1
|
Catalisano G, Ippolito M, Blanda A, Meessen J, Giarratano A, Todesco N, Bonato V, Restuccia F, Montomoli J, Fiore G, Grasselli G, Caironi P, Latini R, Cortegiani A. Effects of hyperoxemia in patients with sepsis - A post-hoc analysis of a multicentre randomized clinical trial. Pulmonology 2025; 31:2416784. [PMID: 36907813 DOI: 10.1016/j.pulmoe.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Administration of supplemental oxygen is a life-saving treatment in critically ill patients. Still, optimal dosing remains unclear during sepsis. The aim of this post-hoc analysis was to assess the association between hyperoxemia and 90-day mortality in a large cohort of septic patients. METHODS This is a post-hoc analysis of the Albumin Italian Outcome Sepsis (ALBIOS) randomized controlled trial (RCT). Patients with sepsis who survived the first 48 h since randomization were included and stratified into two groups according to their average PaO2 levels during the first 48 h (PaO2 0-48 h). The cut-off value was established at 100 mmHg (average PaO2 0-48 h >100 mmHg: hyperoxemia group; PaO2 0-48h≤100: normoxemia group). The primary outcome was 90-day mortality. RESULTS 1632 patients were included in this analysis (661 patients in the hyperoxemia group, 971 patients in the normoxemia group). Concerning the primary outcome, 344 (35.4%) patients in the hyperoxemia group vs. 236 (35.7%) in the normoxemia group had died within 90 days from randomization (p = 0.909). No association was found after adjusting for confounders (HR 0.87; CI [95%] 0.736-1.028, p = 0.102) or after excluding patients with hypoxemia at enrollment, patients with lung infection or including post-surgical patients only. Conversely, we found an association between lower risk of 90-day mortality and hyperoxemia in the subgroup including patients who had the lung as primary site of infection (HR 0.72; CI [95%] 0.565-0.918). Mortality at 28 days, ICU mortality, incidence of acute kidney injury, use of renal replacement therapy, days to suspension of vasopressor or inotropic agents, and resolution of primary and secondary infections did not differ significantly. Duration of mechanical ventilation and length of stay in ICU were significantly longer in patients with hyperoxemia. CONCLUSIONS In a post-hoc analysis of a RCT enrolling septic patients, hyperoxemia as average PaO2>100 mmHg during the first 48 h was not associated with patients' survival.
Collapse
Affiliation(s)
- G Catalisano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Italy
| | - M Ippolito
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Italy
| | - A Blanda
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Italy
| | - J Meessen
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Italy
| | - A Giarratano
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Italy
| | - N Todesco
- Servizio di Anestesia, Rianimazione e Terapie Intensive, Azienda Sanitaria Friuli Occidentale, P.O. Santa Maria degli Angeli, Pordenone, Italy
| | - V Bonato
- S.C. Anestesia e Rianimazione, Ospedale SS. Arrigo e Biagio, Alessandria, Italy
| | - F Restuccia
- Department of Anesthesiology and Critical Care Medicine, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - J Montomoli
- Department of Anesthesia and Intensive Care, Infermi Hospital, AUSL Romagna, Rimini, Italy
| | - G Fiore
- S.C. Anestesia e Rianimazione Moncalieri-Carmagnola (TO), Dipartimento Area Chirurgica, ASLTO5, Italy
| | - G Grasselli
- Department of Anesthesia, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Italy
| | - P Caironi
- Department of Anaesthesia and Critical Care, AOU S. Luigi Gonzaga, Department of Oncology, University of Turin, Italy
| | - R Latini
- Department of Cardiovascular Medicine, Istituto di Ricerche Farmacologiche Mario Negri - IRCCS, Italy
| | - A Cortegiani
- Department of Surgical, Oncological and Oral Science (Di.Chir.On.S.), University of Palermo, Italy
- Department of Anaesthesia, Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Italy
| |
Collapse
|
2
|
Romero-Garcia N, Robba C, Monleón B, Ruiz-Zarco A, Pascual-González M, Ruiz-Pacheco A, Perdomo F, García-Pérez ML, Mugarra A, García L, Carbonell J, Premraj L, Taccone FS, Badenes R. Neurological outcomes and mortality following hyperoxemia in adult patients with acute brain injury: an updated meta-analysis and meta-regression. Crit Care 2025; 29:167. [PMID: 40270034 PMCID: PMC12020189 DOI: 10.1186/s13054-025-05387-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND The aim of this study was to evaluate the association of arterial hyperoxemia with neurological outcomes and mortality in adults with acute brain injury (ABI). METHODS Six electronic databases, including MEDLINE, Embase and online registers of clinical trials, were systematically searched from inception to June 1 st, 2024. Studies comparing the effects of hyperoxemia versus no hyperoxemia on outcomes of hospitalized adult patients with ABI-related conditions (e.g. traumatic brain injury, post-cardiac arrest, subarachnoid hemorrhage, intracerebral hemorrhage, and ischemic stroke) were included according to PRISMA guidelines. Data were pooled using a random-effects model for unadjusted and covariate-adjusted odds ratios. The primary outcome was poor neurological outcome as defined by each individual study, and the secondary outcome was all-cause mortality. Subgroup analyses were conducted based on principal diagnosis, timing of outcome measures, oxygenation thresholds, among other factors. Meta-regression was applied to identify sources of heterogeneity. RESULTS After 7,849 nonduplicated records were screened, 66 studies fulfilled eligibility criteria for systematic review. The meta-analysis including 24 studies (16,635 patients) revealed that patients with hyperoxemia are 1.29 times more likely to develop poor neurological outcomes (unadjusted OR, 1.295; 95% Confidence Interval, CI 1.040-1.616) compared with those with no hyperoxemia, particularly in subarachnoid hemorrhage and ischemic stroke subgroups. The meta-analysis including 35 studies (98,207 patients) revealed that all-cause mortality is 1.13 times more likely (OR 1.13; 95% CI 1.002-1.282) in patients with hyperoxemia compared with no hyperoxemia. CONCLUSIONS In our study we found that hyperoxemia is significantly associated with an increased risk of poor neurological outcomes and mortality in patients with acute brain injury compared to those with no hyperoxemia. Our results suggest the importance of carefully adjusting oxygenation strategies in neurocritical ICUs.
Collapse
Affiliation(s)
- Nekane Romero-Garcia
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain.
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain.
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain.
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Berta Monleón
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Ana Ruiz-Zarco
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Maria Pascual-González
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Alberto Ruiz-Pacheco
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Felipe Perdomo
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Maria Luisa García-Pérez
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Ana Mugarra
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Laura García
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
| | - Jose Carbonell
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Lavienraj Premraj
- Griffith University School of Medicine and Dentistry, Southport, QLD, Australia
| | - Fabio Silvio Taccone
- Service Des Soins Intensifs, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Rafael Badenes
- Department of Anesthesiology and Critical Care. Hospital, Clínico Universitario de Valencia. Avda, Blasco Ibáñez 17, 46010, Valencia, Spain
- INCLIVA Research Institute. Avda Menéndez y Pelayo, 4 Accesorio, 46010, Valencia, Spain
- Faculty of Medicine. Avda Department of Surgery, University of Valencia, Blasco Ibáñez 15, 46010, Valencia, Spain
| |
Collapse
|
3
|
Atakul G, Ceylan G, Sandal O, Soydan E, Hepduman P, Colak M, Zimmermann JM, Novotni D, Karaarslan U, Topal S, Aǧin H. Closed-loop oxygen usage during invasive mechanical ventilation of pediatric patients (CLOUDIMPP): a randomized controlled cross-over study. Front Med (Lausanne) 2024; 11:1426969. [PMID: 39318593 PMCID: PMC11420134 DOI: 10.3389/fmed.2024.1426969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Background The aim of this study is the evaluation of a closed-loop oxygen control system in pediatric patients undergoing invasive mechanical ventilation (IMV). Methods Cross-over, multicenter, randomized, single-blind clinical trial. Patients between the ages of 1 month and 18 years who were undergoing IMV therapy for acute hypoxemic respiratory failure (AHRF) were assigned at random to either begin with a 2-hour period of closed-loop oxygen control or manual oxygen titrations. By using closed-loop oxygen control, the patients' SpO2 levels were maintained within a predetermined target range by the automated adjustment of the FiO2. During the manual oxygen titration phase of the trial, healthcare professionals at the bedside made manual changes to the FiO2, while maintaining the same target range for SpO2. Following either period, the patient transitioned to the alternative therapy. The outcomes were the percentage of time spent in predefined SpO2 ranges ±2% (primary), FiO2, total oxygen use, and the number of manual adjustments. Findings The median age of included 33 patients was 17 (13-55.5) months. In contrast to manual oxygen titrations, patients spent a greater proportion of time within a predefined optimal SpO2 range when the closed-loop oxygen controller was enabled (95.7% [IQR 92.1-100%] vs. 65.6% [IQR 41.6-82.5%]), mean difference 33.4% [95%-CI 24.5-42%]; P < 0.001). Median FiO2 was lower (32.1% [IQR 23.9-54.1%] vs. 40.6% [IQR 31.1-62.8%]; P < 0.001) similar to total oxygen use (19.8 L/h [IQR 4.6-64.8] vs. 39.4 L/h [IQR 16.8-79]; P < 0.001); however, median SpO2/FiO2 was higher (329.4 [IQR 180-411.1] vs. 246.7 [IQR 151.1-320.5]; P < 0.001) with closed-loop oxygen control. With closed-loop oxygen control, the median number of manual adjustments reduced (0.0 [IQR 0.0-0.0] vs. 1 [IQR 0.0-2.2]; P < 0.001). Conclusion Closed-loop oxygen control enhances oxygen therapy in pediatric patients undergoing IMV for AHRF, potentially leading to more efficient utilization of oxygen. This technology also decreases the necessity for manual adjustments, which could reduce the workloads of healthcare providers. Clinical Trial Registration This research has been submitted to ClinicalTrials.gov (NCT05714527).
Collapse
Affiliation(s)
- Gulhan Atakul
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| | - Gokhan Ceylan
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
- Department of Medical Research, Hamilton Medical AG, Chur, Switzerland
| | - Ozlem Sandal
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| | - Ekin Soydan
- Department of Paediatric Intensive Care Unit, Aydin Obstetrics and Children Hospital, Health Sciences University, Aydin, Türkiye
| | - Pinar Hepduman
- Department of Paediatric Intensive Care Unit, Erzurum Territorial Training and Research Hospital, Health Sciences University, Erzurum, Türkiye
| | - Mustafa Colak
- Department of Paediatric Intensive Care Unit, Cam Sakura Training and Research Hospital, Health Sciences University, Istanbul, Türkiye
| | - Jan M Zimmermann
- Department of Medical Research, Hamilton Medical AG, Chur, Switzerland
| | - Dominik Novotni
- Department of Medical Research, Hamilton Medical AG, Chur, Switzerland
| | - Utku Karaarslan
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| | - Sevgi Topal
- Department of Paediatric Intensive Care Unit, Erzurum Territorial Training and Research Hospital, Health Sciences University, Erzurum, Türkiye
| | - Hasan Aǧin
- Department of Paediatric Intensive Care Unit, Dr Behcet Uz Children's Disease and Surgery Training and Research Hospital, Health Sciences University, Izmir, Türkiye
| |
Collapse
|
4
|
Romero-Garcia N, Robba C, Monleon B, Ruiz-Zarco A, Ruiz-Pacheco A, Pascual-Gonzalez M, Perdomo F, Garcia-Perez ML, Taccone FS, Badenes R. Neurological outcomes and mortality of hyperoxaemia in patients with acute brain injury: protocol for a systematic review and meta-analysis. BMJ Open 2024; 14:e084849. [PMID: 39019641 PMCID: PMC11256059 DOI: 10.1136/bmjopen-2024-084849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION Oxygen is frequently prescribed in neurocritical care units. Avoiding hypoxaemia is a key objective in patients with acute brain injury (ABI). However, several studies suggest that hyperoxaemia may also be related to higher mortality and poor neurological outcomes in these patients. The evidence in this direction is still controversial due to the limited number of prospective studies, the lack of a common definition for hyperoxaemia, the heterogeneity in experimental designs and the different causes of ABI. To explore the correlation between hyperoxaemia and poor neurological outcomes and mortality in hospitalised adult patients with ABI, we will conduct a systematic review and meta-analysis of observational studies and RCTs. METHODS AND ANALYSIS The systematic review methods have been defined according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and follow the PRISMA-Protocols structure. Studies published until June 2024 will be identified in the electronic databases MEDLINE, Embase, Scopus, Web of Science, The Cochrane Library, Cumulative Index to Nursing and Allied Health Literature and ClinicalTrials.gov. Retrieved records will be independently screened by four authors working in pairs, and the selected variables will be extracted from studies reporting data on the effect of 'hyperoxaemia' versus 'no hyperoxaemia on neurological outcomes and mortality in hospitalised patients with ABI. We will use covariate-adjusted ORs as outcome measures when reported since they account for potential cofounders and provide a more accurate estimate of the association between hyperoxaemia and outcomes; when not available, we will use univariate ORs. If the study presents the results as relative risks, it will be considered equivalent to the OR as long as the prevalence of the condition is close to 10%. Pooled estimates of both outcomes will be calculated applying random-effects meta-analysis. Interstudy heterogeneity will be assessed using the I2 statistic; risk of bias will be assessed through Risk Of Bias In Non-Randomised Studies of Interventions, Newcastle-Ottawa or RoB2 tools. Depending on data availability, we plan to conduct subgroup analyses by ABI type (traumatic brain injury, postcardiac arrest, subarachnoid haemorrhage, intracerebral haemorrhage and ischaemic stroke), arterial partial pressure of oxygen values, study quality, study time, neurological scores and other selected clinical variables of interest. ETHICS AND DISSEMINATION Specific ethics approval consent is not required as this is a review of previously published anonymised data. Results of the study will be shared with the scientific community via publication in a peer-reviewed journal and presentation at relevant conferences and workshops. It will also be shared key stakeholders, such as national or international health authorities, healthcare professionals and the general population, via scientific outreach journals and research institutes' newsletters.
Collapse
Affiliation(s)
- Nekane Romero-Garcia
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| | - Chiara Robba
- IRCCS Policlinico San Martino, Policlinico San Martino, Genova, Genova, Italy
- Dipartimento di Scienze Chirurgiche diagnostiche e integrate, University of Genoa, Genoa, Italy
| | - Berta Monleon
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| | - Ana Ruiz-Zarco
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Alberto Ruiz-Pacheco
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Maria Pascual-Gonzalez
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Felipe Perdomo
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
| | - Maria Luisa Garcia-Perez
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Bruxelles, Belgium
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de València, Valencia, Spain
- Department of Surgery. School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
5
|
Robba C, Battaglini D, Cinotti R, Asehnoune K, Stevens R, Taccone FS, Badenes R, Pelosi P. Individualized Thresholds of Hypoxemia and Hyperoxemia and their Effect on Outcome in Acute Brain Injured Patients: A Secondary Analysis of the ENIO Study. Neurocrit Care 2024; 40:515-528. [PMID: 37322325 DOI: 10.1007/s12028-023-01761-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In acute brain injury (ABI), the effects of hypoxemia as a potential cause of secondary brain damage and poor outcome are well documented, whereas the impact of hyperoxemia is unclear. The primary aim of this study was to assess the episodes of hypoxemia and hyperoxemia in patients with ABI during the intensive care unit (ICU) stay and to determine their association with in-hospital mortality. The secondary aim was to identify the optimal thresholds of arterial partial pressure of oxygen (PaO2) predicting in-hospital mortality. METHODS We conducted a secondary analysis of a prospective multicenter observational cohort study. Adult patients with ABI (traumatic brain injury, subarachnoid aneurysmal hemorrhage, intracranial hemorrhage, ischemic stroke) with available data on PaO2 during the ICU stay were included. Hypoxemia was defined as PaO2 < 80 mm Hg, normoxemia was defined as PaO2 between 80 and 120 mm Hg, mild/moderate hyperoxemia was defined as PaO2 between 121 and 299 mm Hg, and severe hyperoxemia was defined as PaO2 levels ≥ 300 mm Hg. RESULTS A total of 1,407 patients were included in this study. The mean age was 52 (±18) years, and 929 (66%) were male. Over the ICU stay, the fractions of patients in the study cohort who had at least one episode of hypoxemia, mild/moderate hyperoxemia, and severe hyperoxemia were 31.3%, 53.0%, and 1.7%, respectively. PaO2 values below 92 mm Hg and above 156 mm Hg were associated with an increased probability of in-hospital mortality. Differences were observed among subgroups of patients with ABI, with consistent effects only seen in patients without traumatic brain injury. CONCLUSIONS In patients with ABI, hypoxemia and mild/moderate hyperoxemia were relatively frequent. Hypoxemia and hyperoxemia during ICU stay may influence in-hospital mortality. However, the small number of oxygen values collected represents a major limitation of the study.
Collapse
Affiliation(s)
- Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genova, Italy
| | | | - Raphael Cinotti
- Department of Anesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, Nantes, France
- UMR 1246 SPHERE Methods in Patients-Centered Outcomes and Health Research, University of Nantes, University of Tours, INSERM, Nantes, France
| | - Karim Asehnoune
- Department of Anesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, Nantes, France
| | - Robert Stevens
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles, Brussels, Belgium
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
- INCLIVA Research Medical Institute, Valencia, Spain
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genova, Italy
| |
Collapse
|
6
|
Nielsen FM, Klitgaard TL, Bruun NH, Møller MH, Schjørring OL, Rasmussen BS. Lower or higher oxygenation targets for acute Hypoxaemic respiratory failure: Protocol for an individual patient data meta-analysis. Acta Anaesthesiol Scand 2023; 67:811-819. [PMID: 36807011 DOI: 10.1111/aas.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Supplemental oxygen therapy is central to the treatment of acute hypoxaemic respiratory failure, a condition which remains a major driver for morbidity and mortality in intensive care. Despite several large randomised clinical trials comparing a higher versus a lower oxygenation target for these patients, significant differences in study design impede analysis of aggregate data and final clinical recommendations. METHODS This paper presents the protocol for conducting an individual patient data meta-analysis where full individual patient data according to the intention-to-treat principle will be pooled from the HOT-ICU and HOT-COVID trials in a one-step procedure. The two trials are near-identical in design. We plan to use a hierarchical general linear mixed model that accounts for data clustering at a trial and site level. The primary outcome will be 90-day all-cause mortality while the secondary outcome will be days alive without life-support at 90 days. Further, we outline 14 clinically relevant predefined subgroups which we will analyse for heterogeneity in the intervention effects and interactions, and we present a plan for assessing the credibility of the subgroup analyses. CONCLUSION The presented individual patient data meta-analysis will synthesise individual level patient data from two of the largest randomised clinical trials on targeted oxygen therapy in intensive care. The results will provide a re-analysis of the intervention effects on the pooled intention-to-treat populations and facilitate subgroup analyses with an increased power to detect clinically important effect modifications.
Collapse
Affiliation(s)
- Frederik Mølgaard Nielsen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| | - Thomas Lass Klitgaard
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| | - Niels Henrik Bruun
- Unit of Clinical Biostatistics, Aalborg University Hospital, Aalborg, Denmark
| | - Morten Hylander Møller
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
- Department of Intensive Care, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Olav Lilleholt Schjørring
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| | - Bodil Steen Rasmussen
- Department of Anaesthesia and Intensive Care, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Collaboration for Research in Intensive Care (CRIC), Copenhagen, Denmark
| |
Collapse
|
7
|
Capellier G, Barrot L, Winizewski H. Oxygenation target in acute respiratory distress syndrome. JOURNAL OF INTENSIVE MEDICINE 2023:S2667-100X(23)00022-1. [PMID: 37362867 PMCID: PMC10181914 DOI: 10.1016/j.jointm.2023.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 06/28/2023]
Abstract
Determining oxygenation targets in acute respiratory distress syndrome (ARDS) remains a challenge. Although oxygenation targets have been used since ARDS was first described, they have not been investigated in detail. However, recent retrospective and prospective trials have evaluated the optimal oxygenation threshold in patients admitted to the general intensive care unit. In view of the lack of prospective data, clinicians continue to rely on data from the few available trials to identify the optimal oxygenation strategy. Assessment of the cost-benefit ratio of the fraction of inspired oxygen (FiO2) to the partial pressure of oxygen in the arterial blood (PaO2) is an additional challenge. A high FiO2 has been found to be responsible for respiratory failure and deaths in numerous animal models. Low and high PaO2 values have also been demonstrated to be potential risk factors in experimental and clinical situations. The findings from this literature review suggest that PaO2 values ranging between 80 mmHg and 90 mmHg are acceptable in patients with ARDS. The costs of rescue maneuvers needed to reach these targets have been discussed. Several recent papers have highlighted the risk of disagreement between arterial oxygen saturation (SaO2) and peripheral oxygen saturation (SpO2) values. In order to avoid discrepancies and hidden hypoxemia, SpO2 readings need to be compared with those of SaO2. Higher SpO2 values may be needed to achieve the recommended PaO2 and SaO2 values.
Collapse
Affiliation(s)
- Gilles Capellier
- Réanimation Médicale, CHU Jean Minjoz, Besançon 25000, France
- Department of Health, Monash University, Melbourne 3800, Australia
- Equipe d'accueil EA 3920, Université de Franche Comte, Besançon 25000, France
| | - Loic Barrot
- Réanimation Médicale, CHU Jean Minjoz, Besançon 25000, France
- Département d'Anesthésie-Réanimation, CHU Jan Minjoz, Besançon 25000, France
| | - Hadrien Winizewski
- Réanimation Médicale, CHU Jean Minjoz, Besançon 25000, France
- Equipe d'accueil EA 3920, Université de Franche Comte, Besançon 25000, France
| |
Collapse
|
8
|
Sandal O, Ceylan G, Topal S, Hepduman P, Colak M, Novotni D, Soydan E, Karaarslan U, Atakul G, Schultz MJ, Ağın H. Closed–loop oxygen control improves oxygenation in pediatric patients under high–flow nasal oxygen—A randomized crossover study. Front Med (Lausanne) 2022; 9:1046902. [DOI: 10.3389/fmed.2022.1046902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022] Open
Abstract
BackgroundWe assessed the effect of a closed–loop oxygen control system in pediatric patients receiving high–flow nasal oxygen therapy (HFNO).MethodsA multicentre, single–blinded, randomized, and cross–over study. Patients aged between 1 month and 18 years of age receiving HFNO for acute hypoxemic respiratory failure (AHRF) were randomly assigned to start with a 2–h period of closed–loop oxygen control or a 2–h period of manual oxygen titrations, after which the patient switched to the alternative therapy. The endpoints were the percentage of time spent in predefined SpO2 ranges (primary), FiO2, SpO2/FiO2, and the number of manual adjustments.FindingsWe included 23 patients, aged a median of 18 (3–26) months. Patients spent more time in a predefined optimal SpO2 range when the closed–loop oxygen controller was activated compared to manual oxygen titrations [91⋅3% (IQR 78⋅4–95⋅1%) vs. 63⋅0% (IQR 44⋅4–70⋅7%)], mean difference [28⋅2% (95%–CI 20⋅6–37⋅8%); P < 0.001]. Median FiO2 was lower [33⋅3% (IQR 26⋅6–44⋅6%) vs. 42⋅6% (IQR 33⋅6–49⋅9%); P = 0.07], but median SpO2/FiO2 was higher [289 (IQR 207–348) vs. 194 (IQR 98–317); P = 0.023] with closed–loop oxygen control. The median number of manual adjustments was lower with closed–loop oxygen control [0⋅0 (IQR 0⋅0–0⋅0) vs. 0⋅5 (IQR 0⋅0–1⋅0); P < 0.001].ConclusionClosed-loop oxygen control improves oxygenation therapy in pediatric patients receiving HFNO for AHRF and potentially leads to more efficient oxygen use. It reduces the number of manual adjustments, which may translate into decreased workloads of healthcare providers.Clinical trial registration[www.ClinicalTrials.gov], identifier [NCT 05032365].
Collapse
|