1
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Tendon 3D Scaffolds Establish a Tailored Microenvironment Instructing Paracrine Mediated Regenerative Amniotic Epithelial Stem Cells Potential. Biomedicines 2022; 10:biomedicines10102578. [PMID: 36289840 PMCID: PMC9599634 DOI: 10.3390/biomedicines10102578] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Tendon tissue engineering aims to develop effective implantable scaffolds, with ideally the native tissue’s characteristics, able to drive tissue regeneration. This research focused on fabricating tendon-like PLGA 3D biomimetic scaffolds with highly aligned fibers and verifying their influence on the biological potential of amniotic epithelial stem cells (AECs), in terms of tenodifferentiation and immunomodulation, with respect to fleeces. The produced 3D scaffolds better resemble native tendon tissue, both macroscopically, microscopically, and biomechanically. From a biological point of view, these constructs were able to instruct AECs genotypically and phenotypically. In fact, cells engineered on 3D scaffolds acquired an elongated tenocyte-like morphology; this was different from control AECs, which retained their polygonal morphology. The boosted AECs tenodifferentiation by 3D scaffolds was confirmed by the upregulation of tendon-related genes (SCX, COL1 and TNMD) and TNMD protein expression. The produced constructs also prompted AECs’ immunomodulatory potential, both at the gene and paracrine level. This enhanced immunomodulatory profile was confirmed by a greater stimulatory effect on THP-1-activated macrophages. These biological effects have been related to the mechanotransducer YAP activation evidenced by its nuclear translocation. Overall, these results support the biomimicry of PLGA 3D scaffolds, revealing that not only fiber alignment but also scaffold topology provide an in vitro favorable tenodifferentiative and immunomodulatory microenvironment for AECs that could potentially stimulate tendon regeneration.
Collapse
|
3
|
Schulze-Tanzil GG, Delgado-Calcares M, Stange R, Wildemann B, Docheva D. Tendon healing: a concise review on cellular and molecular mechanisms with a particular focus on the Achilles tendon. Bone Joint Res 2022; 11:561-574. [PMID: 35920195 PMCID: PMC9396922 DOI: 10.1302/2046-3758.118.bjr-2021-0576.r1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tendon is a bradytrophic and hypovascular tissue, hence, healing remains a major challenge. The molecular key events involved in successful repair have to be unravelled to develop novel strategies that reduce the risk of unfavourable outcomes such as non-healing, adhesion formation, and scarring. This review will consider the diverse pathophysiological features of tendon-derived cells that lead to failed healing, including misrouted differentiation (e.g. de- or transdifferentiation) and premature cell senescence, as well as the loss of functional progenitors. Many of these features can be attributed to disturbed cell-extracellular matrix (ECM) or unbalanced soluble mediators involving not only resident tendon cells, but also the cross-talk with immigrating immune cell populations. Unrestrained post-traumatic inflammation could hinder successful healing. Pro-angiogenic mediators trigger hypervascularization and lead to persistence of an immature repair tissue, which does not provide sufficient mechano-competence. Tendon repair tissue needs to achieve an ECM composition, structure, strength, and stiffness that resembles the undamaged highly hierarchically ordered tendon ECM. Adequate mechano-sensation and -transduction by tendon cells orchestrate ECM synthesis, stabilization by cross-linking, and remodelling as a prerequisite for the adaptation to the increased mechanical challenges during healing. Lastly, this review will discuss, from the cell biological point of view, possible optimization strategies for augmenting Achilles tendon (AT) healing outcomes, including adapted mechanostimulation and novel approaches by restraining neoangiogenesis, modifying stem cell niche parameters, tissue engineering, the modulation of the inflammatory cells, and the application of stimulatory factors.Cite this article: Bone Joint Res 2022;11(8):561-574.
Collapse
Affiliation(s)
| | - Manuel Delgado-Calcares
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine (IMM), University Hospital Münster, Münster, Germany
| | - Britt Wildemann
- Department of Experimental Trauma Surgery, University Hospital Jena, Jena, Germany
| | - Denitsa Docheva
- Department of Musculoskeletal Tissue Regeneration, Orthopaedic Hospital König-Ludwig-Haus, University of Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Mengli Xu, Su J, Yue Z, Yu Y, Zhao X, Xie X. Inflammation and Limb Regeneration: The Role of the Chemokines. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422030055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Calejo I, Reis RL, Domingues RMA, Gomes ME. Texturing Hierarchical Tissues by Gradient Assembling of Microengineered Platelet-Lysates Activated Fibers. Adv Healthc Mater 2022; 11:e2102076. [PMID: 34927396 DOI: 10.1002/adhm.202102076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Indexed: 11/07/2022]
Abstract
The heterogeneity of hierarchical tissues requires designing multipart engineered constructs as suitable tissue replacements. Herein, the incorporation of platelet lysate (PL) within an electrospun fiber core is proposed aiming for the fabrication of functionally graded 3D scaffolds for heterotypic tissues regeneration, such as tendon-to-bone interfaces. First, anisotropic yarns (A-Yarns) and isotropic threads with nanohydroxyapatite (I-Threads/PL@nHAp) are fabricated to recreate the tendon- and bone-microstructures and both incorporated with PL using emulsion electrospinning for a sustained and local delivery of growth factors, cytokines, and chemokines. Biological performance using human adipose-derived stem cells demonstrates that A-Yarns/PL induce a higher expression of scleraxis, a tenogenic-marker, while in I-Threads/PL@nHAp, higher alkaline phosphatase activity and matrix mineralization suggest an osteogenic commitment without the need for biochemical supplementation compared to controls. As a proof-of-concept, functional 3D gradient scaffolds are fabricated using a weaving technique, resulting in 3D textured hierarchical constructs with gradients in composition and topography. Additionally, the precise delivery of bioactive cues together with in situ biophysical features guide the commitment into a phenotypic gradient exhibiting chondrogenic and osteochondrogenic profiles in the interface of scaffolds. Overall, a promising patch solution for the regeneration of tendon-to-bone tissue interface through the fabrication of PL-functional 3D gradient constructs is demonstrated.
Collapse
Affiliation(s)
- Isabel Calejo
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| | - Rui L. Reis
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| | - Rui M. A. Domingues
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| | - Manuela E. Gomes
- 3B's Research Group i3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics University of Minho Barco Guimarães 4805‐017 Portugal
| |
Collapse
|
6
|
Moreno SE, Massee M, Koob TJ. Dehydrated human amniotic membrane regulates tenocyte expression and angiogenesis in vitro: Implications for a therapeutic treatment of tendinopathy. J Biomed Mater Res B Appl Biomater 2021; 110:731-742. [PMID: 34611976 PMCID: PMC9292862 DOI: 10.1002/jbm.b.34951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/12/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022]
Abstract
Tendon injuries are among the most common ailments of the musculoskeletal system. Prolonged inflammation and persistent vasculature are common complications associated with poor healing. Damaged tendon, replaced with scar tissue, never completely regains the native structural or biomechanical properties. This study evaluated the effects of micronized dehydrated human amnion/chorion membrane (μdHACM) on the inflammatory environment and hypervascularity associated with tendinopathy. Stimulation of human tenocytes with interleukin‐1 beta (IL1β) induced the expression of inflammatory and catabolic markers, resulting in secretion of active MMPs and type 3 collagen that is associated with a degenerative phenotype. Treatment with μdHACM diminished the effects of IL1β, reducing the expression of inflammatory genes, proteases, and extracellular matrix components, and decreasing the presence of active MMP and type 3 collagen. Additionally, a co‐culture model was developed to evaluate the effects of μdHACM on angiogenesis associated with tendinopathy. Micronized dHACM differentially regulated angiogenesis depending upon the cellular environment in which it was placed. This phenomenon can be explained in part through the detection of both angiogenic protagonists and antagonists in μdHACM. Observations from this study identify a mechanism by which μdHACM regulates inflammatory processes and angiogenesis in vitro, two key pathways implicated in tendinopathic injuries.
Collapse
|
7
|
Wang T, Li K, Xiao S, Xia Y. A Plausible Role for Collectins in Skin Immune Homeostasis. Front Immunol 2021; 12:594858. [PMID: 33790889 PMCID: PMC8006919 DOI: 10.3389/fimmu.2021.594858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
The skin is a complex organ that faces the external environment and participates in the innate immune system. Skin immune homeostasis is necessary to defend against external microorganisms and to recover from stress to the skin. This homeostasis depends on interactions among a variety of cells, cytokines, and the complement system. Collectins belong to the lectin pathway of the complement system, and have various roles in innate immune responses. Mannose-binding lectin (MBL), collectin kidney 1, and liver (CL-K1, CL-L1) activate the lectin pathway, while all have multiple functions, including recognition of pathogens, opsonization of phagocytosis, and modulation of cytokine-mediated inflammatory responses. Certain collectins are localized in the skin, and their expressions change during skin diseases. In this review, we summarize important advances in our understanding of how MBL, surfactant proteins A and D, CL-L1, and CL-K1 function in skin immune homeostasis. Based on the potential roles of collectins in skin diseases, we suggest therapeutic strategies for skin diseases through the targeting of collectins and relevant regulators.
Collapse
Affiliation(s)
- Tian Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengxiang Xiao
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Chisari E, Rehak L, Khan WS, Maffulli N. The role of the immune system in tendon healing: a systematic review. Br Med Bull 2020; 133:49-64. [PMID: 32163543 DOI: 10.1093/bmb/ldz040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The role of the immune system in tendon healing relies on polymorphonucleocytes, mast cells, macrophages and lymphocytes, the 'immune cells' and their cytokine production. This systematic review reports how the immune system affects tendon healing. SOURCES OF DATA We registered our protocol (registration number: CRD42019141838). After searching PubMed, Embase and Cochrane Library databases, we included studies of any level of evidence published in peer-reviewed journals reporting clinical or preclinical results. The PRISMA guidelines were applied, and risk of bias and the methodological quality of the included studies were assessed. We excluded all the articles with high risk of bias and/or low quality after the assessment. We included 62 articles assessed as medium or high quality. AREAS OF AGREEMENT Macrophages are major actors in the promotion of proper wound healing as well as the resolution of inflammation in response to pathogenic challenge or tissue damage. The immune cells secrete cytokines involving both pro-inflammatory and anti-inflammatory factors which could affect both healing and macrophage polarization. AREAS OF CONTROVERSY The role of lymphocytes, mast cells and polymorphonucleocytes is still inconclusive. GROWING POINTS The immune system is a major actor in the complex mechanism behind the healing response occurring in tendons after an injury. A dysregulation of the immune response can ultimately lead to a failed healing response. AREAS TIMELY FOR DEVELOPING RESEARCH Further studies are needed to shed light on therapeutic targets to improve tendon healing and in managing new way to balance immune response.
Collapse
Affiliation(s)
- Emanuele Chisari
- University of Catania, Department of General Surgery and Medical Specialities, Via Santa Sofia 78, Catania 95123, Italy
| | - Laura Rehak
- Athena Biomedical innovations, Viale Europa 139, Florence, 50126, Italy
| | - Wasim S Khan
- Division of Trauma & Orthopaedics, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, UK
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, School of Medicine and Surgery, University of Salerno, Via Salvator Allende 23, Baronissi, 89100 Salerno, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D'Aragona, Largo Città di Ippocrate, Salerno, 84131 Italy.,Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, 275 Bancroft Road, London E1 4DG, UK.,School of Pharmacy and Bioengineering, Keele University of School of Medicine, Guy Hilton Research Centre, Thornburrow Drive, Hartshill, Stoke-on-Trent, ST4 7QB, UK
| |
Collapse
|
9
|
Alim MA, Peterson M, Pejler G. Do Mast Cells Have a Role in Tendon Healing and Inflammation? Cells 2020; 9:cells9051134. [PMID: 32375419 PMCID: PMC7290807 DOI: 10.3390/cells9051134] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding the links between the tendon healing process, inflammatory mechanisms, and tendon homeostasis/pain after tissue damage is crucial in developing novel therapeutics for human tendon disorders. The inflammatory mechanisms that are operative in response to tendon injury are not fully understood, but it has been suggested that inflammation occurring in response to nerve signaling, i.e., neurogenic inflammation, has a pathogenic role. The mechanisms driving such neurogenic inflammation are presently not clear. However, it has recently been demonstrated that mast cells present within the injured tendon can express glutamate receptors, raising the possibility that mast cells may be sensitive to glutamate signaling and thereby modulate neurogenic inflammation following tissue injury. In this review, we discuss the role of mast cells in the communication with peripheral nerves, and their emerging role in tendon healing and inflammation after injury.
Collapse
Affiliation(s)
- Md Abdul Alim
- Department of Public Health and Caring Sciences, General Medicine, Uppsala University, 751 22 Uppsala, Sweden;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Correspondence: (M.A.A.); (G.P.)
| | - Magnus Peterson
- Department of Public Health and Caring Sciences, General Medicine, Uppsala University, 751 22 Uppsala, Sweden;
- Academic Primary Health Care, Region Uppsala, Sweden
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
- Correspondence: (M.A.A.); (G.P.)
| |
Collapse
|
10
|
Zhou Z, Zeiter S, Schmid T, Sakai D, Iatridis JC, Zhou G, Richards RG, Alini M, Grad S, Li Z. Effect of the CCL5-Releasing Fibrin Gel for Intervertebral Disc Regeneration. Cartilage 2020; 11:169-180. [PMID: 29582673 PMCID: PMC7097979 DOI: 10.1177/1947603518764263] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE To explore if chemokine (C-C motif) ligand 5 (CCL5) delivery could recruit annulus fibrosus (AF) cells to the injury sites and facilitate the repair of ruptured AF. DESIGN The effects of CCL5 on bovine AF cells in vitro were tested by transwell assay and quantitative real-time polymerase chain reaction. Fibrin gel containing CCL5 was used to treat annulotomized bovine caudal discs cultured under dynamic loading conditions. After 14 days of loading, the samples were collected for histological examination. A pilot animal study was performed using sheep cervical discs to investigate the effect of fibrin gel encapsulated with CCL5 for the treatment of ruptured AF. After 14 weeks, the animals were sacrificed, and the discs were scanned with magnetic resonance imaging before histopathological examination. RESULTS CCL5 showed a chemotactic effect on AF cells in a dose-dependent manner. AF cells cultured with CCL5 in vitro did not show any change of the gene expression of CCL5 receptors, catabolic and proinflammatory markers. In vitro release study showed that CCL5 exhibited sustained release from the fibrin gel into the culture media; however, in the organ culture study CCL5 did not stimulate homing of AF cells toward the defect sites. The pilot animal study did not show any repair effect of CCL5. CONCLUSIONS CCL5 has a chemotactic effect on AF cells in vitro, but no ex vivo or in vivo regenerative effect when delivered within fibrin gel. Further study with a stronger chemotactic agent and/or an alternate biomaterial that is more conductive of cell migration is warranted.
Collapse
Affiliation(s)
- Zhiyu Zhou
- Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- AO Research Institute Davos, Davos, Switzerland
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Stephan Zeiter
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Tanja Schmid
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Daisuke Sakai
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Department of Orthopaedic Surgery, Surgical Science and Research Center for Regenerative Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - James C. Iatridis
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Leni & Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - R. Geoff Richards
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Sibylle Grad
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
- Collaborative Research Partner Annulus Fibrosus Repair Program, AO Foundation, Davos, Switzerland
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
11
|
Chisari E, Rehak L, Khan WS, Maffulli N. Tendon healing in presence of chronic low-level inflammation: a systematic review. Br Med Bull 2019; 132:97-116. [PMID: 31838495 DOI: 10.1093/bmb/ldz035] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tendinopathy is a common musculoskeletal condition affecting subjects regardless of their activity level. Multiple inflammatory molecules found in ex vivo samples of human tendons are related to the initiation or progression of tendinopathy. Their role in tendon healing is the subject of this review. SOURCES OF DATA An extensive review of current literature was conducted using PubMed, Embase and Cochrane Library using the term 'tendon', as well as some common terms of tendon conditions such as 'tendon injury OR (tendon damage) OR tendonitis OR tendinopathy OR (chronic tendonitis) OR tendinosis OR (chronic tendinopathy) OR enthesitis' AND 'healing' AND '(inflammation OR immune response)' as either key words or MeSH terms. AREAS OF AGREEMENT An environment characterized by a low level of chronic inflammation, together with increased expression of inflammatory cytokines and growth factors, may influence the physiological tendon healing response after treatment. AREAS OF CONTROVERSY Most studies on this topic exhibited limited scientific translational value because of their heterogeneity. The evidence associated with preclinical studies is limited. GROWING POINTS The role of inflammation in tendon healing is still unclear, though it seems to affect the overall outcome. A thorough understanding of the biochemical mediators of healing and their pathway of pain could be used to target tendinopathy and possibly guide its management. AREAS TIMELY FOR DEVELOPING RESEARCH We require further studies with improved designs to effectively evaluate the pathogenesis and progression of tendinopathy to identify cellular and molecular targets to improve outcomes.
Collapse
Affiliation(s)
- Emanuele Chisari
- University of Catania, Departmento of General Surgery and Medical Specialities, Via Santa Sofia 78, Catania 95123, Italy
| | - Laura Rehak
- Athena Biomedical Innovations, Viale Europa 139, Florence, 50126, Italy
| | - Wasim S Khan
- Division of Trauma and Orthopaedics, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge CB2 0QQ, United Kingdom
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, Via Salvador Allende, 43, 84081 Baronissi SA, Italy, Salerno, Italy.,Clinica Ortopedica, Ospedale San Giovanni di Dio e Ruggi D'Aragona, Largo Città di Ippocrate, Salerno, 84131, Italy.,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, England.,School of Medicine, Institute of Science and Technology in Medicine, Guy Hilton Research Centre, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, England
| |
Collapse
|
12
|
He Q, Shen M, Tong F, Cong M, Zhang S, Gong Y, Ding F. Differential Gene Expression in Primary Cultured Sensory and Motor Nerve Fibroblasts. Front Neurosci 2019; 12:1016. [PMID: 30686982 PMCID: PMC6333708 DOI: 10.3389/fnins.2018.01016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Fibroblasts (Fbs) effectively promote Schwann cells (SCs) migration, proliferation, and neurite regeneration. Whether Fbs express different motor and sensory phenotypes that regulate the cell behavior and peripheral nerve function has not been elucidated. The present study utilized the whole rat genome microarray analysis and identified a total of 121 differentially expressed genes between the primary cultured motor and sensory Fbs. The genes with high expression in sensory Fbs were related to proliferation, migration, chemotaxis, motility activation, protein maturation, defense response, immune system, taxis, and regionalization, while those with high expression in motor Fbs were related to neuron differentiation, segmentation, and pattern specification. Thus, the significant difference in the expression of some key genes was found to be associated with cell migration and proliferation, which was further validated by quantitative real-time PCR (qPCR). The cell proliferation or migration analysis revealed a higher rate of cell migration and proliferation of sensory Fbs than motor Fbs. Moreover, the downregulated expression of chemokine (C-X-C motif) ligand 10 (CXCL10) and chemokine (C-X-C motif) ligand 3 (CXCL3) suppressed the proliferation rate of sensory Fbs, while it enhanced that of the motor Fbs. However, the migration rate of both Fbs was suppressed by the downregulated expression of CXCL10 or CXCL3. Furthermore, a higher proportion of motor or sensory SCs migrated toward their respective (motor or sensory) Fbs; however, few motor or sensory SCs co-cultured with the other type of Fbs (sensory or motor, respectively), migrated toward the Fbs. The current findings indicated that Fbs expressed the distinct motor and sensory phenotypes involved in different patterns of gene expression, biological processes, and effects on SCs. Thus, this study would provide insights into the biological differences between motor and sensory Fbs, including the role in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Qianru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Fang Tong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Meng Cong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Shibo Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yanpei Gong
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
13
|
Farinas AF, Bamba R, Pollins AC, Cardwell NL, Nanney LB, Thayer WP. Burn wounds in the young versus the aged patient display differential immunological responses. Burns 2018; 44:1475-1481. [PMID: 29895402 DOI: 10.1016/j.burns.2018.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/12/2018] [Accepted: 05/17/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND Individuals in the geriatric age range are more prone than younger individuals to convert their partial thickness thermal burns into full thickness injuries. We hypothesized that this often observed clinical phenomenon is strongly related to differential local injury responses mediated by the immune system. MATERIALS & METHODS Skin samples from areas with partial thickness thermal burns were obtained during routine excision and grafting procedures between post burn days 2-6. Tissue samples were grouped by age ranges with young patients defined as <30 years of age or aged patients defined as >65. Formalin fixed samples were used to confirm depth of burn injury and companion sections were homogenized for multiplex analysis using a Luminex platform. Immunohistochemical staining was used to quantify total macrophage numbers as well as the M1 and M2 subpopulations. RESULTS Our analysis includes samples derived from 11 young subjects (mean age=23) and 3 aged subjects (mean age=79.2). Our initial survey of analytes examined 31 cytokines/chemokines. Twelve were excluded from consideration as they were present in concentrations either above or below the optimal detection range. Two analytes emerged as candidate molecules with significant differences between the young and the aged patient responses to burn injury. EGF levels were on average 21.69pg/ml in young vs 14.87pg/ml in aged (p=0.032). RANTES/CCL5 levels were on average 14.86pg/ml in young vs 4.26pg/ml in aged (p=0.026). Elevated macrophage numbers were present within wounds of younger patients compared to the old (p<0.01), with a higher concentration of the M1 type in the elderly (p>0.05). CONCLUSION Our study has identified at least 2 well known cytokines, CCL5 (RANTES) and EGF, which are differentially regulated in response to burn injury by young versus aged burn victims. Evidence suggests that a proinflammatory environment can explain the high conversion rate from partial to full thickness burns. Our data suggest the need for future studies at the point of injury (cutaneous targets) that may be modulated by post burn release of cytokines/chemokines.
Collapse
Affiliation(s)
- Angel F Farinas
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States
| | - Ravinder Bamba
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States; Georgetown University, Department of Surgery, Washington, DC, United States
| | - Alonda C Pollins
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States
| | - Nancy L Cardwell
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States
| | - Lillian B Nanney
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States; Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, United States
| | - Wesley P Thayer
- Vanderbilt University Medical Center, Department of Plastic Surgery, Nashville, TN, United States; Vanderbilt University Medical Center, Department of Biomedical Engineering, Nashville, TN, United States; VA Tennessee Healthcare System, Nashville, TN, United States.
| |
Collapse
|
14
|
Pansani TN, Basso FG, Soares DG, Turrioni APDS, Hebling J, de Souza Costa CA. Photobiomodulation in the Metabolism of Lipopolysaccharides-exposed Epithelial Cells and Gingival Fibroblasts. Photochem Photobiol 2018; 94:598-603. [DOI: 10.1111/php.12877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Taisa Nogueira Pansani
- Department of Dental Materials and Prosthodontics; Araraquara School of Dentistry; UNESP - Univ. Estadual Paulista; Araraquara SP Brazil
| | - Fernanda Gonçalves Basso
- Department of Physiology and Pathology; Araraquara School of Dentistry; UNESP - Univ. Estadual Paulista; Araraquara SP Brazil
| | - Diana Gabriela Soares
- Department of Dental Materials and Prosthodontics; Araraquara School of Dentistry; UNESP - Univ. Estadual Paulista; Araraquara SP Brazil
| | | | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry; Araraquara of Dentistry; UNESP - Univ. Estadual Paulista; Araraquara SP Brazil
| | - Carlos Alberto de Souza Costa
- Department of Physiology and Pathology; Araraquara School of Dentistry; UNESP - Univ. Estadual Paulista; Araraquara SP Brazil
| |
Collapse
|
15
|
Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, Li S. Neural crest‐derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen 2018; 26:54-63. [DOI: 10.1111/wrr.12614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Kang Xu
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022 China
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing China
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| | - Xin Pan
- College of PharmacySouth‐Central University for NationalitiesWuhan China
| | - Xuefeng Qiu
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022 China
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| | - Dong Wang
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| | - Nianguo Dong
- Department of Cardiovascular SurgeryUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430022 China
| | - Li Yang
- National Innovation and Attracting Talents “111” Base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing China
| | - Song Li
- Department of BioengineeringUniversity of California at Los AngelesLos Angeles CaliforniaUSA
| |
Collapse
|
16
|
Exploring Stem Cells and Inflammation in Tendon Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1089:37-46. [PMID: 30088259 DOI: 10.1007/5584_2018_258] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tendon injuries are frequent and are responsible for substantial morbidity both in sports and in the workplace. Despite the endogenous mechanisms of tendon repair and regeneration, tendon healing upon injury is slow and often insufficient to restore complete biomechanics functionality.Inflammation has a pivotal role in tendon healing and failed healing responses contribute to the progression of tendinopathies. However, the molecular and cellular mechanisms involved are poorly understood requiring further insights.During inflammation, bioactive molecules such as cytokines secreted locally at the injury site, influence resident stem cells that contribute as modulatory agents over the niche towards homeostasis, holding great promise as therapeutic agents for tendon pathological conditions associated to unresolved inflammation and failed healing.This review overviews the role of cytokines and resident cells, focusing on the participation of tendon stem cell population in inflammation and tendon healing upon injury and their potential action in resolution of pathological conditions.
Collapse
|
17
|
Platelet-rich plasma: combinational treatment modalities for musculoskeletal conditions. Front Med 2017; 12:139-152. [DOI: 10.1007/s11684-017-0551-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/30/2017] [Indexed: 12/12/2022]
|
18
|
Jiang H, Qin XJ, Li WP, Ma R, Wang T, Li ZQ. LncRNAs expression in adjuvant-induced arthritis rats reveals the potential role of LncRNAs contributing to rheumatoid arthritis pathogenesis. Gene 2016; 593:131-142. [PMID: 27511374 DOI: 10.1016/j.gene.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/28/2016] [Accepted: 08/05/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Long non-coding RNAs (LncRNAs) are an important class of widespread molecules involved in diverse biological functions, which are exceptionally expressed in numerous types of diseases. Currently, limited study on LncRNA in rheumatoid arthritis (RA) is available. In this study, we aimed to identify the specifically expressed LncRNA that are relevant to adjuvant-induced arthritis (AA) in rats, and to explore the possible molecular mechanisms of RA pathogenesis. METHODS To identify LncRNAs specifically expressed in rheumatoid arthritis, the expression of LncRNAs in synoviums of rats from the model group (n=3) was compared with that in the control group (n=3) using Arraystar Rat LncRNA/mRNA microarray and real-time polymerase chain reaction (RT-PCR). RESULTS Up to 260 LncRNAs were found to be differentially expressed (≥1.5-fold-change) in the synoviums between AA model and the normal rats (170 up-regulated and 90 down-regulated LncRNAs in AA rats compared with normal rats). Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between the differentially expressed LncRNAs and mRNAs. Six LncRNAs, XR_008357, U75927, MRAK046251, XR_006457, DQ266363 and MRAK003448, were selected to analyze the relationship between LncRNAs and RA via the CNC network and GO analysis. Real-time PCR result confirmed that the six LncRNAs were specifically expressed in the AA rats. CONCLUSIONS These results revealed that clusters of LncRNAs were uniquely expressed in AA rats compared with controls, which manifests that these differentially expressed LncRNAs in AA rats might play a vital role in RA development. Up-regulation or down-regulation of the six LncRNAs might contribute to the molecular mechanism underlying RA. To sum up, our study provides potential targets for treatment of RA and novel profound understanding of the pathogenesis of RA.
Collapse
Affiliation(s)
- Hui Jiang
- College of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, China; Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiu-Juan Qin
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Wei-Ping Li
- College of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, China.
| | - Rong Ma
- Department of Integrative Physiology and Cardiovascular Research Institute, University of North Texas Health Sciences Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.
| | - Ting Wang
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Zhu-Qing Li
- College of Basic Medicine, Anhui Medical University, 81 Meishan Road, Hefei, China.
| |
Collapse
|
19
|
Rubio-Azpeitia E, Bilbao AM, Sánchez P, Delgado D, Andia I. The Properties of 3 Different Plasma Formulations and Their Effects on Tendinopathic Cells. Am J Sports Med 2016; 44:1952-61. [PMID: 27161868 DOI: 10.1177/0363546516643814] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tendinopathies are attributed to failure of the healing process and inadequate tissue remodeling. Plasma injections can trigger regenerative responses by modifying the molecular microenvironment. PURPOSE To examine the differences in the mitotic, chemotactic, anabolic, and inflammatory effects between leukocyte- and platelet-rich plasma (L-PRP), platelet-rich plasma (PRP), and platelet-poor plasma (PPP). STUDY DESIGN Controlled laboratory study. METHODS Tendinopathic cells were cultured in 3-dimensional (3D) hydrogels formed using PPP, PRP, and L-PRP. Cell migration was evaluated using a μ-Slide chemotaxis chamber with video microscopy. Proliferation was assessed using XTT assays. Expression of genes associated with matrix turnover, including type 1 collagen (COL1A1), COL3A1, aggrecan, decorin, fibronectin, matrix metalloproteinase 1 (MMP-1), MMP-3, A Disintegrin-Like And Metalloprotease With Thrombospondin Type 1 Motif proteins 4 (ADAMTS-4), and ADAMTS-5, was assessed using real-time reverse-transcription polymerase chain reaction. Secreted inflammatory proteins, including interleukin (IL)-1β, IL-6, IL-8, monocyte chemotactic protein 1 (MCP-1), and regulated on activation, normal T cell expressed and secreted (RANTES), as well as vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF), were quantified using enzyme-linked immunosorbent assay. RESULTS Tendinopathic cells migrate at a higher velocity along L-PRP and PRP than along PPP gradients. PRP and L-PRP promote hypercellularity. PPP and PRP showed more pronounced anabolic properties, as demonstrated by enhanced COL1A1 and COL3A1 and reduced MMP-1 expression. Decorin, fibronectin, and aggrecan were downregulated in L-PRP compared with PPP and PRP. L-PRP and PRP were shown to be more proinflammatory than PPP in terms of IL-6 secretion, but cells in PPP showed MCP-1(high) phenotype. CTGF secretion was significantly reduced in L-PRP compared with PPP and PRP. CONCLUSION The main advantages of L-PRP and PRP use, compared with PPP, include their stronger chemotactic and proliferative properties. While PPP and PRP stimulate matrix anabolism, L-PRP is more proinflammatory. Emphasis should be placed on the temporal needs and biological characteristics of injured tendons, and plasma formulations need to be tailored accordingly. CLINICAL RELEVANCE Versatile systems allowing the preparation of different plasma formulations, such as PPP, PRP, or L-PRP, can help refine clinical applications by taking advantage of their different biological properties.
Collapse
Affiliation(s)
- Eva Rubio-Azpeitia
- BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| | - Ane M Bilbao
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Pello Sánchez
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Diego Delgado
- Arthroscopic Surgery Unit Research, Hospital Vithas San José, Vitoria-Gasteiz, Spain
| | - Isabel Andia
- BioCruces Health Research Institute, Cruces University Hospital, Barakaldo, Spain
| |
Collapse
|
20
|
Blanco-Alvarez VM, Soto-Rodriguez G, Gonzalez-Barrios JA, Martinez-Fong D, Brambila E, Torres-Soto M, Aguilar-Peralta AK, Gonzalez-Vazquez A, Tomás-Sanchez C, Limón ID, Eguibar JR, Ugarte A, Hernandez-Castillo J, Leon-Chavez BA. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia. Neural Plast 2015; 2015:375391. [PMID: 26355725 PMCID: PMC4556331 DOI: 10.1155/2015/375391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/30/2015] [Accepted: 06/01/2015] [Indexed: 01/12/2023] Open
Abstract
Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.
Collapse
Affiliation(s)
| | | | - Juan Antonio Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1° de Octubre, ISSSTE, Avenida Instituto Politécnico Nacional No. 1669, 07760 México, DF, Mexico
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, 07000 México, DF, Mexico
| | - Eduardo Brambila
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Maricela Torres-Soto
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | | | | | | | - I. Daniel Limón
- Facultad de Ciencias Químicas, BUAP, 14 Sur y Avenida San Claudio, 72570 Puebla, PUE, Mexico
| | - Jose R. Eguibar
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | - Araceli Ugarte
- Instituto de Fisiología, BUAP, 14 Sur 6301, 72570 Puebla, PUE, Mexico
| | | | | |
Collapse
|
21
|
Solbak NM, Heard BJ, Achari Y, Chung M, Shrive NG, Frank CB, Hart DA. Alterations in Hoffa’s fat pad induced by an inflammatory response following idealized anterior cruciate ligament surgery. Inflamm Res 2015; 64:615-26. [DOI: 10.1007/s00011-015-0840-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 05/19/2015] [Accepted: 06/05/2015] [Indexed: 12/28/2022] Open
|
22
|
Andia I, Rubio-Azpeitia E, Maffulli N. Platelet-rich plasma modulates the secretion of inflammatory/angiogenic proteins by inflamed tenocytes. Clin Orthop Relat Res 2015; 473:1624-34. [PMID: 25670657 PMCID: PMC4385357 DOI: 10.1007/s11999-015-4179-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Platelet-rich plasma therapies for tendinopathy appear to provide moderate pain reduction. However, the biological mechanisms behind the observed clinical effects remain poorly characterized. QUESTIONS/PURPOSES The purpose of this study was to explore whether platelet-rich plasma modifies the inflammatory/angiogenic status of already inflamed tenocytes by examining (1) gene expression; (2) modulation of chemokine and interleukin secretion; and (3) differences between healthy and tendinopathic tenocytes. METHODS Cells from both healthy and tendinopathic tendons were exposed to interleukin (IL)-1ß and after treated with platelet-rich plasma. Modifications in the expression of selected genes were assessed by real-time reverse transcription-polymerase chain reaction and changes in secretion of angiogenic/inflammatory molecules by enzyme-linked immunosorbent assay. Platelet-rich plasma-induced changes in tendinopathic cells were compared with normal after normalizing platelet-rich plasma data against IL-1ß status in each specific sample. RESULTS In IL-1ß-exposed cells, platelet-rich plasma downregulates expression of IL-6/CXCL-6 (mean, 0.015; 95% confidence interval [CI], 0.005-0.025; p = 0.026), IL-6R (mean, 0.61; 95% CI, 0.27-0.95; p = 0.029), and IL-8/CXCL-8 (mean, 0.02; 95% CI, 0.007-0.023; p = 0.026). Secretion of IL-6/CXCL6, 0.35 (95% CI, 0.3-0.4; p = 0.002), IL-8/CXCL8, 0.55 (95% CI, 0.5-0.7; p = 0.01), and monocyte chemoattractant protein-1/CCL2, 0.40 (95% CI, 0.2-0.6; p = 0.001) was reduced by platelet-rich plasma, whereas vascular endothelial growth factor increased by twofold, (95% CI, 1.7-2.3; p < 0.001). RANTES/CCL5 increased by10-fold (95% CI, 4-17) and hepatocyte growth factor by 21-fold (95% CI, 0.2-42) in tendinopathic and by 2.3-fold (95% CI, 2-3) and threefold (95% CI, 1-5) in normal cells (p = 0.005 for both). CONCLUSIONS Platelet-rich plasma induces an immunomodulatory and proangiogenic phenotype consistent with healing mechanisms with few differences between tendinopathic and normal cells. CLINICAL RELEVANCE Platelet-rich plasma injections in pathological and nearby tissue might help to recover tendon homeostasis.
Collapse
Affiliation(s)
- Isabel Andia
- Regenerative medicine Group, Biocruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Eva Rubio-Azpeitia
- Regenerative medicine Group, Biocruces Health Research Institute, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Nicola Maffulli
- Department of Musculoskeletal Disorders, University of Salerno School of Medicine and Surgery, Salerno, Italy ,Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG UK
| |
Collapse
|
23
|
Upadhyay RK. Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids 2015; 2015:971453. [PMID: 25949827 PMCID: PMC4407625 DOI: 10.1155/2015/971453] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022] Open
Abstract
Present review article highlights various cardiovascular risk prediction biomarkers by incorporating both traditional risk factors to be used as diagnostic markers and recent technologically generated diagnostic and therapeutic markers. This paper explains traditional biomarkers such as lipid profile, glucose, and hormone level and physiological biomarkers based on measurement of levels of important biomolecules such as serum ferritin, triglyceride to HDLp (high density lipoproteins) ratio, lipophorin-cholesterol ratio, lipid-lipophorin ratio, LDL cholesterol level, HDLp and apolipoprotein levels, lipophorins and LTPs ratio, sphingolipids, Omega-3 Index, and ST2 level. In addition, immunohistochemical, oxidative stress, inflammatory, anatomical, imaging, genetic, and therapeutic biomarkers have been explained in detail with their investigational specifications. Many of these biomarkers, alone or in combination, can play important role in prediction of risks, its types, and status of morbidity. As emerging risks are found to be affiliated with minor and microlevel factors and its diagnosis at an earlier stage could find CVD, hence, there is an urgent need of new more authentic, appropriate, and reliable diagnostic and therapeutic markers to confirm disease well in time to start the clinical aid to the patients. Present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of CVDs, HF (heart failures), and various lipid abnormalities and disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|