen transport, oxygen consumption and carbon dioxide production all increased with dobutamine, without change in the respiratory quotient or lactate. Dobutamine was discontinued for poor tolerance in a majority of patients (n = 21, 66%) at any dose and half of patients (n = 15, 47%) at low-dose (5 μg/kg/min). Poor tolerance to low-dose dobutamine was more frequent in case of acidosis, was associated with lower vasopressor-free days and survival at day-14. Conclusion In patients with septic myocardial dysfunction, dobutamine induced an overall improvement of echocardiographic parameters of diastolic and systolic function, but was poorly tolerated in nearly two thirds of patients, with worsening vasoplegia. Patients with severe acidosis seemed to have a worse response to dobutamine.
Collapse
Affiliation(s)
- Keyvan Razazi
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- INSERM, Institut Mondor de Recherche Biomedicale (IMRB), Univ Paris Est Créteil, Créteil, France
- Faculté de Médecine de Créteil, Institut Mondor de Recherche Biomedicale (IMRB), GRC CARMAS, Université Paris Est Créteil, Créteil, France
- *Correspondence: Keyvan Razazi
| | - Vincent Labbé
- Département Médico-Universitaire APPROCHES, AP-HP, Hôpital Tenon, Service de Médecine Intensive Réanimation, Sorbonne Université, Paris, France
| | - Laurent Laine
- Hôpital Delafontaine, Service de Réanimation, Saint-Denis, France
| | - Alexandre Bedet
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- INSERM, Institut Mondor de Recherche Biomedicale (IMRB), Univ Paris Est Créteil, Créteil, France
- Faculté de Médecine de Créteil, Institut Mondor de Recherche Biomedicale (IMRB), GRC CARMAS, Université Paris Est Créteil, Créteil, France
| | - Guillaume Carteaux
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- INSERM, Institut Mondor de Recherche Biomedicale (IMRB), Univ Paris Est Créteil, Créteil, France
- Faculté de Médecine de Créteil, Institut Mondor de Recherche Biomedicale (IMRB), GRC CARMAS, Université Paris Est Créteil, Créteil, France
| | - Nicolas de Prost
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- INSERM, Institut Mondor de Recherche Biomedicale (IMRB), Univ Paris Est Créteil, Créteil, France
- Faculté de Médecine de Créteil, Institut Mondor de Recherche Biomedicale (IMRB), GRC CARMAS, Université Paris Est Créteil, Créteil, France
| | - Florence Boissier
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- CHU de Poitiers, Service de Médecine Intensive Réanimation, Poitiers, France
| | - Francois Bagate
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- INSERM, Institut Mondor de Recherche Biomedicale (IMRB), Univ Paris Est Créteil, Créteil, France
- Faculté de Médecine de Créteil, Institut Mondor de Recherche Biomedicale (IMRB), GRC CARMAS, Université Paris Est Créteil, Créteil, France
| | - Armand Mekontso Dessap
- AP-HP, Hôpitaux Universitaires Henri-Mondor, Service de Médecine Intensive Réanimation, Créteil, France
- INSERM, Institut Mondor de Recherche Biomedicale (IMRB), Univ Paris Est Créteil, Créteil, France
- Faculté de Médecine de Créteil, Institut Mondor de Recherche Biomedicale (IMRB), GRC CARMAS, Université Paris Est Créteil, Créteil, France
| |
Collapse
|
29
|
Wang S, Liu G, Chen L, Xu X, Jia T, Zhu C, Xiong J. EFFECTS OF SHENFU INJECTION ON SUBLINGUAL MICROCIRCULATION IN SEPTIC SHOCK PATIENTS: A RANDOMIZED CONTROLLED TRIAL. Shock 2022; 58:196-203. [PMID: 35959775 DOI: 10.1097/shk.0000000000001975] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Background and Objective: The optimization of macrocirculatory hemodynamics is recommended by current sepsis guidelines. However, microcirculatory dysfunction is considered the cause of severe sepsis. In the present study, we designed to verify whether the application of Shenfu injection (SFI) restores microcirculation, thereby improving tissue perfusion and inhibiting organ dysfunction, resulting in improved outcomes. Design: We conducted a prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Intervention: Patients were randomly assigned to group receiving SFI (n = 20) or placebo (n = 20) for 5 days. We administered SFI or glucose injection for 5 days and blinded the investigators and clinical staff by applying light-proof infusion equipment that concealed therapy allocation. Measurements and Results: We measured the systemic dynamics and lactate levels, biomarkers of endothelial dysfunction, and inflammatory cytokines in the plasma. The parameters of sublingual microcirculation were assessed using side-stream dark-field imaging. Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation (APACHE) score, total dose, and duration of vasopressor use, emergency intensive care unit (EICU) stay, and 28-day mortality were evaluated. After treatment with SFI, the disturbance of the sublingual microcirculation was considerably alleviated, as indicated by the significant increase in total vessel density, perfused vessel density, and microvascular flow index. Moreover, the plasma biomarker levels of endothelial dysfunction, including Ang-2, Syn-1, and ET-1, were reversed after SFI treatment. Importantly, the SFI group had a more favorable prognosis than the control group in terms of the APACHE-II score, SOFA score, duration of vasopressor administration, and length of EICU stay. However, the difference in mortality at day 28 was not statistically different between the SFI (15%, 3/20) and placebo (25%, 5/20) groups ( P = 0.693). Conclusions : Shenfu injection provided apparent effects in improving sublingual microcirculatory perfusion in patients with septic shock, and this protection may be related with the inhibition of endothelial dysfunction and vasodilatory effects.
Collapse
Affiliation(s)
- Shiwei Wang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Samavedam S. Sepsis and the Heart: More to Learn. Indian J Crit Care Med 2022; 26:775-777. [PMID: 36864865 PMCID: PMC9973167 DOI: 10.5005/jp-journals-10071-24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
How to cite this article: Samavedam S. Sepsis and the Heart: More to Learn. Indian J Crit Care Med 2022;26(7):775-777.
Collapse
Affiliation(s)
- Srinivas Samavedam
- Department of Critical Care, Virinchi Hospital, Hyderabad, Telangana, India
| |
Collapse
|
31
|
Raia L, Zafrani L. Endothelial Activation and Microcirculatory Disorders in Sepsis. Front Med (Lausanne) 2022; 9:907992. [PMID: 35721048 PMCID: PMC9204048 DOI: 10.3389/fmed.2022.907992] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
The vascular endothelium is crucial for the maintenance of vascular homeostasis. Moreover, in sepsis, endothelial cells can acquire new properties and actively participate in the host's response. If endothelial activation is mostly necessary and efficient in eliminating a pathogen, an exaggerated and maladaptive reaction leads to severe microcirculatory damage. The microcirculatory disorders in sepsis are well known to be associated with poor outcome. Better recognition of microcirculatory alteration is therefore essential to identify patients with the worse outcomes and to guide therapeutic interventions. In this review, we will discuss the main features of endothelial activation and dysfunction in sepsis, its assessment at the bedside, and the main advances in microcirculatory resuscitation.
Collapse
Affiliation(s)
- Lisa Raia
- Medical Intensive Care Unit, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Lara Zafrani
- Medical Intensive Care Unit, Hôpital Saint-Louis, Assistance Publique des Hôpitaux de Paris, Paris, France
- INSERM UMR 976, University of Paris Cité, Paris, France
- *Correspondence: Lara Zafrani
| |
Collapse
|
32
|
Plack DL, Royer O, Couture EJ, Nabzdyk CG. Sepsis Induced Cardiomyopathy Reviewed: The Case for Early Consideration of Mechanical Support. J Cardiothorac Vasc Anesth 2022; 36:3916-3926. [DOI: 10.1053/j.jvca.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 01/25/2023]
|
33
|
Guo J, Zhang X, Zhu Y, Cheng Q. Comparison of dobutamine and levosimendan for treatment of sepsis-induced cardiac dysfunction: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e29092. [PMID: 35356941 PMCID: PMC10684197 DOI: 10.1097/md.0000000000029092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/26/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Levosimendan and dobutamine are extensively used to treat sepsis-induced cardiomyopathy. Previous studies on whether levosimendan is superior to dobutamine are still controversial. We performed a protocol for systematic review and metaanalysis to compare the efficacy and safety of levosimendan versus dobutamine for the treatment of sepsis-induced cardiomyopathy. METHODS This protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol statement. We will search the following databases: PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, Wanfang Database, Weipu Journal Database, and Chinese Biomedical Literature Database. The search time will be set from database establishment to February 2022. After literature screening, 2 reviewers will extract data from the respects of general information, methodology, and results. Risk of bias is assessed using the Cochrane Risk of Bias Tool for randomized controlled trials. We will apply RevMan 5.4 software for statistical analysis. RESULTS The results will be submitted to a peer-reviewed journal once completed. CONCLUSION Septic patients with myocardial dysfunction may partly benefit from levosimendan than dobutamine, mainly embodied in cardiac function improvement.
Collapse
Affiliation(s)
- Jun Guo
Department of Emergency, Taizhou Hospital of Zhejiang Province, Zhejiang Province, China.
| | - Xianhuan Zhang
Department of Emergency, Taizhou Hospital of Zhejiang Province, Zhejiang Province, China.
| | - Yanan Zhu
Department of Emergency, Taizhou Hospital of Zhejiang Province, Zhejiang Province, China.
| | - Qiong Cheng
Department of Emergency, Taizhou Hospital of Zhejiang Province, Zhejiang Province, China.
| |
Collapse
|
34
|
Gao Y, Wang HL, Zhang ZJ, Pan CK, Wang Y, Zhu YC, Xie FJ, Han QY, Zheng JB, Dai QQ, Ji YY, Du X, Chen PF, Yue CS, Wu JH, Kang K, Yu KJ. A Standardized Step-by-Step Approach for the Diagnosis and Treatment of Sepsis. J Intensive Care Med 2022; 37:1281-1287. [PMID: 35285730 DOI: 10.1177/08850666221085181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sepsis is the major culprit of death among critically ill patients who are hospitalized in intensive care units (ICUs). Although sepsis-related mortality is steadily declining year-by-year due to the continuous understanding of the pathophysiological mechanism on sepsis and improvement of the bundle treatment, sepsis-associated hospitalization is rising worldwide. Surviving Sepsis Campaign (SSC) guidelines are continuously updating, while their content is extremely complex and comprehensive for a precisely implementation in clinical practice. As a consequence, a standardized step-by-step approach for the diagnosis and treatment of sepsis is particularly important. In the present study, we proposed a standardized step-by-step approach for the diagnosis and treatment of sepsis using our daily clinical experience and the latest researches, which is close to clinical practice and is easy to implement. The proposed approach may assist clinicians to more effectively diagnose and treat septic patients and avoid the emergence of adverse clinical outcomes.
Collapse
Affiliation(s)
- Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Liang Wang
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhao Jin Zhang
- Department of Critical Care Medicine, The Yichun Forestry Administration Central Hospital, Yichun, China
| | - Chang Kun Pan
- Department of Critical Care Medicine, The Jiamusi Cancer Hospital, Jiamusi, China
| | - Ying Wang
- Department of Critical Care Medicine, The First People Hospital of Mudanjiang city, Mudanjiang, China
| | - Yu Cheng Zhu
- Department of Critical Care Medicine, The Hongxinglong Hospital of Beidahuang Group, Shuangyashan, China
| | - Feng Jie Xie
- Department of Critical Care Medicine, The Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, China
| | - Qiu Yuan Han
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Bo Zheng
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qing Qing Dai
- Department of Critical Care Medicine, 105821The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuan Yuan Ji
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Du
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Fei Chen
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuang Shi Yue
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ji Han Wu
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Kang
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kai Jiang Yu
- Department of Critical Care Medicine, 74559The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
35
|
Boissier F, Aissaoui N. Septic cardiomyopathy: Diagnosis and management. JOURNAL OF INTENSIVE MEDICINE 2021; 2:8-16. [PMID: 36789232 PMCID: PMC9923980 DOI: 10.1016/j.jointm.2021.11.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022]
Abstract
There is an extensive body of literature focused on sepsis-induced myocardial dysfunction, but results are conflicting and no objective definition of septic cardiomyopathy (SCM) has been established. SCM may be defined as a sepsis-associated acute syndrome of non-ischemic cardiac dysfunction with systolic and/or diastolic left ventricular (LV) dysfunction and/or right ventricular dysfunction. Physicians should consider this diagnosis in patients with sepsis-associated organ dysfunction, and particularly in cases of septic shock that require vasopressors. Echocardiography is currently the gold standard for diagnosis of SCM. Left ventricular ejection fraction is the most common parameter used to describe LV function in the literature, but its dependence on loading conditions, particularly afterload, limits its use as a measure of intrinsic myocardial contractility. Therefore, repeated echocardiography evaluation is mandatory. Evaluation of global longitudinal strain (GLS) may be more sensitive and specific for SCM than LV ejection fraction (LVEF). Standard management includes etiological treatment, adapted fluid resuscitation, use of vasopressors, and monitoring. Use of inotropes remains uncertain, and heart rate control could be an option in some patients.
Collapse
Affiliation(s)
- Florence Boissier
- Service de Médecine Intensive Réanimation, CHU de Poitiers, Poitiers 86021, France,Université de Poitiers, Poitiers INSERM CIC 1402 (ALIVE group), France
| | - Nadia Aissaoui
- Service de Médecine Intensive Réanimation, Hôpital Cochin, APHP, Paris 75014, France,Université de Paris, Paris Cardiovascular Research Center, INSERM U970, Paris 75015, France,Corresponding author: Nadia Aissaoui, Service de Médecine Intensive–Réanimation, Hôpital Cochin Assistance Publique–Hôpitaux de Paris, 27 Rue du Faubourg Saint-Jacques, 75014 Paris, France.
| |
Collapse
|
36
|
Kattan E, Hernández G. The role of peripheral perfusion markers and lactate in septic shock resuscitation. JOURNAL OF INTENSIVE MEDICINE 2021; 2:17-21. [PMID: 36789233 PMCID: PMC9924002 DOI: 10.1016/j.jointm.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Septic shock leads to progressive hypoperfusion and tissue hypoxia. Unfortunately, numerous uncertainties exist around the best monitoring strategy, as available techniques are mere surrogates for these phenomena. Nevertheless, central venous oxygen saturation (ScvO2), venous-to-arterial CO2 gap, and lactate normalization have been fostered as resuscitation targets for septic shock. Moreover, recent evidence has challenged the central role of lactate. Following the ANDROMEDA-SHOCK trial, capillary refill time (CRT) has become a promissory target, considering the observed benefits in mortality, treatment intensity, and organ dysfunction. Interpretation of CRT within a multimodal approach may aid clinicians in guiding resuscitative interventions and stop resuscitation earlier, thus avoiding the risk of morbid fluid overload. Integrative assessment of a patient's perfusion status can be easily performed using bedside clinical tools. Based on its fast kinetics and recent supporting evidence, targeting CRT (within a holistic assessment of perfusion) may improve outcomes in septic shock resuscitation.
Collapse
|
37
|
Liu DH, Ning YL, Lei YY, Chen J, Liu YY, Lin XF, Yang ZQ, Xian SX, Chen WT. Levosimendan versus dobutamine for sepsis-induced cardiac dysfunction: a systematic review and meta-analysis. Sci Rep 2021; 11:20333. [PMID: 34645892 PMCID: PMC8514594 DOI: 10.1038/s41598-021-99716-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Levosimendan and dobutamine are extensively used to treat sepsis-associated cardiovascular failure in ICU. Nevertheless, the role and mechanism of levosimendan in patients with sepsis-induced cardiomyopathy remains unclear. Moreover, previous studies on whether levosimendan is superior to dobutamine are still controversial. More importantly, these studies did not take changes (before-after comparison to the baseline) in quantitative parameters such as ejection fraction into account with the baseline level. Here, we aimed to determine the pros and cons of the two medicines by assessing the changes in cardiac function and blood lactate, mortality, with the standardized mean difference used as a summary statistic. Relevant studies were obtained by a thorough and disciplined literature search in several notable academic databases, including Google Scholar, PubMed, Cochrane Library and Embase until November 2020. Outcomes included changes in cardiac function, lactic acid, mortality and length of hospital stay. A total of 6 randomized controlled trials were included in this study, including 192 patients. Compared with dobutamine, patients treated with levosimendan had a greater improvement of cardiac index (ΔCI) (random effects, SMD = 0.90 [0.20,1.60]; I2 = 76%, P < 0.01) and left ventricular stroke work index (ΔLVSWI) (random effects, SMD = 1.56 [0.90,2.21]; I2 = 65%, P = 0.04), a significant decrease of blood lactate (Δblood lactate) (random effects, MD = - 0.79 [- 1.33, - 0.25]; I2 = 68%, P < 0.01) at 24-h after drug intervention, respectively. There was no significant difference between levosimendan and dobutamine on all-cause mortality in ICU (fixed effect, OR = 0.72 [0.39,1.33]; I2 = 0%, P = 0.99). We combine effect sizes related to different measurement parameters to evaluate cardiac function, which implied that septic patients with myocardial dysfunction might have a better improvement of cardiac function by levosimendan than dobutamine (random effects, SMD = 1.05 [0.69,1.41]; I2 = 67%, P < 0.01). This study suggested a significant improvement of CI, LVSWI, and decrease of blood lactate in septic patients with myocardial dysfunction in ICU after 24-h administration of levosimendan than dobutamine. However, the administration of levosimendan has neither an impact on mortality nor LVEF. Septic patients with myocardial dysfunction may partly benefit from levosimendan than dobutamine, mainly embodied in cardiac function improvement.
Collapse
Affiliation(s)
- Dong-Hua Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yi-Le Ning
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
- Ling-Nan Medical Research Center, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Yan-Yan Lei
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Jing Chen
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yan-Yan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Xin-Feng Lin
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China
| | - Zhong-Qi Yang
- Ling-Nan Medical Research Center, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
| | - Shao-Xiang Xian
- Ling-Nan Medical Research Center, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
| | - Wei-Tao Chen
- Department of Critical Care Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, No. 16, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
- The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Ling-Nan Medical Research Center, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, Guangdong Province, China.
| |
Collapse
|
38
|
Cheng Z, Lv D, Luo M, Wang R, Guo Y, Yang X, Huang L, Li X, Li C, Shang FF, Huang B, Shen J, Luo S, Yan J. Tubeimoside I protects against sepsis-induced cardiac dysfunction via SIRT3. Eur J Pharmacol 2021; 905:174186. [PMID: 34033817 DOI: 10.1016/j.ejphar.2021.174186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
Sepsis-induced cardiac dysfunction (SICD) is one of the key complications in sepsis and it is associated with adverse outcomes and increased mortality. There is no effective drug to treat SICD. Previously, we reported that tubeimoside I (TBM) improved survival of septic mice. The aim of this study is to figure out whether TBM ameliorates SICD. Also, SIRT3 was reported to protects against SICD. Our second aim is to confirm whether SIRT3 plays essential roles in TBM's protective effects against SICD. Our results demonstrated that TBM could alleviate SICD and SICD's key pathological factor, inflammation, oxidative stress, and apoptosis were all reduced by TBM. Notably, SICD induced a significant decrease in cardiac SIRT3 expression, while TBM treatment could reverse SIRT3 expression. To clarify whether TBM provides protection via SIRT3, we injected a specific SIRT3 inhibitor 3-(1H-1,2,3-triazol-4-yl) pyridine (3-TYP) into mice before TBM treatment. Then the cardioprotective effects of TBM were largely abolished by 3-TYP. This suggests that SIRT3 plays an essential role in TBM's cardioprotective effects. In vitro, TBM also protected H9c2 cells against LPS-induced injury, and siSIRT3 diminished these protective effects. Taken together, our results demonstrate that TBM protects against SICD via SIRT3. TBM might be a potential drug candidate for SICD treatment.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Dingyi Lv
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Ruiyu Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Yongzheng Guo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xiyang Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Longxiang Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Xingbing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Chang Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Fei-Fei Shang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Bi Huang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jian Shen
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Suxin Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China; Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
39
|
Xantus G, Allen P, Kanizsai P. Blind spot in sepsis management - Tissue level changes in microcirculation. Physiol Int 2021. [PMID: 33844643 DOI: 10.1556/2060.2021.00011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
In sepsis cytokine-mediated inflammation, clotting cascade activation and glycocalyx shedding impair both function and structure of the microcirculation, compromising adequate tissue oxygenation/perfusion. Such mismatch results in "dysoxia", an imbalance in mitochondrial respiration.Microvessel injuries can be grouped into four types: cytotoxic oedema, micro-vessel heterogeneity, sluggish/absent flow, and focal anaemia. Recognition of such diversity in microcirculatory pathology, alongside with the implementation of novel biomarkers might reveal previously unobserved heterogeneity in adults diagnosed with sepsis. Early identification of distinct subtypes may help not only to better stratify disease severity but may also provide explanation to the often seen insufficient/absent response to resuscitative treatment. Experimental evidence suggests that impaired microcirculatory flow may correlate with organ dysfunction and mortality. Therefore, reliable/reproducible diagnostic tools, that provide real-time information about the dynamic state of the microcirculation, might be practice changers in managing the critically ill.The sublingual mucosa and the nailfolds provide easy access to microcirculation via hand-held, point-of-care devices. Accessing these windows, clinicians may recognise, understand and potentially correct the underlying tissue oxygenation/perfusion mismatch. This new clinical information might facilitate an individualised approach vs protocolised care aiming to administer the right balance of intravenous fluids/vasopressors, time/dose auxiliary treatment modalities and, most importantly, might also guide determining the optimal duration of resuscitation to avoid/minimise harm and maximise benefits in sepsis management. However, before every-day clinical use of such point-of-care microcameras, validation studies are needed to establish not only feasibility but reliability and reproducibility as well.
Collapse
Affiliation(s)
- G Xantus
- 1School of Medicine, Cardiff University, Cardiff CF10 3AT, UK
| | - P Allen
- 2Rural Clinical School, College of Health and Medicine, Burnie, Tasmania, 7320, Australia
| | - P Kanizsai
- 3Department of Emergency Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The aim of this study was to discuss the implication of microvascular dysfunction in septic shock. RECENT FINDINGS Resuscitation of sepsis has focused on systemic haemodynamics and, more recently, on peripheral perfusion indices. However, central microvascular perfusion is altered in sepsis and these alterations often persist despite normalization of various macro haemodynamic resuscitative goals. Endothelial dysfunction is a key element in sepsis pathophysiology. It is responsible for the sepsis-induced hypotension. In addition, endothelial dysfunction is also implicated involved in the activation of inflammation and coagulation processes leading to amplification of the septic response and development of organ dysfunction. It also promotes an increase in permeability, mostly at venular side, and impairs microvascular perfusion and hence tissue oxygenation.Microvascular alterations are characterized by heterogeneity in blood flow distribution, with adequately perfused areas in close vicinity to not perfused areas, thus characterizing the distributive nature of septic shock. Such microvascular alterations have profound implications, as these are associated with organ dysfunction and unfavourable outcomes. Also, the response to therapy is highly variable and cannot be predicted by systemic hemodynamic assessment and hence cannot be detected by classical haemodynamic tools. SUMMARY Microcirculation is a key element in the pathophysiology of sepsis. Even if microcirculation-targeted therapy is not yet ready for the prime time, understanding the processes implicated in microvascular dysfunction is important to prevent chasing systemic hemodynamic variables when this does not contribute to improve tissue perfusion.
Collapse
|
41
|
Dubin A, Kanoore Edul VS, Caminos Eguillor JF, Ferrara G. Monitoring Microcirculation: Utility and Barriers - A Point-of-View Review. Vasc Health Risk Manag 2020; 16:577-589. [PMID: 33408477 PMCID: PMC7780856 DOI: 10.2147/vhrm.s242635] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Microcirculation is a particular organ of the cardiovascular system. The goal of this narrative review is a critical reappraisal of the present knowledge of microcirculation monitoring, mainly focused on the videomicroscopic evaluation of sublingual microcirculation in critically ill patients. We discuss the technological developments in handheld videomicroscopy, which have resulted in adequate tools for the bedside monitoring of microcirculation. By means of these techniques, a large body of evidence has been acquired about the role of microcirculation in the pathophysiological mechanisms of shock, especially septic shock. We review the characteristics of sublingual microcirculation in septic shock, which mainly consist in a decrease in the perfused vascular density secondary to a reduction in the proportion of perfused vessels along with a high heterogeneity in perfusion. Even in patients with high cardiac output, red blood cell velocity is decreased. Thus, hyperdynamic flow is absent in the septic microcirculation. We also discuss the dissociation between microcirculation and systemic hemodynamics, particularly after shock resuscitation, and the different behavior among microvascular beds. In addition, we briefly comment the effects of some treatments on microcirculation. Despite the fact that sublingual microcirculation arises as a valuable goal for the resuscitation in critically ill patients, significant barriers remain present for its clinical application. Most of them are related to difficulties in video acquisition and analysis. We comprehensively analyzed these shortcomings. Unfortunately, a simpler approach, such as the central venous minus arterial PCO2 difference, is a misleading surrogate for sublingual microcirculation. As conclusion, the monitoring of sublingual microcirculation is an appealing method for monitoring critically ill patients. Nevertheless, the lack of controlled studies showing benefits in terms of outcome, as well as technical limitations for its clinical implementation, render this technique mainly as a research tool.
Collapse
Affiliation(s)
- Arnaldo Dubin
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | - Gonzalo Ferrara
- Cátedra de Farmacología Aplicada, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
42
|
Castro R, Kattan E, Ferri G, Pairumani R, Valenzuela ED, Alegría L, Oviedo V, Pavez N, Soto D, Vera M, Santis C, Astudillo B, Cid MA, Bravo S, Ospina-Tascón G, Bakker J, Hernández G. Effects of capillary refill time-vs. lactate-targeted fluid resuscitation on regional, microcirculatory and hypoxia-related perfusion parameters in septic shock: a randomized controlled trial. Ann Intensive Care 2020; 10:150. [PMID: 33140173 PMCID: PMC7606372 DOI: 10.1186/s13613-020-00767-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 10/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Persistent hyperlactatemia has been considered as a signal of tissue hypoperfusion in septic shock patients, but multiple non-hypoperfusion-related pathogenic mechanisms could be involved. Therefore, pursuing lactate normalization may lead to the risk of fluid overload. Peripheral perfusion, assessed by the capillary refill time (CRT), could be an effective alternative resuscitation target as recently demonstrated by the ANDROMEDA-SHOCK trial. We designed the present randomized controlled trial to address the impact of a CRT-targeted (CRT-T) vs. a lactate-targeted (LAC-T) fluid resuscitation strategy on fluid balances within 24 h of septic shock diagnosis. In addition, we compared the effects of both strategies on organ dysfunction, regional and microcirculatory flow, and tissue hypoxia surrogates. Results Forty-two fluid-responsive septic shock patients were randomized into CRT-T or LAC-T groups. Fluids were administered until target achievement during the 6 h intervention period, or until safety criteria were met. CRT-T was aimed at CRT normalization (≤ 3 s), whereas in LAC-T the goal was lactate normalization (≤ 2 mmol/L) or a 20% decrease every 2 h. Multimodal perfusion monitoring included sublingual microcirculatory assessment; plasma-disappearance rate of indocyanine green; muscle oxygen saturation; central venous-arterial pCO2 gradient/ arterial-venous O2 content difference ratio; and lactate/pyruvate ratio. There was no difference between CRT-T vs. LAC-T in 6 h-fluid boluses (875 [375–2625] vs. 1500 [1000–2000], p = 0.3), or balances (982[249–2833] vs. 15,800 [740–6587, p = 0.2]). CRT-T was associated with a higher achievement of the predefined perfusion target (62 vs. 24, p = 0.03). No significant differences in perfusion-related variables or hypoxia surrogates were observed. Conclusions CRT-targeted fluid resuscitation was not superior to a lactate-targeted one on fluid administration or balances. However, it was associated with comparable effects on regional and microcirculatory flow parameters and hypoxia surrogates, and a faster achievement of the predefined resuscitation target. Our data suggest that stopping fluids in patients with CRT ≤ 3 s appears as safe in terms of tissue perfusion. Clinical Trials: ClinicalTrials.gov Identifier: NCT03762005 (Retrospectively registered on December 3rd 2018)
Collapse
Affiliation(s)
- Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Giorgio Ferri
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - Ronald Pairumani
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - Emilio Daniel Valenzuela
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Leyla Alegría
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Vanessa Oviedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Nicolás Pavez
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Dagoberto Soto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - César Santis
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - Brusela Astudillo
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - María Alicia Cid
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - Sebastian Bravo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile
| | - Gustavo Ospina-Tascón
- Department of Intensive Care Medicine, Fundación Valle del Lili, Universidad ICES, Cali, Colombia
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, USA.,Department Intensive Care Adults, Erasmus MC University Medical Center, Rotterdam, CA, The Netherlands.,Division of Pulmonary, and Critical Care Medicine, New York University-Langone, New York, USA
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago, Chile.
| |
Collapse
|
43
|
de Miranda AC, de Menezes IAC, Junior HC, Luy AM, do Nascimento MM. Monitoring peripheral perfusion in sepsis associated acute kidney injury: Analysis of mortality. PLoS One 2020; 15:e0239770. [PMID: 33052974 PMCID: PMC7556522 DOI: 10.1371/journal.pone.0239770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 12/29/2022] Open
Abstract
Microcirculatory disorders have been consistently linked to the pathophysiology of sepsis. One of the major organs affected is the kidneys, resulting in sepsis-associated acute kidney injury (SA-AKI) that correlates considerably with mortality. However, the potential role of clinical assessment of peripheral perfusion as a possible tool for SA-AKI management has not been established. To address this gap, the purpose of this study was to investigate the prevalence of peripheral hypoperfusion in SA-AKI, its association with mortality, and fluid balance. This observational cohort study enrolled consecutive septic patients in the Intensive Care Unit. After fluid resuscitation, peripheral perfusion was evaluated using the capillary filling time (CRT) and peripheral perfusion index (PI) techniques. The AKI was defined based on both serum creatinine and urine output criteria. One hundred and forty-one patients were included, 28 (19%) in the non-SA-AKI group, and 113 (81%) in the SA-AKI group. The study revealed higher peripheral hypoperfusion rates in the SA-AKI group using the CRT (OR 3.6; 95% CI 1.35-9.55; p < 0.05). However, this result lost significance after multivariate adjustment. Perfusion abnormalities in the SA-AKI group diagnosed by both CRT (RR 1.96; 95% CI 1.25-3.08) and PI (RR 1.98; 95% CI 1.37-2.86) methods were associated to higher rates of 28-day mortality (p < 0.01). The PI's temporal analysis showed a high predictive value for death over the first 72 h (p < 0.01). A weak correlation between PI values and the fluid balance was found over the first 24 h (r = - 0.20; p < 0.05). In conclusion, peripheral perfusion was not different intrinsically between patients with or without SA-AKI. The presence of peripheral hypoperfusion in the SA-AKI group has appeared to be a prognostic marker for mortality. This evaluation maintained its predictive value over the first 72 hours. The fluid balance possibly negatively influences peripheral perfusion in the SA-AKI.
Collapse
Affiliation(s)
- Ana Carolina de Miranda
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Hipolito Carraro Junior
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Alain Márcio Luy
- Intensive Care Unit, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marcelo Mazza do Nascimento
- Department of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
44
|
Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. Mitochondria-What to Target? Front Med (Lausanne) 2020; 7:416. [PMID: 32903633 PMCID: PMC7438707 DOI: 10.3389/fmed.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
45
|
Manipulating the Microcirculation in Sepsis - the Impact of Vasoactive Medications on Microcirculatory Blood Flow: A Systematic Review. Shock 2020; 52:5-12. [PMID: 30102639 DOI: 10.1097/shk.0000000000001239] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Sepsis is life-threatening organ dysfunction because of a dysregulated host response to infection. Disturbed microvascular blood flow is associated with excess mortality and is a potential future target for interventions. This review addresses the evidence for pharmacological manipulation of the microcirculation in sepsis assessed by techniques that evaluate the sublingual microvasculature. METHODS Systematic review using a published protocol. Eligibility criteria were studies of septic patients published from January 2000 to February 2018. Interventions were drugs aimed at improving perfusion. Outcome was improvement in microvascular flow using orthogonal polarization spectral, sidestream dark field, or incident dark field imaging (Grades of Recommendation, Assessment, Development, and Evaluation criteria used). RESULTS Two thousand six hundred and six articles were screened and 22 included. (6 randomized controlled trials, 12 interventional, 3 observational, and 1 pilot, n = 572 participants). Multiple measurement techniques were described, including: automated analyses, subjective, and composite scoring systems. Norepinephrine was not found to improve microvascular flow (low-grade evidence, n = 6 studies); except in chronic hypertension (low, n = 1 study). Addition of arginine vasopressin or terlipressin to norepinephrine maintained flow while decreasing norepinephrine requirements (high, n = 2 studies). Neither dobutamine nor glyceryl trinitrate consistently improved flow (low, n = 6 studies). A single study (n = 40 participants) demonstrated improved flow with levosimendan (high). In a risk of bias assessment 16/16 interventional, pilot and observational studies were found to be high risk. CONCLUSIONS There is no robust evidence to date that any one agent can reproducibly lead to improved microvascular flow. Furthermore, no study demonstrated outcome benefit of one therapeutic agent over another. Updated consensus guidelines could improve comparable reporting of measurements and reduce bias, to enable meaningful comparisons around the effects of individual pharmacological agents.
Collapse
|
46
|
Haas A, Schürholz T, Reuter DA. [Perioperative pharmacological circulatory support in daily clinical routine]. Anaesthesist 2020; 69:781-792. [PMID: 32572502 DOI: 10.1007/s00101-020-00803-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Perioperative phases of hypotension are associated with an increase in postoperative complications and organ damage. Whereas some years ago hemodynamic stabilization was primarily carried out by volume supplementation, in recent years the use and dosing of cardiovascular-active substances has significantly increased. But like intravascular volume therapy, also substances with a cardiovascular effect have therapeutic margins, and thus, potential side effects. This review article discusses indications for each cardiovascular-active agent, weighing up advantages and disadvantages. Special attention is paid to the question how to administrate them: central venous catheter vs. peripheral indwelling venous cannula. The authors come to the conclusion that it is not a question of whether it is principally allowed to apply cardiovascular-active drugs via peripheral veins but more importantly, what should be taken into consideration if a peripheral venous access is used. This article provides concise recommendations.
Collapse
Affiliation(s)
- A Haas
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsmedizin Rostock, Schillingallee 35, 18057, Rostock, Deutschland
| | - T Schürholz
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsmedizin Rostock, Schillingallee 35, 18057, Rostock, Deutschland
| | - D A Reuter
- Klinik und Poliklinik für Anästhesiologie und Intensivtherapie, Universitätsmedizin Rostock, Schillingallee 35, 18057, Rostock, Deutschland.
| |
Collapse
|
47
|
Jones TW, Smith SE, Van Tuyl JS, Newsome AS. Sepsis With Preexisting Heart Failure: Management of Confounding Clinical Features. J Intensive Care Med 2020; 36:989-1012. [PMID: 32495686 DOI: 10.1177/0885066620928299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Preexisting heart failure (HF) in patients with sepsis is associated with worse clinical outcomes. Core sepsis management includes aggressive volume resuscitation followed by vasopressors (and potentially inotropes) if fluid is inadequate to restore perfusion; however, large fluid boluses and vasoactive agents are concerning amid the cardiac dysfunction of HF. This review summarizes evidence regarding the influence of HF on sepsis clinical outcomes, pathophysiologic concerns, resuscitation targets, hemodynamic interventions, and adjunct management (ie, antiarrhythmics, positive pressure ventilatory support, and renal replacement therapy) in patients with sepsis and preexisting HF. Patients with sepsis and preexisting HF receive less fluid during resuscitation; however, evidence suggests traditional fluid resuscitation targets do not increase the risk of adverse events in HF patients with sepsis and likely improve outcomes. Norepinephrine remains the most well-supported vasopressor for patients with sepsis with preexisting HF, while dopamine may induce more cardiac adverse events. Dobutamine should be used cautiously given its generally detrimental effects but may have an application when combined with norepinephrine in patients with low cardiac output. Management of chronic HF medications warrants careful consideration for continuation or discontinuation upon development of sepsis, and β-blockers may be appropriate to continue in the absence of acute hemodynamic decompensation. Optimal management of atrial fibrillation may include β-blockers after acute hemodynamic stabilization as they have also shown independent benefits in sepsis. Positive pressure ventilatory support and renal replacement must be carefully monitored for effects on cardiac function when HF is present.
Collapse
Affiliation(s)
- Timothy W Jones
- Department of Clinical and Administrative Pharmacy, 15506University of Georgia College of Pharmacy, Augusta, GA, USA
| | - Susan E Smith
- Department of Clinical and Administrative Pharmacy, 15506University of Georgia College of Pharmacy, Athens, GA, USA
| | - Joseph S Van Tuyl
- Department of Pharmacy Practice, 14408St Louis College of Pharmacy, St Louis, MO, USA
| | - Andrea Sikora Newsome
- Department of Clinical and Administrative Pharmacy, 15506University of Georgia College of Pharmacy, Augusta, GA, USA.,Department of Pharmacy, Augusta University Medical Center, Augusta, GA, USA
| |
Collapse
|
48
|
Pavez N, Kattan E, Vera M, Ferri G, Valenzuela ED, Alegría L, Bravo S, Pairumani R, Santis C, Oviedo V, Soto D, Ospina-Tascón G, Bakker J, Hernández G, Castro R. Hypoxia-related parameters during septic shock resuscitation: Pathophysiological determinants and potential clinical implications. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:784. [PMID: 32647709 PMCID: PMC7333100 DOI: 10.21037/atm-20-2048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Assessment of tissue hypoxia at the bedside has yet to be translated into daily clinical practice in septic shock patients. Perfusion markers are surrogates of deeper physiological phenomena. Lactate-to-pyruvate ratio (LPR) and the ratio between veno-arterial PCO2 difference and Ca–vO2 (ΔPCO2/Ca–vO2) have been proposed as markers of tissue hypoxia, but they have not been compared in the clinical scenario. We studied acute septic shock patients under resuscitation. We wanted to evaluate the relationship of these hypoxia markers with clinical and biochemical markers of hypoperfusion during septic shock resuscitation. Methods Secondary analysis of a randomized controlled trial. Septic shock patients were randomized to fluid resuscitation directed to normalization of capillary refill time (CRT) versus normalization or significant lowering of lactate. Multimodal assessment of perfusion was performed at 0, 2, 6 and 24 hours, and included macrohemodynamic and metabolic perfusion variables, CRT, regional flow and hypoxia markers. Patients who attained their pre-specified endpoint at 2-hours were compared to those who did not. Results Forty-two patients were recruited, median APACHE-II score was 23 [15–31] and 28-day mortality 23%. LPR and ΔPCO2/Ca–vO2 ratio did not correlate during early resuscitation (0–2 h) and the whole study period (24-hours). ΔPCO2/Ca–vO2 ratio derangements were more prevalent than LPR ones, either in the whole cohort (52% vs. 23%), and in association with other perfusion abnormalities. In patients who reached their resuscitation endpoints, the proportion of patients with altered ΔPCO2/Ca-vO2 ratio decreased significantly (66% to 33%, P=0.045), while LPR did not (14% vs. 25%, P=0.34). Conclusions Hypoxia markers did not exhibit correlation during resuscitation in septic shock patients. They probably interrogate different pathophysiological processes and mechanisms of dysoxia during early septic shock. Future studies should better elucidate the interaction and clinical role of hypoxia markers during septic shock resuscitation.
Collapse
Affiliation(s)
- Nicolás Pavez
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Giorgio Ferri
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - Emilio Daniel Valenzuela
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leyla Alegría
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastian Bravo
- Departamento de Medicina Interna, Facultad de Medicina, Universidad de Concepción, Concepción, Chile
| | - Ronald Pairumani
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - César Santis
- Unidad de Cuidados Intensivos, Hospital Barros Luco-Trudeau, Santiago, Chile
| | - Vanessa Oviedo
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dagoberto Soto
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gustavo Ospina-Tascón
- Department of Intensive Care Medicine, Fundación Valle del Lili, Universidad ICES, Cali, Colombia
| | - Jan Bakker
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.,Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University Medical Center, New York, NY, USA.,Erasmus MC University Medical Center, Department Intensive Care Adults, Rotterdam, CA, The Netherlands.,Division of Pulmonary, and Critical Care Medicine, New York University-Langone, New York, NY, USA
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
49
|
Dilken O, Ergin B, Ince C. Assessment of sublingual microcirculation in critically ill patients: consensus and debate. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:793. [PMID: 32647718 PMCID: PMC7333125 DOI: 10.21037/atm.2020.03.222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main concern in shock and resuscitation is whether the microcirculation can carry adequate oxygen to the tissues and remove waste. Identification of an intact coherence between macro- and microcirculation during states of shock and resuscitation shows a functioning regulatory mechanism. However, loss of hemodynamic coherence between the macro and microcirculation can be encountered frequently in sepsis, cardiogenic shock, or any hemodynamically compromised patient. This loss of hemodynamic coherence results in an improvement in macrohemodynamic parameters following resuscitation without a parallel improvement in microcirculation resulting in tissue hypoxia and tissue compromise. Hand-held vital microscopes (HVMs) can visualize the microcirculation and help to diagnose the nature of microcirculatory shock. Although treatment with the sole aim of recruiting the microcirculation is as yet not realized, interventions can be tailored to the needs of the patient while monitoring sublingual microcirculation. With the help of the newly introduced software, called MicroTools, we believe sublingual microcirculation monitoring and diagnosis will be an essential point-of-care tool in managing shock patients.
Collapse
Affiliation(s)
- Olcay Dilken
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.,Department of Intensive Care, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bulent Ergin
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Can Ince
- Department of Intensive Care Med, Laboratory of Translational Intensive Care Med, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Kattan E, Castro R, Vera M, Hernández G. Optimal target in septic shock resuscitation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:789. [PMID: 32647714 PMCID: PMC7333135 DOI: 10.21037/atm-20-1120] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Septic shock presents a high risk of morbidity and mortality. Through therapeutic strategies, such as fluid administration and vasoactive agents, clinicians intend to rapidly restore tissue perfusion. Nonetheless, these interventions have narrow therapeutic margins. Adequate perfusion monitoring is paramount to avoid progressive hypoperfusion or detrimental over-resuscitation. During early stages of septic shock, macrohemodynamic derangements, such as hypovolemia and decreased cardiac output (CO) tend to predominate. However, during late septic shock, endothelial and coagulation dysfunction induce severe alterations of the microcirculation, making it more difficult to achieve tissue reperfusion. Multiple perfusion variables have been described in the literature, from bedside clinical examination to complex laboratory tests. Moreover, all of them present inherent flaws and limitations. After the ANDROMEDA-SHOCK trial, there is evidence that capillary refill time (CRT) is an interesting resuscitation target, due to its rapid kinetics and correlation with deep hypoperfusion markers. New concepts such as hemodynamic coherence and flow responsiveness may be used at the bedside to select the best treatment strategies at any time-point. A multimodal perfusion monitoring and an integrated analysis with macrohemodynamic parameters is mandatory to optimize the resuscitation of septic shock patients.
Collapse
Affiliation(s)
- Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ricardo Castro
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Vera
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Glenn Hernández
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|