1
|
Lacheta L, Gao X, Miles JW, Murata Y, Fukase N, Utsunomiya H, Dornan G, Tashman S, Kashyap R, Altintas B, Ravuri S, Philippon M, Huard J, Millett PJ. Losartan in Combination With Bone Marrow Stimulation Showed Synergistic Effects on Load to Failure and Tendon Matrix Organization in a Rabbit Model. Arthroscopy 2023; 39:2408-2419. [PMID: 37270113 DOI: 10.1016/j.arthro.2023.05.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE To investigate the effects of combining bone marrow stimulation (BMS) with oral losartan to block transforming growth factor β1 (TGF-β1) on biomechanical repair strength in a rabbit chronic injury model. METHODS Forty rabbits were randomly allocated into 4 groups (10 in each group). The supraspinatus tendon was detached and left alone for 6 weeks to establish a rabbit chronic injury model and was then repaired in a surgical procedure using a transosseous, linked, crossing repair construct. The animals were divided into the following groups: control group (group C), surgical repair only; BMS group (group B), surgical repair with BMS of the tuberosity; losartan group (group L), surgical repair plus oral losartan (TGF-β1 blocker) for 8 weeks; and BMS-plus-losartan group (group BL), surgical repair plus BMS plus oral losartan for 8 weeks. At 8 weeks after repair, biomechanical and histologic evaluations were performed. RESULTS The biomechanical testing results showed significantly higher ultimate load to failure in group BL than in group B (P = .029) but not compared with group C or group L. A 2 × 2 analysis-of-variance model found that the effect of losartan on ultimate load significantly depended on whether BMS was performed (interaction term F1,28 = 5.78, P = .018). No difference was found between the other groups. No difference in stiffness was found between any groups. On histologic assessment, groups B, L, and BL showed improved tendon morphology and an organized type I collagen matrix with less type III collagen compared with group C. Group BL showed the most highly organized tendon matrix with more type I collagen and less type III collagen, which indicates less fibrosis. Similar results were found at the bone-tendon interface. CONCLUSIONS Rotator cuff repair combined with oral losartan and BMS of the greater tuberosity showed improved pullout strength and a highly organized tendon matrix in this rabbit chronic injury model. CLINICAL RELEVANCE Tendon healing or scarring is accompanied by the formation of fibrosis, which has been shown to result in compromised biomechanical properties, and is therefore a potential limiting factor in healing after rotator cuff repair. TGF-β1 expression has been shown to play an important role in the formation of fibrosis. Recent studies focusing on muscle healing and cartilage repair have found that the downregulation of TGF-β1 by losartan intake can reduce fibrosis and improve tissue regeneration in animal models.
Collapse
Affiliation(s)
- Lucca Lacheta
- Department of Sports Orthopaedics, Technical University of Munich, Munich, Germany; Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Xueqin Gao
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | | | - Yoichi Murata
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Naomasa Fukase
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | | | - Grant Dornan
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Scott Tashman
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Ritesh Kashyap
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Burak Altintas
- Division of Orthopaedic Surgery, NYC Health + Hospitals/Jacobi, Bronx, New York, U.S.A.; Department of Orthopaedic Surgery, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Sudheer Ravuri
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A
| | - Marc Philippon
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A..
| | - Peter J Millett
- Steadman Philippon Research Institute, Vail, Colorado, U.S.A.; The Steadman Clinic, Vail, Colorado, U.S.A
| |
Collapse
|
2
|
Warren JR, Khalil LS, Pietroski AD, Muh SJ. Injection of adipose stem cells in the treatment of rotator cuff disease - a narrative review of current evidence. Regen Med 2022; 17:477-489. [PMID: 35586993 DOI: 10.2217/rme-2021-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to summarize evidence for the use of adipose stem cell (ASC) injections in the treatment of rotator cuff tears (RCT) and identify future areas of study. A thorough literature search was performed to identify studies investigating the use of ASC injections in the treatment of RCTs. Among animal trials, it is unclear whether ASCs are of benefit for rotator cuff repair. In clinical trials, ASC injection may reduce retear rate with otherwise equivocal clinical outcomes. Although ASC injection may be safe, the literature does not provide a clear consensus as to the efficacy of ASC injections, nor does it delineate which patients would benefit most from this treatment.
Collapse
Affiliation(s)
- Jonathan R Warren
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Lafi S Khalil
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | - Stephanie J Muh
- Department of Orthopedic Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Alt E, Rothoerl R, Hoppert M, Frank HG, Wuerfel T, Alt C, Schmitz C. First immunohistochemical evidence of human tendon repair following stem cell injection: A case report and review of literature. World J Stem Cells 2021; 13:944-970. [PMID: 34367486 PMCID: PMC8316863 DOI: 10.4252/wjsc.v13.i7.944] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current clinical treatment options for symptomatic, partial-thickness rotator cuff tear (sPTRCT) offer only limited potential for true tissue healing and improvement of clinical results. In animal models, injections of adult stem cells isolated from adipose tissue into tendon injuries evidenced histological regeneration of tendon tissue. However, it is unclear whether such beneficial effects could also be observed in a human tendon treated with fresh, uncultured, autologous, adipose derived regenerative cells (UA-ADRCs). A specific challenge in this regard is that UA-ADRCs cannot be labeled and, thus, not unequivocally identified in the host tissue. Therefore, histological regeneration of injured human tendons after injection of UA-ADRCs must be assessed using comprehensive, immunohistochemical and microscopic analysis of biopsies taken from the treated tendon a few weeks after injection of UA-ADRCs.
CASE SUMMARY A 66-year-old patient suffered from sPTRCT affecting the right supraspinatus and infraspinatus tendon, caused by a bicycle accident. On day 18 post injury [day 16 post magnetic resonance imaging (MRI) examination] approximately 100 g of abdominal adipose tissue was harvested by liposuction, from which approximately 75 × 106 UA-ADRCs were isolated within 2 h. Then, UA-ADRCs were injected (controlled by biplanar X-ray imaging) adjacent to the injured supraspinatus tendon immediately after isolation. Despite fast clinical recovery, a follow-up MRI examination 2.5 mo post treatment indicated the need for open revision of the injured infraspinatus tendon, which had not been treated with UA-ADRCs. During this operation, a biopsy was taken from the supraspinatus tendon at the position of the injury. A comprehensive, immunohistochemical and microscopic analysis of the biopsy (comprising 13 antibodies) was indicative of newly formed tendon tissue.
CONCLUSION Injection of UA-ADRCs can result in regeneration of injured human tendons by formation of new tendon tissue.
Collapse
Affiliation(s)
- Eckhard Alt
- Chairman of the Board, Isarklinikum Munich, Munich 80331, Germany
| | - Ralf Rothoerl
- Department of Spine Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Matthias Hoppert
- Department for Orthopedics and Trauma Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Hans-Georg Frank
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Tobias Wuerfel
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Christopher Alt
- Director of Science and Research, InGeneron GmbH, Munich 80331, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| |
Collapse
|
4
|
Chen PC, Kuo YC, Chuong CM, Huang YH. Niche Modulation of IGF-1R Signaling: Its Role in Stem Cell Pluripotency, Cancer Reprogramming, and Therapeutic Applications. Front Cell Dev Biol 2021; 8:625943. [PMID: 33511137 PMCID: PMC7835526 DOI: 10.3389/fcell.2020.625943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Stem cells work with their niches harmoniously during development. This concept has been extended to cancer pathology for cancer stem cells (CSCs) or cancer reprogramming. IGF-1R, a classical survival signaling, has been shown to regulate stem cell pluripotency, CSCs, or cancer reprogramming. The mechanism underlying such cell fate determination is unclear. We propose the determination is due to different niches in embryo development and tumor malignancy which modulate the consequences of IGF-1R signaling. Here we highlight the modulations of these niche parameters (hypoxia, inflammation, extracellular matrix), and the targeted stem cells (embryonic stem cells, germline stem cells, and mesenchymal stem cells) and CSCs, with relevance to cancer reprogramming. We organize known interaction between IGF-1R signaling and distinct niches in the double-sided cell fate with emerging trends highlighted. Based on these new insights, we propose that, through targeting IGF-1R signaling modulation, stem cell therapy and cancer stemness treatment can be further explored.
Collapse
Affiliation(s)
- Pei-Chin Chen
- Department of Education, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Kunze KN, Burnett RA, Wright-Chisem J, Frank RM, Chahla J. Adipose-Derived Mesenchymal Stem Cell Treatments and Available Formulations. Curr Rev Musculoskelet Med 2020; 13:264-280. [PMID: 32328959 DOI: 10.1007/s12178-020-09624-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The use of human adipose-derived mesenchymal stem cells (ADSCs) has gained attention due to its potential to expedite healing and the ease of harvesting; however, clinical evidence is limited, and questions concerning optimal method of delivery and long-term outcomes remain unanswered. RECENT FINDINGS Administration of ADSCs in animal models has been reported to aid in improved healing benefits with enhanced repair biomechanics, superior gross histological appearance of injury sites, and higher concentrations of growth factors associated with healing compared to controls. Recently, an increasing body of research has sought to examine the effects of ADSCs in humans. Several available processing techniques and formulations for ADSCs exist with evidence to suggest benefits with the use of ADSCs, but the superiority of any one method is not clear. Evidence from the most recent clinical studies available demonstrates promising outcomes following treatment of select musculoskeletal pathologies with ADSCs despite reporting variability among ADSCs harvesting and processing; these include (1) healing benefits and pain improvement for rotator cuff and Achilles tendinopathies, (2) improvements in pain and function in those with knee and hip osteoarthritis, and (3) improved cartilage regeneration for osteochondral focal defects of the knee and talus. The limitation to most of this literature is the use of other therapeutic biologics in combination with ADSCs. Additionally, many studies lack control groups, making establishment of causation inappropriate. It is imperative to perform higher-quality studies using consistent, predictable control populations and to standardize formulations of ADSCs in these trials.
Collapse
Affiliation(s)
- Kyle N Kunze
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Robert A Burnett
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Joshua Wright-Chisem
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - Rachel M Frank
- Department of Orthopaedic Surgery, Division of Sports Medicine, University of Colorado School of Medicine, Boulder, CO, USA
| | - Jorge Chahla
- Department of Orthopaedic Surgery, Division of Sports Medicine, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
6
|
Hurd JL, Facile TR, Weiss J, Hayes M, Hayes M, Furia JP, Maffulli N, Winnier GE, Alt C, Schmitz C, Alt EU, Lundeen M. Safety and efficacy of treating symptomatic, partial-thickness rotator cuff tears with fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) isolated at the point of care: a prospective, randomized, controlled first-in-human pilot study. J Orthop Surg Res 2020; 15:122. [PMID: 32238172 PMCID: PMC7110715 DOI: 10.1186/s13018-020-01631-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background This study tested the hypothesis that treatment of symptomatic, partial-thickness rotator cuff tears (sPTRCT) with fresh, uncultured, unmodified, autologous adipose-derived regenerative cells (UA-ADRCs) isolated from lipoaspirate at the point of care is safe and more effective than corticosteroid injection. Methods Subjects aged between 30 and 75 years with sPTRCT who did not respond to physical therapy treatments for at least 6 weeks were randomly assigned to receive a single injection of an average 11.4 × 106 UA-ADRCs (in 5 mL liquid; mean cell viability: 88%) (n = 11; modified intention-to-treat (mITT) population) or a single injection of 80 mg of methylprednisolone (40 mg/mL; 2 mL) plus 3 mL of 0.25% bupivacaine (n = 5; mITT population), respectively. Safety and efficacy were assessed using the American Shoulder and Elbow Surgeons Standardized Shoulder Assessment Form (ASES), RAND Short Form-36 Health Survey, and pain visual analogue scale (VAS) at baseline (BL) as well as 3 weeks (W3), W6, W9, W12, W24, W32, W40, and W52 post treatment. Fat-saturated T2-weighted magnetic resonance imaging of the shoulder was performed at BL as well as at W24 and W52 post treatment. Results No severe adverse events related to the injection of UA-ADRCs were observed in the 12 months post treatment. The risks connected with treatment of sPTRCT with UA-ADRCs were not greater than those connected with treatment of sPTRCT with corticosteroid injection. However, one subject in the corticosteroid group developed a full rotator cuff tear during the course of this pilot study. Despite the small number of subjects in this pilot study, those in the UA-ADRCs group showed statistically significantly higher mean ASES total scores at W24 and W52 post treatment than those in the corticosteroid group (p < 0.05). Discussion This pilot study suggests that the use of UA-ADRCs in subjects with sPTRCT is safe and leads to improved shoulder function without adverse effects. To verify the results of this initial safety and feasibility pilot study in a larger patient population, a randomized controlled trial on 246 patients suffering from sPTRCT is currently ongoing. Trial registration Clinicaltrials.gov ID NCT02918136. Registered September 28, 2016, https://clinicaltrials.gov/ct2/show/NCT02918136. Level of evidence Level I; prospective, randomized, controlled trial.
Collapse
Affiliation(s)
- Jason L Hurd
- Sanford Orthopedics & Sports Medicine Sioux Falls, 1210 W. 18th St., Suite G01, Sioux Falls, SD, 57104, USA.
| | | | | | | | | | - John P Furia
- SUN Orthopedics of Evangelical Community Hospital, Lewisburg, PA, USA
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Salerno, Italy.,Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, London, UK.,School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University School of Medicine, Stoke on Trent, UK
| | | | | | - Christoph Schmitz
- Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Eckhard U Alt
- Sanford Health, Sioux Falls, SD, USA.,InGeneron, Inc., Houston, TX, USA.,Isar Klinikum, Munich, Germany
| | - Mark Lundeen
- Sanford Orthopedics & Sports Medicine Fargo, Fargo, ND, USA
| |
Collapse
|
7
|
Lu LY, Kuang CY, Yin F. Magnetic Resonance Imaging and Biomechanical Analysis of Adipose-derived Stromal Vascular Fraction Applied on Rotator Cuff Repair in Rabbits. Chin Med J (Engl) 2019; 131:69-74. [PMID: 29271383 PMCID: PMC5754961 DOI: 10.4103/0366-6999.221264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Adipose-derived stromal vascular fraction (ADSVF) can be applied to repair tendon and ligament tears. ADSVF treatment has a better therapeutic potential than adipose stem cells alone in promoting the healing of connective tissue injury in rabbit models. Magnetic resonance imaging (MRI) and biomechanical testing were used in this study to evaluate the efficiency of SVF in the healing of tendon-bone interface of a rotator cuff injury after reattachment. Methods: A total of 36 rabbits were studied between March and June 2016, 18 rabbits received the SVF-fibrin glue (SVF-FG) treatment and the other 18 formed the control group. ADSVF was isolated from each rabbit. A bilateral amputation of the supraspinatus tendon and parallel reconstruction was also performed on all the 36 rabbits. Then, a mixture of SVF and FG was injected into the tendon-bone interface of the SVF-FG group, whereas the control group only received FG. The animals were randomly sacrificed at 4, 8, and 12 weeks after surgery (n = 6 per group), respectively. The shoulders were prepared for MRI scanning and analysis of biomechanical properties. Analyses of variance were performed using SPSS 13.0. Results: MRI scanning showed that the signal-to-noise quotient of the SVF-FG group was not significantly higher than that of the control group at either 4 (20.1 ± 3.6 vs. 18.2 ± 3.4, F = 1.570, P = 0.232) or 8 weeks (20.7 ± 3.3 vs. 18.0 ± 3.0, F = 2.162, P = 0.117) posttreatment, and only became significant after 12 weeks (27.5 ± 4.6 vs. 22.1 ± 1.9, F = 4.968, P = 0.009). Biomechanical properties such as the maximum load, maximum strength, and the stiffness for the SVF-FG group were significantly greater than that for the control group at 8 weeks’ posttreatment (maximum load: 166.89 ± 11.62 N vs. 99.40 ± 5.70 N, P < 0.001; maximum strength: 8.22 ± 1.90 N/mm vs. 5.82 ±0.68 N/mm, P < 0.010; and the stiffness: 34.85± 3.00 Pa vs. 24.57± 5.72 Pa, P < 0.010). Conclusion: Local application of ADSVF might lead to better tendon-bone healing in rabbit models.
Collapse
Affiliation(s)
- Liang-Yu Lu
- Department of Joint and Sports Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chun-Yan Kuang
- Department of Rehabilitation, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Feng Yin
- Department of Joint and Sports Medicine, East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
8
|
Use of stem cells and growth factors in rotator cuff tendon repair. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2019; 29:747-757. [PMID: 30627922 DOI: 10.1007/s00590-019-02366-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
The management of rotator cuff tears continues to prove challenging for orthopaedic surgeons. Such tears affect most age groups and can lead to significant morbidity in patients. The aetiology of these tears is likely to be multifactorial; however, an understanding of the mechanisms involved is still under review. Despite advancements in surgical operative techniques and the materials used, post-operative recurrence rates after surgical repair remain high. A growing area of research surrounds biological adjuncts used to improve the healing potential of the repaired tissues. This review of recent publications focuses on the strengths and limitations of using stem cells and growth factors in rotator cuff repair.
Collapse
|
9
|
Suh DS, Lee JK, Yoo JC, Woo SH, Kim GR, Kim JW, Choi NY, Kim Y, Song HS. Atelocollagen Enhances the Healing of Rotator Cuff Tendon in Rabbit Model. Am J Sports Med 2017; 45:2019-2027. [PMID: 28586622 DOI: 10.1177/0363546517703336] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Failure of rotator cuff healing is a common complication despite the rapid development of surgical repair techniques for the torn rotator cuff. PURPOSE To verify the effect of atelocollagen on tendon-to-bone healing in the rabbit supraspinatus tendon compared with conventional cuff repair. STUDY DESIGN Controlled laboratory study. METHODS A tear of the supraspinatus tendon was created and repaired in 46 New Zealand White rabbits. They were then randomly allocated into 2 groups (23 rabbits per group; 15 for histological and 8 for biomechanical test). In the experimental group, patch-type atelocollagen was implanted between bone and tendon during repair; in the control group, the torn tendon was repaired without atelocollagen. Each opposite shoulder served as a sham (tendon was exposed only). Histological evaluation was performed at 4, 8, and 12 weeks. Biomechanical tensile strength was tested 12 weeks after surgery. RESULTS Histological evaluation scores of the experimental group (4.0 ± 1.0) were significantly superior to those of the control group (7.7 ± 2.7) at 12 weeks ( P = .005). The load to failure was significantly higher in the experimental group (51.4 ± 3.9 N) than in the control group (36.4 ± 5.9 N) ( P = .001). CONCLUSION Histological and biomechanical studies demonstrated better results in the experimental group using atelocollagen in a rabbit model of the supraspinatus tendon tear. CLINICAL RELEVANCE Atelocollagen patch could be used in the cuff repair site to enhance healing.
Collapse
Affiliation(s)
- Dong-Sam Suh
- RMS Research Institute, Seoul, Republic of Korea
| | - Jun-Keun Lee
- RMS Research Institute, Seoul, Republic of Korea
| | - Ji-Chul Yoo
- RMS Research Institute, Seoul, Republic of Korea
| | - Sang-Hun Woo
- RMS Research Institute, Seoul, Republic of Korea
| | - Ga-Ram Kim
- RMS Research Institute, Seoul, Republic of Korea
| | - Ju-Won Kim
- RMS Research Institute, Seoul, Republic of Korea
| | - Nam-Yong Choi
- Department of Orthopedic Surgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongdeok Kim
- Department of Orthopedic Surgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun-Seok Song
- Department of Orthopedic Surgery, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Sevivas N, Teixeira FG, Portugal R, Araújo L, Carriço LF, Ferreira N, Vieira da Silva M, Espregueira-Mendes J, Anjo S, Manadas B, Sousa N, Salgado AJ. Mesenchymal Stem Cell Secretome: A Potential Tool for the Prevention of Muscle Degenerative Changes Associated With Chronic Rotator Cuff Tears. Am J Sports Med 2017; 45:179-188. [PMID: 27501832 DOI: 10.1177/0363546516657827] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Massive rotator cuff tears (MRCTs) are usually chronic lesions with pronounced degenerative changes, where advanced fatty degeneration and atrophy can make the tear irreparable. Human mesenchymal stem cells (hMSCs) secrete a range of growth factors and vesicular systems, known as secretome, that mediates regenerative processes in tissues undergoing degeneration. PURPOSE To study the effect of hMSC secretome on muscular degenerative changes and shoulder function on a rat MRCT model. STUDY DESIGN Controlled laboratory study. METHODS A bilateral 2-tendon (supraspinatus and infraspinatus) section was performed to create an MRCT in a rat model. Forty-four Wistar-Han rats were randomly assigned to 6 groups: control group (sham surgery), lesion control group (MRCT), and 4 treated-lesion groups according to the site and periodicity of hMSC secretome injection: single local injection, multiple local injections, single systemic injection, and multiple systemic injections. Forelimb function was analyzed with the staircase test. Atrophy and fatty degeneration of the muscle were evaluated at 8 and 16 weeks after injury. A proteomic analysis was conducted to identify the molecules present in the hMSC secretome that can be associated with muscular degeneration prevention. RESULTS When untreated for 8 weeks, the MRCT rats exhibited a significantly higher fat content (0.73% ± 0.19%) compared with rats treated with a single local injection (0.21% ± 0.04%; P < .01) or multiple systemic injections (0.25% ± 0.10%; P < .05) of hMSC secretome. At 16 weeks after injury, a protective effect of the secretome in the multiple systemic injections (0.62% ± 0.14%; P < .001), single local injection (0.76% ± 0.17%; P < .001), and multiple local injections (1.35% ± 0.21%; P < .05) was observed when compared with the untreated MRCT group (2.51% ± 0.42%). Regarding muscle atrophy, 8 weeks after injury, only the single local injection group (0.0993% ± 0.0036%) presented a significantly higher muscle mass than that of the untreated MRCT group (0.0794% ± 0.0047%; P < .05). Finally, the proteomic analysis revealed the presence of important proteins with muscle regeneration, namely, pigment epithelium-derived factor and follistatin. CONCLUSION The study data suggest that hMSC secretome effectively decreases the fatty degeneration and atrophy of the rotator cuff muscles. CLINICAL RELEVANCE We describe a new approach for decreasing the characteristic muscle degeneration associated with chronic rotator cuff tears. This strategy is particularly important for patients whose tendon healing after later surgical repair could be compromised by the progressing degenerative changes. In addition, both precise intramuscular local injection and multiple systemic secretome injections have been shown to be promising delivery forms for preventing muscle degeneration.
Collapse
Affiliation(s)
- Nuno Sevivas
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Orthopaedics Department, Hospital de Braga, Braga, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Fábio Gabriel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Raquel Portugal
- Pathology Department, Centro Hospitalar São João, Porto, Portugal
| | - Luís Araújo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Nuno Ferreira
- Orthopaedics Department, Hospital de Braga, Braga, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal
| | - Manuel Vieira da Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Orthopaedics Department, Hospital de Braga, Braga, Portugal
| | - João Espregueira-Mendes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal Clínica do Dragão, Espregueira-Mendes Sports Centre, FIFA Medical Centre of Excellence, Estádio do Dragão, Porto, Portugal 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
| | - Sandra Anjo
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal Biocant-Biotechnology Innovation Center, Cantanhede, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Balolong E, Lee S, Nemeno JG, Lee JI. Are They Really Stem Cells? Scrutinizing the Identity of Cells and the Quality of Reporting in the Use of Adipose Tissue-Derived Stem Cells. Stem Cells Int 2015; 2016:2302430. [PMID: 26798353 PMCID: PMC4700199 DOI: 10.1155/2016/2302430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022] Open
Abstract
There is an increasing concern that the term adipose tissue-derived stem cell (ASC) is inappropriately used to refer to the adipose stromal vascular fraction (SVF). To evaluate the accuracy and quality of reporting, 116 manuscripts on the application of ASC in humans and animals were examined based on the 2013 published International Federation for Adipose Therapeutics and Science (IFATS)/ International Society for Cellular Therapy (ISCT) joint statement and in reference to current guidelines for clinical trials and preclinical studies. It is disconcerting that 4 among the 47 papers or 8.51% (CI 2.37-20.38) surveyed after publication of IFATS/ISCT statement reported using ASCs but in fact they used unexpanded cells. 28/47 or 59.57% (CI 44.27-73.63) explicitly reported that adherent cells were used, 35/47 or 74.47% (CI 59.65-86.06) identified expression of surface markers, and 25/47 or 53.19% (CI 14.72-30.65) verified the multilineage potential of the cells. While there are a number of papers examined in this survey that were not able to provide adequate information on the characteristics of ASCs used with some erroneously referring to the SVF as stem cells, there are more room for improvement in the quality of reporting in the application of ASCs in humans and animals.
Collapse
Affiliation(s)
- Ernesto Balolong
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Soojung Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Regeniks Co., Ltd., Seoul, Republic of Korea
| | - Judee Grace Nemeno
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
- Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Republic of Korea
| |
Collapse
|
12
|
Tornero-Esteban P, Hoyas JA, Villafuertes E, Rodríguez-Bobada C, López-Gordillo Y, Rojo FJ, Guinea GV, Paleczny A, Lópiz-Morales Y, Rodriguez-Rodriguez L, Marco F, Fernández-Gutiérrez B. Efficacy of supraspinatus tendon repair using mesenchymal stem cells along with a collagen I scaffold. J Orthop Surg Res 2015; 10:124. [PMID: 26268217 PMCID: PMC4535284 DOI: 10.1186/s13018-015-0269-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/05/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Our main objective was to biologically improve rotator cuff healing in an elderly rat model using mesenchymal stem cells (MSCs) in combination with a collagen membrane and compared against other current techniques. METHODS A chronic rotator cuff tear injury model was developed by unilaterally detaching the supraspinatus (SP) tendons of Sprague-Dawley rats. At 1 month postinjury, the tears were repaired using one of the following techniques: (a) classical surgery using sutures (n = 12), (b) type I collagen membranes (n = 15), and (c) type I collagen membranes + 1 × 106 allogeneic MSCs (n = 14). Lesion restoration was evaluated at 1, 2, and 3 months postinjury based on biomechanical criteria. Continuous variables were described using mean and standard deviation (SD). To analyse the effect of the different surgical treatments in the repaired tendons' biomechanical capabilities (maximum load, stiffness, and deformity), a two-way ANOVA model was used, introducing an interaction between such factor and time (1, 2, and 3 months postinjury). RESULTS With regard to maximum load, we observed an almost significant interaction between treatment and time (F = 2.62, df = 4, p = 0.053). When we analysed how this biomechanical capability changed with time for each treatment, we observed that repair with OrthADAPT and MSCs was associated with a significant increase in maximum load (p = 0.04) between months 1 and 3. On the other hand, when we compared the different treatments among themselves at different time points, we observed that the repair with OrthADAPT and MSCs has associated with a significant higher maximum load, when compared with the use of suture, but only at 3 months (p = 0.014). With regard to stiffness and deformity, no significant interaction was observed (F = 1.68, df = 4, p = 0.18; F = 0.40, df = 4, p = 0.81; respectively). CONCLUSIONS The implantation of MSCs along with a collagen I scaffold into surgically created tendon defects is safe and effective. MSCs improved the tendon's maximum load over time, indicating that MSCs could help facilitate the dynamic process of tendon repair.
Collapse
Affiliation(s)
- Pilar Tornero-Esteban
- UGC de Reumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - José Antonio Hoyas
- UGC de Reumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Esther Villafuertes
- UGC de Reumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Cruz Rodríguez-Bobada
- Dpto de Medicina y Cirugía Experimentales, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Yamila López-Gordillo
- Dpto de Anatomía y Embriología Humana I, Facultad de Medicina Universidad, Complutense de Madrid, Madrid, Spain
| | - Francisco J Rojo
- Dpto de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Gustavo V Guinea
- Dpto de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid, Spain.,Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Anna Paleczny
- Dpto de Ciencia de Materiales, Universidad Politécnica de Madrid, Madrid, Spain.,Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Yaiza Lópiz-Morales
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Luis Rodriguez-Rodriguez
- UGC de Reumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Fernando Marco
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Benjamín Fernández-Gutiérrez
- UGC de Reumatología, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
13
|
2013 Neer Award: Effect of the adipose-derived stem cell for the improvement of fatty degeneration and rotator cuff healing in rabbit model. J Shoulder Elbow Surg 2014; 23:445-55. [PMID: 24129058 DOI: 10.1016/j.jse.2013.07.054] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/24/2013] [Accepted: 07/28/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND This study was conducted to verify the effects of adipose-derived stem cells (ADSCs) on tendon healing and reversal of fatty infiltration in a chronic rotator cuff tear model by using the rabbit subscapularis (SSC). METHODS The SSC insertions in 32 rabbits were cut bilaterally. After 6 weeks, secondary procedures were performed bilaterally, dividing the rabbits into 4 groups of 8 rabbits each as follows: the ADSC+repair group, saline+repair group, ADSC-only group, and saline-only group. A fifth group of 8 rabbits served as normal controls (control group). Electromyographic, biomechanical, and histologic analyses were performed 6 weeks after the secondary procedures. RESULTS All SSC tendons in the ADSC-only and saline-only groups failed to heal and were excluded from the electromyographic and biomechanical tests. On electromyographic evaluation, the ADSC+repair group exhibited a larger compound muscle action potential area than the saline+repair group (11.86 ± 2.97 ms · mV vs 9.42 ± 3.57 ms · mV, P = .029), and this response was almost at the level of the control group (13.17 ± 6.6 3 ms · mV, P = .456). Biomechanically, the load-to-failure of the ADSC+repair group (87.02 ± 29.81 N) was higher than that of the saline+repair group (59.85 ± 37.77 N), although this difference did not reach statistical significance (P = .085). Histologically, the mean proportions of fatty infiltration in the SSC muscles were 29% ± 15%, 43% ± 9%, 51% ± 14%, 63% ± 10%, and 18% ± 9% for the ADSC+repair, saline+repair, ADSC-only, saline-only, and control groups, respectively (P < .001). The degree of fat staining increased from the ADSC+repair group (unclear or weak) to the saline-only group (strongly present). CONCLUSION Local administration of ADSCs might have the possibility to improve muscle function and tendon healing and decrease fatty infiltration after cuff repair.
Collapse
|