1
|
Bögli SY, Beqiri E, Olakorede I, Cherchi MS, Smith CA, Chen X, Di Tommaso G, Rochat T, Tanaka Gutiez M, Cucciolini G, Motroni V, Helmy A, Hutchinson P, Lavinio A, Newcombe VFJ, Smielewski P. Unlocking the potential of high-resolution multimodality neuromonitoring for traumatic brain injury management: lessons and insights from cases, events, and patterns. Crit Care 2025; 29:139. [PMID: 40165332 PMCID: PMC11956216 DOI: 10.1186/s13054-025-05360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Multimodality neuromonitoring represents a crucial cornerstone for patient management after acute brain injury. Despite the potential of multimodality neuromonitoring (particularly high-resolution neuromonitoring data) to transform care, its full benefits are not yet universally realized. There remains a critical need to integrate the interpretation of complex patterns and indices into the real-time clinical decision-making processes. This requires a multidisciplinary approach, to evaluate and discuss the implications of observed patterns in a timely manner, ideally in close temporal proximity to their occurrence. Such a collaborative effort could enable clinicians to harness the full potential of multimodal data. In this educational case-based scoping review, we aim to provide clinicians, researchers, and healthcare professionals with detailed, compelling examples of potential applications of multimodality neuromonitoring, focused on high-resolution modalities within the field of traumatic brain injury. This case series showcases how neuromonitoring modalities such as intracranial pressure, brain tissue oxygenation, near-infrared spectroscopy, and transcranial Doppler can be integrated with cerebral microdialysis, neuroimaging and systemic physiology monitoring. The aim is to demonstrate the value of a multimodal approach based on high-resolution data and derived indices integrated in one monitoring tool, allowing for the improvement of diagnosis, monitoring, and treatment of patients with traumatic brain injury. For this purpose, key concepts are covered, and various cases have been described to illustrate how to make the most of this advanced monitoring technology.
Collapse
Affiliation(s)
- Stefan Yu Bögli
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK.
- Department of Neurology and Neurocritical Care Unit, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Erta Beqiri
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Ihsane Olakorede
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Marina Sandra Cherchi
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- Department of Critical Care, Marques de Valdecilla University Hospital, and Biomedical Research Institute (IDIVAL), Santander, Cantabria, Spain
| | - Claudia Ann Smith
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Xuhang Chen
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Guido Di Tommaso
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Tommaso Rochat
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- Intensive Care Unit, University Hospital of Geneva, Geneva, Switzerland
| | - Masumi Tanaka Gutiez
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Giada Cucciolini
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
- Departmental Structure of Neuroanesthesia and Critical Care, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Virginia Motroni
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
- Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Adel Helmy
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Peter Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrea Lavinio
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Robba C, Giardiello D, Almondo C, Asehnoune K, Badenes R, Cinotti R, Elhadi M, Graziano F, Helbok R, Jiang L, Chen W, Laffey JG, Messina A, Putensen C, Schultz MJ, Wahlster S, Rebora P, Galimberti S, Taccone FS, Citerio G. Ventilation practices in acute brain injured patients and association with outcomes: the VENTIBRAIN multicenter observational study. Intensive Care Med 2025; 51:318-331. [PMID: 39992441 PMCID: PMC11903615 DOI: 10.1007/s00134-025-07808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/19/2025] [Indexed: 02/25/2025]
Abstract
PURPOSE Current mechanical ventilation practices for patients with acute brain injury (ABI) are poorly defined. This study aimed to describe ventilator settings/parameters used in intensive care units (ICUs) and evaluate their association with clinical outcomes in these patients. METHODS An international, prospective, multicenter, observational study was conducted across 74 ICUs in 26 countries, including adult patients with ABI (e.g., traumatic brain injury, intracranial hemorrhage, subarachnoid hemorrhage, and acute ischemic stroke), who required ICU admission and invasive mechanical ventilation. Ventilatory settings were recorded daily during the first week and on days 10 and 14. ICU and 6-months mortality and 6-months neurological outcome were evaluated. RESULTS On admission, 2095 recruited patients (median age 58 [interquartile range 45-70] years, 66.1% male) had a median plateau pressure (Pplat) of 15 (13-18) cmH20, tidal volume/predicted body weight 6.5 (5.7-7.3) mL/Kg, driving pressure 9 (7-12) cmH20, and positive end-expiratory pressure 5 (5-8) cmH20, with no modifications in case of increased intracranial pressure (> 20 mmHg). Significant differences in practices were observed across different countries. The majority of these ventilatory settings were associated with ICU mortality, with the highest hazard ratio (HR) for Pplat (odds ratio 1.50; 95% confidence interval, CI: 1.27-1.78). The results demonstrated consistent association with 6-month mortality; less clear association was observed for neurological outcome. CONCLUSIONS Protective ventilation strategies are commonly used in ABI patients but with high variability across different countries. Ventilator settings during ICU stay were associated with an increased risk of ICU and 6-month mortality, but not an unfavorable neurological outcome.
Collapse
Affiliation(s)
- Chiara Robba
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Daniele Giardiello
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Chiara Almondo
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, Nantes, France
| | - Rafael Badenes
- Department of Anesthesiology and Surgical-Trauma Intensive Care, Hospital Clinic Universitari de Valencia, University of Valencia, Valencia, Spain
| | - Raphael Cinotti
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, Nantes, France
| | | | - Francesca Graziano
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Raimund Helbok
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lidan Jiang
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Wenjin Chen
- Department of Neurosurgery, XuanWu Hospital, Capital Medical University, Beijing, China
| | - John G Laffey
- Anesthesia and Intensive Care Medicine, University Hospital Galway, University of Galway, Galway, Ireland
| | - Antonio Messina
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Christian Putensen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Marcus J Schultz
- Department of Clinical Medicine, University of Oxford Nuffield, Oxford, UK
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Department of Anesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Sarah Wahlster
- Departments of Neurology, Neurosurgery, and Anesthesiology, University of Washington, Seattle, USA
| | - Paola Rebora
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italia
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italia
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
- Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italia
| |
Collapse
|
3
|
Kashatnikova DA, Gracheva AS, Redkin IV, Zakharchenko VE, Krylova TN, Kuzovlev AN, Salnikova LE. Red Blood Cell-Related Phenotype-Genotype Correlations in Chronic and Acute Critical Illnesses (Traumatic Brain Injury Cohort and COVID-19 Cohort). Int J Mol Sci 2025; 26:1239. [PMID: 39941007 PMCID: PMC11818277 DOI: 10.3390/ijms26031239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Changes in red blood cell (RBC)-related parameters and anemia are common in both severe chronic and acute diseases. RBC-related phenotypes have a heritable component. However, it is unclear whether the contribution of genetic variability is pronounced when hematological parameters are affected by physiological stress. In this study, we analyzed RBC-related phenotypes and phenotype-genotype correlations in two exome-sequenced patient cohorts with or at a high risk for a critical illness: chronic TBI patients admitted for rehabilitation and patients with acute COVID-19. In the analysis of exome data, we focused on the cumulative effects of rare high-impact variants (qualifying variants, QVs) in specific gene sets, represented by Notch signaling pathway genes, based on the results of enrichment analysis in anemic TBI patients and three predefined gene sets for phenotypes of interest derived from GO, GWAS, and HPO resources. In both patient cohorts, anemia was associated with the cumulative effects of QVs in the GO (TBI: p = 0.0003, OR = 2.47 (1.54-4.88); COVID-19: p = 0.0004, OR = 2.12 (1.39-3.25)) and Notch pathway-derived (TBI: p = 0.0017, OR = 2.33 (1.35-4.02); COVID-19: p = 0.0012, OR =8.00 (1.79-35.74)) gene sets. In the multiple linear regression analysis, genetic variables contributed to RBC indices in patients with TBI. In COVID-19 patients, QVs in Notch pathway genes influenced RBC, HGB, and HCT levels, whereas genes from other sets influenced MCHC levels. Thus, in this exploratory study, exome data analysis yielded similar and different results in the two patient cohorts, supporting the view that genetic factors may contribute to RBC-related phenotypic performance in both severe chronic and acute health conditions.
Collapse
Affiliation(s)
- Darya A. Kashatnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia
| | - Alesya S. Gracheva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Ivan V. Redkin
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Vladislav E. Zakharchenko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Tatyana N. Krylova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Artem N. Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
| | - Lyubov E. Salnikova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia; (D.A.K.); (A.S.G.)
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 107031 Moscow, Russia; (I.V.R.); (V.E.Z.); (T.N.K.); (A.N.K.)
- National Research Center of Pediatric Hematology, Oncology and Immunology, 117997 Moscow, Russia
| |
Collapse
|
4
|
Ayasse T, Gaugain S, de Roquetaillade C, Hermans-Didier A, Kindermans M, Chousterman BG, Barthélémy R. Association between cerebral oxygenation and usual parameters of cerebral perfusion in critically ill patients with acute brain injury. J Cereb Blood Flow Metab 2025:271678X241310780. [PMID: 39763378 PMCID: PMC11705312 DOI: 10.1177/0271678x241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO2), arterial oxygen saturation (SaO2), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia. We conducted a retrospective, single-center study of patients admitted in our ICU between 2015 and 2021. Patients with ABI and multimodal neuromonitoring were included. ABI included traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage and ischemic stroke. The relationship between jugular venous oxygen saturation (SjvO2) and cerebral perfusion parameters was analyzed. Patients were categorized into two groups based on SjvO2, with a threshold of 60% used to define cerebral ischemia. We compared the parameters used to optimize cerebral perfusion between groups and their diagnosis accuracy for cerebral ischemia was evaluated. Univariable and multivariable analyses were performed to assess the association between the guideline-recommended therapeutic targets and the risk of cerebral ischemia. 601 evaluations from 96 patients with simultaneous ICP, SjvO2 and TCD were analyzed. Poor relationships were found between SjvO2 and the parameters of cerebral perfusion. TCD flow velocities and PaCO2 were lower in the cerebral ischemia group while MAP, ICP and CPP were not different between groups. Most ischemic episodes occurred despite ICP < 22 mmHg and CPP ≥ 60 mmHg. For the diagnosis of cerebral ischemia, only TCD parameters and PaCO2 were associated with an area under the curve (AUC) > 0.5 but with a low accuracy. In multivariable analysis, the only guideline-recommended therapeutic target associated with a reduction of cerebral ischemia was a diastolic flow velocity (FV) > 20 cm.s-1.
Collapse
Affiliation(s)
- Timothée Ayasse
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
| | - Samuel Gaugain
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
| | - Charles de Roquetaillade
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| | - Alexis Hermans-Didier
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| | - Manuel Kindermans
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
| | - Benjamin G Chousterman
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| | - Romain Barthélémy
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| |
Collapse
|
5
|
Robba C, Picetti E, Vásquez-García S, Abulhasan YB, Ain A, Adeleye AO, Aries M, Brasil S, Badenes R, Bertuccio A, Bouzat P, Bustamante L, Calabro' L, Njimi H, Cardim D, Citerio G, Czosnyka M, Geeraerts T, Godoy DA, Hirzallah MI, Devi BI, Jibaja M, Lochner P, Mijangos Méndez JC, Meyfroidt G, Munusamy T, Portilla JP, Prabhakar H, Rasulo F, Sánchez Parra DM, Sarwal A, Shrestha GS, Shukla DP, Sung G, Tirsit A, Vásquez F, Videtta W, Wang YL, Paiva WS, Taccone FS, Rubiano AM. The Brussels consensus for non-invasive ICP monitoring when invasive systems are not available in the care of TBI patients (the B-ICONIC consensus, recommendations, and management algorithm). Intensive Care Med 2025; 51:4-20. [PMID: 39847066 DOI: 10.1007/s00134-024-07756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Invasive systems are commonly used for monitoring intracranial pressure (ICP) in traumatic brain injury (TBI) and are considered the gold standard. The availability of invasive ICP monitoring is heterogeneous, and in low- and middle-income settings, these systems are not routinely employed due to high cost or limited accessibility. The aim of this consensus was to develop recommendations to guide monitoring and ICP-driven therapies in TBI using non-invasive ICP (nICP) systems. METHODS A panel of 41 experts, that regularly use nICP systems for guiding TBI care, was established. Three scoping and four systematic reviews with meta-analysis were performed summarizing the current global-literature evidence. A modified Delphi method was applied for the development of recommendations. An in-person meeting with group discussions and voting was conducted. Strong recommendations were defined for an agreement of at least 85%. Weak recommendations were defined for an agreement of 75-85%. RESULTS A total of 34 recommendations were provided (32 Strong, 2 Weak) divided into three domains: general consideration for nICP use, management of ICP using nICP methods and thresholds of nICP tools for escalating/de-escalating treatment. We developed four clinical algorithms for escalating treatment and heatmaps for de-escalating treatment. CONCLUSIONS Using a mixed-method approach involving literature review and an in-person consensus by experts, a set of recommendations designed to assist clinicians managing TBI patients using nICP systems plus clinical assessment, in the presence or absence of brain imaging, were built. Further clinical studies are required to validate the potential use of these recommendations in the daily clinical practice.
Collapse
Affiliation(s)
- Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy.
- Anesthesia and Intensive Care, IRCCS for Oncology and Neuroscience, Policlinico San Martino, Genoa, Italy.
| | - Edoardo Picetti
- Department of Anesthesia and Intensive Care, Parma University Hospital, Parma, Italy
| | - Sebastián Vásquez-García
- Neurosciences and Intensive Care Department, Clínica del Country, Bogotá, Colombia
- Universidad del Rosario, Bogotá, Colombia
- MEDITECH Foundation, Cali, Colombia
| | - Yasser B Abulhasan
- Faculty of Medicine, Health Sciences Center, Kuwait University, Kuwait City, Kuwait
| | - Amelia Ain
- Department of Anesthesiology and Intensive Care, Hospital Sultan Abdul Halim, Kedah, Malaysia
| | - Amos O Adeleye
- Division of Neurological Surgery, Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Neurological Surgery, University College Hospital, Ibadan, Nigeria
| | - Marcel Aries
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, The Netherlands
- Mental Health and Neuroscience Research Institute, University Maastricht, Maastricht, The Netherlands
| | - Sérgio Brasil
- Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Department Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
| | - Alessandro Bertuccio
- Department of Neurosurgery, St. Antonio and Biagio and Cesare Arrigo Hospital, Neurosurgery Unit, Alessandria, Italy
| | - Pierre Bouzat
- Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, Pôle Anesthésie Réanimation, Grenoble Alpes University, Grenoble, France
| | | | - Lorenzo Calabro'
- Department of Intensive Care, Hospital Erasme, Universitè Libre De Bruxelles, Brussels, Belgium
| | - Hassane Njimi
- Department of Intensive Care, Hospital Erasme, Universitè Libre De Bruxelles, Brussels, Belgium
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Brain Physics Laboratory, University of Cambridge, Cambridge, UK
| | - Thomas Geeraerts
- Pôle Anesthésie-Réanimation, Inserm, UMR 1214, Toulouse Neuroimaging Center, ToNIC, Université Toulouse 3-Paul Sabatier, CHU de Toulouse, 31059, Toulouse, France
| | - Daniel A Godoy
- Departamento Medicina Critica, Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, Catamarca, Argentina
| | | | - Bhagavatula Indira Devi
- Department of Neurosurgery, National Institute for Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Manuel Jibaja
- Hospital Eugenio Espejo and Escuela de Medicina de la Universidad San Francisco de Quito, Quito, Ecuador
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Julio C Mijangos Méndez
- Unidad de Terapia Intensiva, Hospital Civil Fray Antonio Alcalde, Universidad de Guadalajara, Coronel Calderón 777, El Retiro, Guadalajara, Jalisco, Mexico
| | - Geert Meyfroidt
- Department and Laboratory of Intensive Care Medicine, University Hospitals Leuven and KU, Louvain, Belgium
| | - Thangaraj Munusamy
- Department of Neurosurgery, Singapore General Hospital, Singapore, Singapore
| | | | - Hemanshu Prabhakar
- Department of Neuroanaesthesiology and Critical Care, All India Institute of Medical Sciences, New Delhi, India
| | - Frank Rasulo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Anesthesia, Critical Care and Emergency, Spedali Civili University Hospital, Brescia, Italy
| | | | - Aarti Sarwal
- Department of Neurology, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Gentle S Shrestha
- Department of Anesthesiology, Tribhuvan University Teaching Hospital, Maharajgunj, Kathmandu, Nepal
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Dhaval P Shukla
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Gene Sung
- University of Southern California, Los Angeles, USA
| | - Abenezer Tirsit
- Neurosurgery Division, Department of Surgery, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Global Health Research Group in Acquired Brain and Spine Injuries, Cambridge, UK
| | - Franly Vásquez
- Hospital Dr. Darío Contreras, Santo Domingo, República Dominicana
| | - Walter Videtta
- Hospital Nacional Professor Alejandro Posadas, Buenos Aires, Argentina
| | - Yu Lin Wang
- Neuro Intensive Care Unit, Tan Tock Seng Hospital, Singapore, Singapore
| | | | - Fabio Silvio Taccone
- Department of Intensive Care, Hospital Erasme, Universitè Libre De Bruxelles, Brussels, Belgium
| | - Andres M Rubiano
- Global Health Research Group in Acquired Brain and Spine Injuries, Cambridge, UK
- Neurosciences Institute, Universidad El Bosque, Bogota, Colombia
- MEDITECH Foundation, Cali, Colombia
| |
Collapse
|
6
|
Goossen RL, Schultz MJ, van Meenen DMP, Horn J, Rocco PR, Robba C. Optimizing protective ventilation in adults with acute brain injury-challenging misconceptions and prioritizing neuromonitoring. Expert Rev Respir Med 2024; 18:929-933. [PMID: 39627018 DOI: 10.1080/17476348.2024.2438088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/11/2024]
Affiliation(s)
- Robin L Goossen
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Anaesthesia, General Intensive Care and Pain Management, Division of Cardiothoracic and Vascular Anaesthesia & Critical Care Medicine, Medical University of Vienna, Vienna, Austria
| | - David M P van Meenen
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Janneke Horn
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Patricia R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Chiara Robba
- Department of Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Surgical Science and Integrated Diagnostics, University of Genova, Genova, Italy
| |
Collapse
|
7
|
Sarmiento-Calderón J, Borré-Naranjo D, Dueñas-Castell C. Monitoreo neurológico multimodal en cuidado intensivo. ACTA COLOMBIANA DE CUIDADO INTENSIVO 2024. [DOI: 10.1016/j.acci.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
8
|
Jeffcote T, Lu KY, Lewis P, Gantner D, Battistuzzo CR, Udy AA. Brain tissue oxygen monitoring in moderate-to-severe traumatic brain injury: Physiological determinants, clinical interventions and current randomised controlled trial evidence. CRIT CARE RESUSC 2024; 26:204-209. [PMID: 39355499 PMCID: PMC11440050 DOI: 10.1016/j.ccrj.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 10/03/2024]
Abstract
Modern intensive care for moderate-to-severe traumatic brain injury (msTBI) focuses on managing intracranial pressure (ICP) and cerebral perfusion pressure (CPP). This approach lacks robust clinical evidence and often overlooks the impact of hypoxic injuries. Emerging monitoring modalities, particularly those capable of measuring brain tissue oxygen, represent a promising avenue for advanced neuromonitoring. Among these, brain tissue oxygen tension (PbtO2) shows the most promising results. However, there is still a lack of consensus regarding the interpretation of PbtO2 in clinical practice. This review aims to provide an overview of the pathophysiological rationales, monitoring technology, physiological determinants, and recent clinical trial evidence for PbtO2 monitoring in the management of msTBI.
Collapse
Affiliation(s)
- Toby Jeffcote
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Kuan-Ying Lu
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Philip Lewis
- Office of the Deputy Vice-Chancellor, Enterprise and Engagement, Monash University, Australia
| | - Dashiell Gantner
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| | - Camila R Battistuzzo
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Andrew A Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred Hospital, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Ye J, Fan Y, She Y, Shi J, Yang Y, Yuan X, Li R, Han J, Liu L, Kang Y, Ji X. Biomimetic Self-Propelled Asymmetric Nanomotors for Cascade-Targeted Treatment of Neurological Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310211. [PMID: 38460166 PMCID: PMC11165487 DOI: 10.1002/advs.202310211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Indexed: 03/11/2024]
Abstract
The precise targeted delivery of therapeutic agents to deep regions of the brain is crucial for the effective treatment of various neurological diseases. However, achieving this goal is challenging due to the presence of the blood‒brain barrier (BBB) and the complex anatomy of the brain. Here, a biomimetic self-propelled nanomotor with cascade targeting capacity is developed for the treatment of neurological inflammatory diseases. The self-propelled nanomotors are designed with biomimetic asymmetric structures with a mesoporous SiO2 head and multiple MnO2 tentacles. Macrophage membrane biomimetic modification endows nanomotors with inflammatory targeting and BBB penetration abilities The MnO2 agents catalyze the degradation of H2O2 into O2, not only by reducing brain inflammation but also by providing the driving force for deep brain penetration. Additionally, the mesoporous SiO2 head is loaded with curcumin, which actively regulates macrophage polarization from the M1 to the M2 phenotype. All in vitro cell, organoid model, and in vivo animal experiments confirmed the effectiveness of the biomimetic self-propelled nanomotors in precise targeting, deep brain penetration, anti-inflammatory, and nervous system function maintenance. Therefore, this study introduces a platform of biomimetic self-propelled nanomotors with inflammation targeting ability and active deep penetration for the treatment of neurological inflammation diseases.
Collapse
Affiliation(s)
- Jiamin Ye
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yueyue Fan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yaoguang She
- Department of General Surgerythe First Medical CenterChinese People's Liberation Army General HospitalBeijing100853China
| | - Jiacheng Shi
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Yiwen Yang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xue Yuan
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Ruiyan Li
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Jingwen Han
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Luntao Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear MedicineInstitute of Radiation MedicineChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjin100730China
| | - Yong Kang
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjin300072China
- Medical CollegeLinyi UniversityLinyi276000China
| |
Collapse
|
10
|
Rodriguez EE, Zaccarelli M, Sterchele ED, Taccone FS. "NeuroVanguard": a contemporary strategy in neuromonitoring for severe adult brain injury patients. Crit Care 2024; 28:104. [PMID: 38561829 PMCID: PMC10985991 DOI: 10.1186/s13054-024-04893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Severe acute brain injuries, stemming from trauma, ischemia or hemorrhage, remain a significant global healthcare concern due to their association with high morbidity and mortality rates. Accurate assessment of secondary brain injuries severity is pivotal for tailor adequate therapies in such patients. Together with neurological examination and brain imaging, monitoring of systemic secondary brain injuries is relatively straightforward and should be implemented in all patients, according to local resources. Cerebral secondary injuries involve factors like brain compliance loss, tissue hypoxia, seizures, metabolic disturbances and neuroinflammation. In this viewpoint, we have considered the combination of specific noninvasive and invasive monitoring tools to better understand the mechanisms behind the occurrence of these events and enhance treatment customization, such as intracranial pressure monitoring, brain oxygenation assessment and metabolic monitoring. These tools enable precise intervention, contributing to improved care quality for severe brain injury patients. The future entails more sophisticated technologies, necessitating knowledge, interdisciplinary collaboration and resource allocation, with a focus on patient-centered care and rigorous validation through clinical trials.
Collapse
Affiliation(s)
- Edith Elianna Rodriguez
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mario Zaccarelli
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Terapia Intensiva e del Dolore, Scuola di Anestesia Rianimazione, Università degli Studi di Milano, Milan, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium.
| |
Collapse
|
11
|
Zunino G, Battaglini D, Godoy DA. Effects of positive end-expiratory pressure on intracranial pressure, cerebral perfusion pressure, and brain oxygenation in acute brain injury: Friend or foe? A scoping review. JOURNAL OF INTENSIVE MEDICINE 2024; 4:247-260. [PMID: 38681785 PMCID: PMC11043646 DOI: 10.1016/j.jointm.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 05/01/2024]
Abstract
Background Patients with acute brain injury (ABI) are a peculiar population because ABI does not only affect the brain but also other organs such as the lungs, as theorized in brain-lung crosstalk models. ABI patients often require mechanical ventilation (MV) to avoid the complications of impaired respiratory function that can follow ABI; MV should be settled with meticulousness owing to its effects on the intracranial compartment, especially regarding positive end-expiratory pressure (PEEP). This scoping review aimed to (1) describe the physiological basis and mechanisms related to the effects of PEEP in ABI; (2) examine how clinical research is conducted on this topic; (3) identify methods for setting PEEP in ABI; and (4) investigate the impact of the application of PEEP in ABI on the outcome. Methods The five-stage paradigm devised by Peters et al. and expanded by Arksey and O'Malley, Levac et al., and the Joanna Briggs Institute was used for methodology. We also adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension criteria. Inclusion criteria: we compiled all scientific data from peer-reviewed journals and studies that discussed the application of PEEP and its impact on intracranial pressure, cerebral perfusion pressure, and brain oxygenation in adult patients with ABI. Exclusion criteria: studies that only examined a pediatric patient group (those under the age of 18), experiments conducted solely on animals; studies without intracranial pressure and/or cerebral perfusion pressure determinations, and studies with incomplete information. Two authors searched and screened for inclusion in papers published up to July 2023 using the PubMed-indexed online database. Data were presented in narrative and tubular form. Results The initial search yielded 330 references on the application of PEEP in ABI, of which 36 met our inclusion criteria. PEEP has recognized beneficial effects on gas exchange, but it produces hemodynamic changes that should be predicted to avoid undesired consequences on cerebral blood flow and intracranial pressure. Moreover, the elastic properties of the lungs influence the transmission of the forces applied by MV over the brain so they should be taken into consideration. Currently, there are no specific tools that can predict the effect of PEEP on the brain, but there is an established need for a comprehensive monitoring approach for these patients, acknowledging the etiology of ABI and the measurable variables to personalize MV. Conclusion PEEP can be safely used in patients with ABI to improve gas exchange keeping in mind its potentially harmful effects, which can be predicted with adequate monitoring supported by bedside non-invasive neuromonitoring tools.
Collapse
Affiliation(s)
- Greta Zunino
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Scienze Diagnostiche e Chirurgiche Integrate, Università degli Studi di Genova, Genova, Italy
| | | | | |
Collapse
|
12
|
Da Y, Sun Q, Zhang L, Tian Y. Light-activated g-C 3N 4 photoelectrodes with a selective molecular sieve for in vivo quantification of oxygen levels in the living mouse brain. Chem Commun (Camb) 2024. [PMID: 38465876 DOI: 10.1039/d4cc00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A novel micro-photoelectrode with a selective molecular sieve was created for in vivo monitoring of O2 levels in the mouse brain. An ITO optical fiber modified by graphitized carbon nitride (g-C3N4) in situ was employed as the light activated substrate to provide rich photo-induced electrons for the catalytic reduction of O2. Meanwhile, the porous hybrid layer composed of zeolitic imidazolate framework-8 and polysulfone was constructed over the g-C3N4 surface as the molecular sieve to synergically enhance the selectivity of O2 detections. By advantage of this useful tool, the real time variation of the O2 level was successfully determined in the mouse brain upon ischemia.
Collapse
Affiliation(s)
- Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Qi Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Limin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China.
| |
Collapse
|
13
|
Beucler N. Monitoring patients with severe traumatic brain injury. Lancet Neurol 2024; 23:231-232. [PMID: 38365370 DOI: 10.1016/s1474-4422(24)00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/08/2024] [Indexed: 02/18/2024]
Affiliation(s)
- Nathan Beucler
- Neurosurgery Department, Sainte-Anne Military Teaching Hospital, 83800 Toulon Cedex 9, France.
| |
Collapse
|
14
|
Robba C, Battaglini D, Abbas A, Sarrió E, Cinotti R, Asehnoune K, Taccone FS, Rocco PR, Schultz MJ, Citerio G, Stevens RD, Badenes R. Clinical practice and effect of carbon dioxide on outcomes in mechanically ventilated acute brain-injured patients: a secondary analysis of the ENIO study. Intensive Care Med 2024; 50:234-246. [PMID: 38294526 PMCID: PMC10907416 DOI: 10.1007/s00134-023-07305-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/09/2023] [Indexed: 02/01/2024]
Abstract
PURPOSE The use of arterial partial pressure of carbon dioxide (PaCO2) as a target intervention to manage elevated intracranial pressure (ICP) and its effect on clinical outcomes remain unclear. We aimed to describe targets for PaCO2 in acute brain injured (ABI) patients and assess the occurrence of abnormal PaCO2 values during the first week in the intensive care unit (ICU). The secondary aim was to assess the association of PaCO2 with in-hospital mortality. METHODS We carried out a secondary analysis of a multicenter prospective observational study involving adult invasively ventilated patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage (ICH), or ischemic stroke (IS). PaCO2 was collected on day 1, 3, and 7 from ICU admission. Normocapnia was defined as PaCO2 > 35 and to 45 mmHg; mild hypocapnia as 32-35 mmHg; severe hypocapnia as 26-31 mmHg, forced hypocapnia as < 26 mmHg, and hypercapnia as > 45 mmHg. RESULTS 1476 patients (65.9% male, mean age 52 ± 18 years) were included. On ICU admission, 804 (54.5%) patients were normocapnic (incidence 1.37 episodes per person/day during ICU stay), and 125 (8.5%) and 334 (22.6%) were mild or severe hypocapnic (0.52 and 0.25 episodes/day). Forced hypocapnia and hypercapnia were used in 40 (2.7%) and 173 (11.7%) patients. PaCO2 had a U-shape relationship with in-hospital mortality with only severe hypocapnia and hypercapnia being associated with increased probability of in-hospital mortality (omnibus p value = 0.0009). Important differences were observed across different subgroups of ABI patients. CONCLUSIONS Normocapnia and mild hypocapnia are common in ABI patients and do not affect patients' outcome. Extreme derangements of PaCO2 values were significantly associated with increased in-hospital mortality.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy.
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Abbas Abbas
- Department of Surgical Science and Integrated Diagnostic, University of Genova, Genoa, Italy
| | - Ezequiel Sarrió
- Department of Surgery, University of Valencia, Valencia, Spain
| | - Raphael Cinotti
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, 44000, Nantes, France
- UMR 1246 SPHERE "MethodS in Patients-Centered Outcomes and HEalth Research", INSERM, IRS2 22 Boulevard Benoni Goulin, University of Nantes, University of Tours, 44200, Nantes, France
| | - Karim Asehnoune
- Department of Anaesthesia and Critical Care, CHU Nantes, Nantes Université, Hôtel Dieu, 44000, Nantes, France
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Patricia R Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, Brazil
| | - Marcus J Schultz
- Department of Clinical Medicine, University of Oxford Nuffield, Oxford, Oxfordshire, 105596, UK
- Department of Intensive Care, Amsterdam University Medical Centers, Location 'AMC', Amsterdam, The Netherlands
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- Department of Neurosciences, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Robert David Stevens
- Department of Anesthesiology and Critical Care, John Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD, 21205, USA
| | - Rafael Badenes
- Department of Surgery, University of Valencia, Valencia, Spain
- Department Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
15
|
Battaglini D, Delpiano L, Masuello D, Leme Silva P, Rocco PRM, Matta B, Pelosi P, Robba C. Effects of positive end-expiratory pressure on brain oxygenation, systemic oxygen cascade and metabolism in acute brain injured patients: a pilot physiological cross-sectional study. J Clin Monit Comput 2024; 38:165-175. [PMID: 37453007 DOI: 10.1007/s10877-023-01042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
Patients with acute brain injury (ABI) often require the application of positive end-expiratory pressure (PEEP) to optimize mechanical ventilation and systemic oxygenation. However, the effect of PEEP on cerebral function and metabolism is unclear. The primary aim of this study was to evaluate the effects of PEEP augmentation test (from 5 to 15 cmH2O) on brain oxygenation, systemic oxygen cascade and metabolism in ABI patients. Secondary aims include to determine whether changes in regional cerebral oxygenation are reflected by changes in oxygenation cascade and metabolism, and to assess the correlation between brain oxygenation and mechanical ventilation settings. Single center, pilot cross-sectional observational study in an Academic Hospital. Inclusion criteria were: adult (> 18 y/o) patients with ABI and stable intracranial pressure, available gas exchange and indirect calorimetry (IC) monitoring. Cerebral oxygenation was monitored with near-infrared spectroscopy (NIRS) and different derived parameters were collected: variation (Δ) in oxy (O2)-hemoglobin (Hb) (ΔO2Hbi), deoxy-Hb(ΔHHbi), total-Hb(ΔcHbi), and total regional oxygenation (ΔrSO2). Oxygen cascade and metabolism were monitored with arterial/venous blood gas analysis [arterial partial pressure of oxygen (PaO2), arterial saturation of oxygen (SaO2), oxygen delivery (DO2), and lactate], and IC [energy expenditure (REE), respiratory quotient (RQ), oxygen consumption (VO2), and carbon dioxide production (VCO2)]. Data were measured at PEEP 5 cmH2O and 15 cmH2O and expressed as delta (Δ) values. Ten patients with ABI [median age 70 (IQR 62-75) years, 6 (60%) were male, median Glasgow Coma Scale at ICU admission 5.5 (IQR 3-8)] were included. PEEP augmentation from 5 to 15 cmH2O did not affect cerebral oxygenation, systemic oxygen cascade parameters, and metabolism. The arterial component of cerebral oxygenation was significantly correlated with DO2 (ΔO2HBi, rho = 0.717, p = 0.037). ΔrSO2 (rho = 0.727, p = 0.032), ΔcHbi (rho = 0.797, p = 0.013), and ΔHHBi (rho = 0.816, p = 0.009) were significantly correlated with SaO2, but not ΔO2Hbi. ΔrSO2 was significantly correlated with VCO2 (rho = 0.681, p = 0.049). No correlation between brain oxygenation and ventilatory parameters was found. PEEP augmentation test did not affect cerebral and systemic oxygenation or metabolism. Changes in cerebral oxygenation significantly correlated with DO2, SaO2, and VCO2. Cerebral oxygen monitoring could be considered for individualization of mechanical ventilation setting in ABI patients without high or instable intracranial pressure.
Collapse
Affiliation(s)
| | - Lara Delpiano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Denise Masuello
- Hospital Donaciòn Francisco Santojanni, Buenos Aires, Argentina
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Basil Matta
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche Integrate, Università degli Studi di Genova, Genoa, Italy
| |
Collapse
|
16
|
Battaglini D, Bogossian EG, Anania P, Premraj L, Cho SM, Taccone FS, Sekhon M, Robba C. Monitoring of Brain Tissue Oxygen Tension in Cardiac Arrest: a Translational Systematic Review from Experimental to Clinical Evidence. Neurocrit Care 2024; 40:349-363. [PMID: 37081276 DOI: 10.1007/s12028-023-01721-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Cardiac arrest (CA) is a sudden event that is often characterized by hypoxic-ischemic brain injury (HIBI), leading to significant mortality and long-term disability. Brain tissue oxygenation (PbtO2) is an invasive tool for monitoring brain oxygen tension, but it is not routinely used in patients with CA because of the invasiveness and the absence of high-quality data on its effect on outcome. We conducted a systematic review of experimental and clinical evidence to understand the role of PbtO2 in monitoring brain oxygenation in HIBI after CA and the effect of targeted PbtO2 therapy on outcomes. METHODS The search was conducted using four search engines (PubMed, Scopus, Embase, and Cochrane), using the Boolean operator to combine mesh terms such as PbtO2, CA, and HIBI. RESULTS Among 1,077 records, 22 studies were included (16 experimental studies and six clinical studies). In experimental studies, PbtO2 was mainly adopted to assess the impact of gas exchanges, drugs, or systemic maneuvers on brain oxygenation. In human studies, PbtO2 was rarely used to monitor the brain oxygen tension in patients with CA and HIBI. PbtO2 values had no clear association with patients' outcomes, but in the experimental studies, brain tissue hypoxia was associated with increased inflammation and neuronal damage. CONCLUSIONS Further studies are needed to validate the effect and the threshold of PbtO2 associated with outcome in patients with CA, as well as to understand the physiological mechanisms influencing PbtO2 induced by gas exchanges, drug administration, and changes in body positioning after CA.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Pasquale Anania
- Department of Neurosurgery, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy.
| | - Lavienraj Premraj
- Griffith University School of Medicine, Gold Coast, QLD, Australia
- Critical Care Research Group, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Sung-Min Cho
- Departments of Neurology, Surgery, and Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chiara Robba
- Anesthesiology and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
17
|
Cavaliere F, Biancofiore G, Bignami E, DE Robertis E, Giannini A, Grasso S, McCREDIE VA, Scolletta S, Taccone FS, Terragni P. A year in review in Minerva Anestesiologica 2023: critical care. Minerva Anestesiol 2024; 90:110-118. [PMID: 38415512 DOI: 10.23736/s0375-9393.24.18017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Franco Cavaliere
- IRCCS A. Gemelli University Polyclinic Foundation, Sacred Heart Catholic University, Rome, Italy -
| | - Gianni Biancofiore
- Department of Transplant Anesthesia and Critical Care, University School of Medicine, Pisa, Italy
| | - Elena Bignami
- Division of Anesthesiology, Critical Care and Pain Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Edoardo DE Robertis
- Section of Anesthesia, Analgesia and Intensive Care, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alberto Giannini
- Unit of Pediatric Anesthesia and Intensive Care, Children's Hospital - ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grasso
- Section of Anesthesiology and Intensive Care, Department of Emergency and Organ Transplantation, Polyclinic Hospital, Aldo Moro University, Bari, Italy
| | - Victoria A McCREDIE
- Interdepartmental Division of Critical Care, University of Toronto, Toronto, ON, Canada
| | - Sabino Scolletta
- Department of Emergency-Urgency and Organ Transplantation, Anesthesia and Intensive Care, University Hospital of Siena, Siena, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierpaolo Terragni
- Division of Anesthesia and General Intensive Care, Department of Medical, Surgical and Experimental Sciences, University Hospital of Sassari, University of Sassari, Sassari, Italy
| |
Collapse
|
18
|
Stella C, Hachlouf A, Calabrò L, Cavalli I, Schuind S, Gouvea Bogossian E, Taccone FS. The Effects of Acetazolamide on Cerebral Hemodynamics in Adult Patients with an Acute Brain Injury: A Systematic Review. Brain Sci 2023; 13:1678. [PMID: 38137126 PMCID: PMC10741868 DOI: 10.3390/brainsci13121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Acetazolamide is a non-competitive inhibitor of carbonic anhydrase, an enzyme expressed in different cells of the central nervous system (CNS) and involved in the regulation of cerebral blood flow (CBF). The aim of this review was to understand the effects of acetazolamide on CBF, intracranial pressure (ICP) and brain tissue oxygenation (PbtO2) after an acute brain injury (ABI). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA), we performed a comprehensive, computer-based, literature research on the PubMed platform to identify studies that have reported the effects on CBF, ICP, or PbtO2 of acetazolamide administered either for therapeutic or diagnostic purposes in patients with subarachnoid hemorrhage, intracerebral hemorrhage, traumatic brain injury, and hypoxic-ischemic encephalopathy. RESULTS From the initial search, 3430 records were identified and, through data selection, 11 of them were included for the qualitative analysis. No data on the effect of acetazolamide on ICP or PbtO2 were found. Cerebral vasomotor reactivity (VMR-i.e., the changing in vascular tone due to a vasoactive substance) to acetazolamide tends to change during the evolution of ABI, with the nadir occurring during the subacute stage. Moreover, VMR reduction was correlated with clinical outcome. CONCLUSIONS This systematic review showed that the available studies on the effects of acetazolamide on brain hemodynamics in patients with ABI are scarce. Further research is required to better understand the potential role of this drug in ABI patients.
Collapse
Affiliation(s)
- Claudia Stella
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
- Department of Anesthesia and Intensive Care, Policlinico Universitario Gemelli, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Anas Hachlouf
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Lorenzo Calabrò
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Irene Cavalli
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Sophie Schuind
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
- Department of Neurosurgery, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070 Bruxelles, Belgium; (C.S.); (A.H.); (L.C.); (I.C.); (S.S.); (E.G.B.)
| |
Collapse
|
19
|
Taccone FS, Sterchele ED, Piagnerelli M. Multimodal neuromonitoring in traumatic brain injury patients: the search for the Holy Graal. Crit Care 2023; 27:396. [PMID: 37845770 PMCID: PMC10577936 DOI: 10.1186/s13054-023-04679-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Affiliation(s)
- Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Route de Lennik, 808, 1070, Brussels, Belgium
| | - Michael Piagnerelli
- Department of Intensive Care, Centre Hospitalier Universitaire (CHU)- Charleroi, Marie Curie, Université Libre de Bruxelles (ULB), Charleroi, Belgium
| |
Collapse
|
20
|
Sanicola HW, Stewart CE, Luther P, Yabut K, Guthikonda B, Jordan JD, Alexander JS. Pathophysiology, Management, and Therapeutics in Subarachnoid Hemorrhage and Delayed Cerebral Ischemia: An Overview. PATHOPHYSIOLOGY 2023; 30:420-442. [PMID: 37755398 PMCID: PMC10536590 DOI: 10.3390/pathophysiology30030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a type of hemorrhagic stroke resulting from the rupture of an arterial vessel within the brain. Unlike other stroke types, SAH affects both young adults (mid-40s) and the geriatric population. Patients with SAH often experience significant neurological deficits, leading to a substantial societal burden in terms of lost potential years of life. This review provides a comprehensive overview of SAH, examining its development across different stages (early, intermediate, and late) and highlighting the pathophysiological and pathohistological processes specific to each phase. The clinical management of SAH is also explored, focusing on tailored treatments and interventions to address the unique pathological changes that occur during each stage. Additionally, the paper reviews current treatment modalities and pharmacological interventions based on the evolving guidelines provided by the American Heart Association (AHA). Recent advances in our understanding of SAH will facilitate clinicians' improved management of SAH to reduce the incidence of delayed cerebral ischemia in patients.
Collapse
Affiliation(s)
- Henry W. Sanicola
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Caleb E. Stewart
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - Patrick Luther
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Kevin Yabut
- School of Medicine, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA; (P.L.); (K.Y.)
| | - Bharat Guthikonda
- Department of Neurosurgery, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA;
| | - J. Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center in Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
21
|
Gouvea Bogossian E, Battaglini D, Fratino S, Minini A, Gianni G, Fiore M, Robba C, Taccone FS. The Role of Brain Tissue Oxygenation Monitoring in the Management of Subarachnoid Hemorrhage: A Scoping Review. Neurocrit Care 2023; 39:229-240. [PMID: 36802011 DOI: 10.1007/s12028-023-01680-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/19/2023] [Indexed: 02/19/2023]
Abstract
Monitoring of brain tissue oxygenation (PbtO2) is an important component of multimodal monitoring in traumatic brain injury. Over recent years, use of PbtO2 monitoring has also increased in patients with poor-grade subarachnoid hemorrhage (SAH), particularly in those with delayed cerebral ischemia. The aim of this scoping review was to summarize the current state of the art regarding the use of this invasive neuromonitoring tool in patients with SAH. Our results showed that PbtO2 monitoring is a safe and reliable method to assess regional cerebral tissue oxygenation and that PbtO2 represents the oxygen available in the brain interstitial space for aerobic energy production (i.e., the product of cerebral blood flow and the arterio-venous oxygen tension difference). The PbtO2 probe should be placed in the area at risk of ischemia (i.e., in the vascular territory in which cerebral vasospasm is expected to occur). The most widely used PbtO2 threshold to define brain tissue hypoxia and initiate specific treatment is between 15 and 20 mm Hg. PbtO2 values can help identify the need for or the effects of various therapies, such as hyperventilation, hyperoxia, induced hypothermia, induced hypertension, red blood cell transfusion, osmotic therapy, and decompressive craniectomy. Finally, a low PbtO2 value is associated with a worse prognosis, and an increase of the PbtO2 value in response to treatment is a marker of good outcome.
Collapse
Affiliation(s)
- Elisa Gouvea Bogossian
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium.
| | - Denise Battaglini
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Sara Fratino
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Andrea Minini
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Giuseppina Gianni
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| | - Marco Fiore
- Department of Women, Child, and General and Specialized Surgery, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, Instituto di Ricovero e Cura a carattere scientifico for Oncology and Neuroscience, San Martino Policlinico Hospital, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Université Libre de Bruxelles, Erasme Hospital, Route de Lennik, 808, 1070, Brussels, Belgium
| |
Collapse
|
22
|
Robba C, Battaglini D, Rasulo F, Lobo FA, Matta B. The importance of monitoring cerebral oxygenation in non brain injured patients. J Clin Monit Comput 2023:10.1007/s10877-023-01002-8. [PMID: 37043157 PMCID: PMC10091334 DOI: 10.1007/s10877-023-01002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023]
Abstract
Over the past few years, the use of non-invasive neuromonitoring in non-brain injured patients has increased, as a result of the recognition that many of these patients are at risk of brain injury in a wide number of clinical scenarios and therefore may benefit from its application which allows interventions to prevent injury and improve outcome. Among these, are post cardiac arrest syndrome, sepsis, liver failure, acute respiratory failure, and the perioperative settings where in the absence of a primary brain injury, certain groups of patients have high risk of neurological complications. While there are many neuromonitoring modalities utilized in brain injured patients, the majority of those are either invasive such as intracranial pressure monitoring, require special skill such as transcranial Doppler ultrasonography, or intermittent such as pupillometry and therefore unable to provide continuous monitoring. Cerebral oximetry using Near infrared Spectroscopy, is a simple non invasive continuous measure of cerebral oxygenation that has been shown to be useful in preventing cerebral hypoxemia both within the intensive care unit and the perioperative settings. At present, current recommendations for standard monitoring during anesthesia or in the general intensive care concentrate mainly on hemodynamic and respiratory monitoring without specific indications regarding the brain, and in particular, brain oximetry. The aim of this manuscript is to provide an up-to-date overview of the pathophysiology and applications of cerebral oxygenation in non brain injured patients as part of non-invasive multimodal neuromonitoring in the early identification and treatment of neurological complications in this population.
Collapse
Affiliation(s)
- Chiara Robba
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy.
- Department of Surgical Science and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Policlinico San Martino, Genoa, Italy
| | - Francesco Rasulo
- Department of Anesthesia and Intensive Care, Spedali Civili University Affiliated Hospital of Brescia, Brescia, Italy
| | - Francisco A Lobo
- Institute of Anesthesiology, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Basil Matta
- Neurocritical Care Unit, Cambridge University Hospitals, Cambridge, UK
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW To describe the available neuromonitoring tools in patients who are comatose after resuscitation from cardiac arrest because of hypoxic-ischemic brain injury (HIBI). RECENT FINDINGS Electroencephalogram (EEG) is useful for detecting seizures and guiding antiepileptic treatment. Moreover, specific EEG patterns accurately identify patients with irreversible HIBI. Cerebral blood flow (CBF) decreases in HIBI, and a greater decrease with no CBF recovery indicates poor outcome. The CBF autoregulation curve is narrowed and right-shifted in some HIBI patients, most of whom have poor outcome. Parameters derived from near-infrared spectroscopy (NIRS), intracranial pressure (ICP) and transcranial Doppler (TCD), together with brain tissue oxygenation, are under investigation as tools to optimize CBF in patients with HIBI and altered autoregulation. Blood levels of brain biomarkers and their trend over time are used to assess the severity of HIBI in both the research and clinical setting, and to predict the outcome of postcardiac arrest coma. Neuron-specific enolase (NSE) is recommended as a prognostic tool for HIBI in the current postresuscitation guidelines, but other potentially more accurate biomarkers, such as neurofilament light chain (NfL) are under investigation. SUMMARY Neuromonitoring provides essential information to detect complications, individualize treatment and predict prognosis in patients with HIBI.
Collapse
Affiliation(s)
- Claudio Sandroni
- Department of Intensive Care, Emergency Medicine and Anaesthesiology, Fondazione Policlinico Universitario ‘Agostino Gemelli’- IRCCS
- Institute of Anaesthesiology and Intensive Care Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Markus Benedikt Skrifvars
- Department of Emergency Medicine and Services, University of Helsinki
- Helsinki University Hospital, Helsinki, Finland
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
24
|
Zhu B, Li H, Xie C, Sun M, Mai C, Xie Z, Wu Z, Zhang J, Nie L. Photoacoustic Microscopic Imaging of Cerebral Vessels for Intensive Monitoring of Metabolic Acidosis. Mol Imaging Biol 2023:10.1007/s11307-023-01815-8. [DOI: 10.1007/s11307-023-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/23/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
|
25
|
Salvagno M, Taccone FS, Bogossian EG. Tissue hyperoxia is not a risk factor for cerebral vasospasm following subarachnoid hemorrhage. J Neurol Sci 2023; 445:120535. [PMID: 36630804 DOI: 10.1016/j.jns.2022.120535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium.
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Brussels, Belgium
| |
Collapse
|
26
|
Roshdy A. Respiratory Monitoring During Mechanical Ventilation: The Present and the Future. J Intensive Care Med 2023; 38:407-417. [PMID: 36734248 DOI: 10.1177/08850666231153371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The increased application of mechanical ventilation, the recognition of its harms and the interest in individualization raised the need for an effective monitoring. An increasing number of monitoring tools and modalities were introduced over the past 2 decades with growing insight into asynchrony, lung and chest wall mechanics, respiratory effort and drive. They should be used in a complementary rather than a standalone way. A sound strategy can guide a reduction in adverse effects like ventilator-induced lung injury, ventilator-induced diaphragm dysfunction, patient-ventilator asynchrony and helps early weaning from the ventilator. However, the diversity, complexity, lack of expertise, and associated cost make formulating the appropriate monitoring strategy a challenge for clinicians. Most often, a big amount of data is fed to the clinicians making interpretation difficult. Therefore, it is fundamental for intensivists to be aware of the principle, advantages, and limits of each tool. This analytic review includes a simplified narrative of the commonly used basic and advanced respiratory monitors along with their limits and future prospective.
Collapse
Affiliation(s)
- Ashraf Roshdy
- Critical Care Medicine Department, Faculty of Medicine, 54562Alexandria University, Alexandria, Egypt.,Critical Care Unit, North Middlesex University Hospital, London, UK
| |
Collapse
|
27
|
Godoy DA, Murillo-Cabezas F, Suarez JI, Badenes R, Pelosi P, Robba C. "THE MANTLE" bundle for minimizing cerebral hypoxia in severe traumatic brain injury. Crit Care 2023; 27:13. [PMID: 36635711 PMCID: PMC9835224 DOI: 10.1186/s13054-022-04242-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/12/2022] [Indexed: 01/13/2023] Open
Abstract
To ensure neuronal survival after severe traumatic brain injury, oxygen supply is essential. Cerebral tissue oxygenation represents the balance between oxygen supply and consumption, largely reflecting the adequacy of cerebral perfusion. Multiple physiological parameters determine the oxygen delivered to the brain, including blood pressure, hemoglobin level, systemic oxygenation, microcirculation and many factors are involved in the delivery of oxygen to its final recipient, through the respiratory chain. Brain tissue hypoxia occurs when the supply of oxygen is not adequate or when for some reasons it cannot be used at the cellular level. The causes of hypoxia are variable and can be analyzed pathophysiologically following "the oxygen route." The current trend is precision medicine, individualized and therapeutically directed to the pathophysiology of specific brain damage; however, this requires the availability of multimodal monitoring. For this purpose, we developed the acronym "THE MANTLE," a bundle of therapeutical interventions, which covers and protects the brain, optimizing the components of the oxygen transport system from ambient air to the mitochondria.
Collapse
Affiliation(s)
- Daniel Agustin Godoy
- Departamento Medicina Critica. Unidad de Cuidados Neurointensivos, Sanatorio Pasteur, Catamarca, Argentina
| | | | - Jose Ignacio Suarez
- Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rafael Badenes
- Anesthesiology and Surgical-Trauma Intensive Care, University Clinic Hospital, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
- INCLIVA Research Medical Institute, Valencia, Spain
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| |
Collapse
|
28
|
Rezoagli E, Petrosino M, Menon DK, Citerio G. The Janus face of oxygen in traumatic brain injury. Intensive Care Med 2023; 49:125-126. [PMID: 36477922 DOI: 10.1007/s00134-022-06939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Matteo Petrosino
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
- Neurointensive Care unit, Neuroscience Department, Fondazione IRCCS San Gerardo, Monza, Italy.
| |
Collapse
|
29
|
Machines that save lives in intensive care: why a special issue in ICM? Intensive Care Med 2022; 48:1271-1273. [PMID: 36066599 PMCID: PMC9446683 DOI: 10.1007/s00134-022-06864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|