1
|
Poursalehian M, Pakbaz Y, Mortazavi SMJ. Mobile bearing total knee arthroplasty does not lead to better joint awareness compared to fixed bearing design: A systematic review and meta-analysis. J Exp Orthop 2024; 11:e70110. [PMID: 39678021 PMCID: PMC11646548 DOI: 10.1002/jeo2.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024] Open
Abstract
Purpose Mobile-bearing total knee arthroplasty (MB-TKA) and fixed-bearing (FB) TKA are both widely used, with MB-TKA theoretically offering better functional outcomes due to its natural kinematics. This systematic review and meta-analysis aimed to compare joint awareness between MB-TKA and FB-TKA, as measured by Forgotten Joint Score-12 (FJS-12), to provide insights into patient-perceived outcomes. Methods A comprehensive literature search was conducted across major databases following PRISMA guidelines, without date or language restrictions. Studies focusing on TKA with MB or FB as the intervention and control groups, respectively, and reporting on FJS-12 were included. The selection process involved two independent reviewers. Data extraction was carried out using a structured checklist and assessed for quality using the Newcastle-Ottawa Scale (NOS). The meta-analysis employed Hedge's g method to compare FJS-12 and assessed publication bias using Egger's test and funnel plot analyses. Results Six studies, including two randomized clinical trials and four cohort studies with 731 participants and mean follow-up of 5.4 years, met the inclusion criteria. The meta-analysis revealed no significant difference in FJS-12 between MB and FB TKA (pooled difference = 0.132, 95% confidence interval: -0.103 to 0.367, p = 0.271), with moderate heterogeneity observed (I 2 = 53.5%). Publication bias assessment indicated no significant bias. Meta-regression did not identify factors contributing to heterogeneity. Conclusion MB-TKA does not provide superior patient-perceived outcomes in terms of joint awareness compared to FB-TKA. This suggests that the clinical advantage of MB-TKA in terms of joint awareness is likely negligible. Therefore, the choice between MB and FB TKA should be based on other considerations, such as surgeon preference, implant cost and individual patient needs. Level of Evidence Level III.
Collapse
Affiliation(s)
| | - Yeganeh Pakbaz
- Joint Reconstruction Research CenterTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
2
|
Kim SE, Yun KR, Lee JM, Lee MC, Han HS. Preserving coronal knee alignment of the knee (CPAK) in unicompartmental knee arthroplasty correlates with superior patient-reported outcomes. Knee Surg Relat Res 2024; 36:1. [PMID: 38167246 PMCID: PMC10763258 DOI: 10.1186/s43019-023-00204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The optimal alignment target for unicompartmental knee arthroplasty (UKA) remains controversial, and literature suggests that its impact on patient-reported outcome measures (PROMs) varies. The purpose of this study was to identify the relationship between changes in the coronal plane alignment of the knee (CPAK) and PROMs in patients who underwent UKA. METHODS A retrospective analysis of 164 patients who underwent UKA was conducted. The types of CPAK types categorized into unchanged, minor (shift to an adjacent CPAK type, e.g., type I to II or type I to IV), and major changes (transitioning to a nearby diagonal CPAK type or two types across, such as type I to V or type I to III). PROMs were assessed preoperatively and 1 year postoperatively using the Hospital for Special Surgery (HSS) scores, Knee Society (KS) scores, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Forgotten Joint Scores (FJS). Comparison was performed between patients who experienced and who did not experience any changes in the CPAK. RESULTS Patients with preserved native CPAK alignment demonstrated significantly superior 1 year postoperative outcomes, with higher HSS, KS knee, and WOMAC pain scores (p = 0.042, p = 0.009, and p = 0.048, respectively). Meanwhile, the degree of change in CPAK did not significantly influence the PROMs, and patients who experienced minor and major changes in the CPAK showed comparable outcomes. CONCLUSION Preserving the native CPAK in UKA procedures is important for achieving favorable clinical outcomes at 1 year postoperative. The extent of change in the CPAK type exerted a limited impact on PROMs, thus emphasizing the importance of change in alignment itself.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, Republic of Korea
| | - Kuk-Ro Yun
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jae Min Lee
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Myung Chul Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, Republic of Korea
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyuk-Soo Han
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 110-744, Republic of Korea.
- Department of Orthopaedic Surgery, Seoul National University Hospital, Seoul, South Korea.
| |
Collapse
|
3
|
Zhang ZH, Qi YS, Wei BG, Bao HRC, Xu YS. Application strategy of finite element analysis in artificial knee arthroplasty. Front Bioeng Biotechnol 2023; 11:1127289. [PMID: 37265991 PMCID: PMC10230366 DOI: 10.3389/fbioe.2023.1127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/27/2023] [Indexed: 06/03/2023] Open
Abstract
Artificial knee arthroplasty, as the most effective method for the treatment of end-stage joint diseases such as knee osteoarthritis and rheumatoid arthritis, is widely used in the field of joint surgery. At present, Finite element analysis (FEA) has been widely used in artificial knee replacement biomechanical research. This review presents the current hotspots for the application of FEA in the field of artificial knee replacement by reviewing the existing research literature and, by comparison, summarizes guidance and recommendations for artificial knee replacement surgery. We believe that lower contact stress can produce less wear and complications when components move against each other, in the process of total knee arthroplasty (TKA), mobile-bearing prostheses reduce the contact surface stress of the tibial-femoral joint compared with fixed-bearing prostheses, thus reducing the wear of the polyethylene insert. Compared with mechanical alignment, kinematic alignment reduces the maximum stress and maximum strain of the femoral component and polyethylene insert in TKA, and the lower stress reduces the wear of the joint contact surface and prolongs the life of the prosthesis. In the unicompartmental knee arthroplasty (UKA), the femoral and tibial components of mobile-bearing prostheses have better conformity, which can reduce the wear of the components, while local stress concentration caused by excessive overconformity of fixed-bearing prostheses should be avoided in UKA to prevent accelerated wear of the components, the mobile-bearing prosthesis maintained in the coronal position from 4° varus to 4° valgus and the fixed-bearing prosthesis implanted in the neutral position (0°) are recommended. In revision total knee arthroplasty (RTKA), the stem implant design should maintain the best balance between preserving bone and reducing stress around the prosthesis after implantation. Compared with cemented stems, cementless press-fit femoral stems show higher fretting, for tibial plateau bone defects, porous metal blocks are more effective in stress dispersion. Finally, compared with traditional mechanical research methods, FEA methods can yield relatively accurate simulations, which could compensate for the deficiencies of traditional mechanics in knee joint research. Thus, FEA has great potential for applications in the field of medicine.
Collapse
Affiliation(s)
- Zi-Heng Zhang
- Orthopedics Center, Inner Mongolia People’s Hospital, Hohhot, China
- Graduate School, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Song Qi
- Orthopedics Center, Inner Mongolia People’s Hospital, Hohhot, China
| | - Bao-Gang Wei
- Orthopedics Center, Inner Mongolia People’s Hospital, Hohhot, China
| | - Hu-Ri-Cha Bao
- Orthopedics Center, Inner Mongolia People’s Hospital, Hohhot, China
| | - Yong-Sheng Xu
- Orthopedics Center, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
4
|
Kwon HM, Lee JA, Koh YG, Park KK, Kang KT. Computational analysis of tibial slope adjustment with fixed-bearing medial unicompartmental knee arthroplasty in ACL- and PCL-deficient models. Bone Joint Res 2022; 11:494-502. [PMID: 35818859 PMCID: PMC9350696 DOI: 10.1302/2046-3758.117.bjr-2022-0138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS A functional anterior cruciate ligament (ACL) or posterior cruciate ligament (PCL) has been assumed to be required for patients undergoing unicompartmental knee arthroplasty (UKA). However, this assumption has not been thoroughly tested. Therefore, this study aimed to assess the biomechanical effects exerted by cruciate ligament-deficient knees with medial UKAs regarding different posterior tibial slopes. METHODS ACL- or PCL-deficient models with posterior tibial slopes of 1°, 3°, 5°, 7°, and 9° were developed and compared to intact models. The kinematics and contact stresses on the tibiofemoral joint were evaluated under gait cycle loading conditions. RESULTS Anterior translation increased in ACL-deficient UKA cases compared with intact models. In contrast, posterior translation increased in PCL-deficient UKA cases compared with intact models. As the posterior tibial slope increased, anterior translation of ACL-deficient UKA increased significantly in the stance phase, and posterior translation of PCL-deficient UKA increased significantly in the swing phase. Furthermore, as the posterior tibial slope increased, contact stress on the other compartment increased in cruciate ligament-deficient UKAs compared with intact UKAs. CONCLUSION Fixed-bearing medial UKA is a viable treatment option for patients with cruciate ligament deficiency, providing a less invasive procedure and allowing patient-specific kinematics to adjust posterior tibial slope. Patient selection is important, and while AP kinematics can be compensated for by posterior tibial slope adjustment, rotational stability is a prerequisite for this approach. ACL- or PCL-deficient UKA that adjusts the posterior tibial slope might be an alternative treatment option for a skilled surgeon. Cite this article: Bone Joint Res 2022;11(7):494-502.
Collapse
Affiliation(s)
- Hyuck M Kwon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, South Korea
| | - Kwan K Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | | |
Collapse
|
5
|
Xiong H, Zeng Y, Si H, Wu Y, Shen B. [Research progress on finite element analysis of unicompartmental knee arthroplasty in medial knee compartmental osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:781-785. [PMID: 34142508 DOI: 10.7507/1002-1892.202101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the research progress on finite element analysis (FEA) of unicompartmental knee arthroplasty (UKA) in medial knee compartmental osteoarthritis. Methods The FEA research literature on the medial knee UKA at home and abroad was reviewed, and the progress on the aspects of the influences of the prosthesis arrangement and the postoperative joint line on the mechanical distribution of the knee joint, the improvement of the UKA prosthesis, and the related research of different types of prostheses were summarized. Results At present, scholars have conducted a large number of FEA studies on UKA in the medial knee compartmental osteoarthritis. The results of the study show that the recommended coronal alignment and the tibial slope angle of tibial component in medial fixed-bearing UKA are 0° and 5°-7°, respectively; and the coronal alignment and the tibial slope angle of tibial component in mobile-bearing UKA are 4° varus to 4° valgus and 5°-7°, respectively. The femoral component is arranged in the neutral position of the distal femur. The joint line is recommended to be the primary alignment. The anatomical UKA prosthesis can restore the biomechanical properties of the normal knee joint. Conclusion FEA research can clarify the best arrangement and joint line of the medial knee UKA prosthesis based on the mechanical distribution results, and guide the design of UKA prostheses that are more suitable for patients.
Collapse
Affiliation(s)
- Huazhang Xiong
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,No.1 Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi Guizhou, 564300, P.R.China
| | - Yi Zeng
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Haibo Si
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yuangang Wu
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bin Shen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
6
|
Zhang Q, Chen Z, Jin Z, Muratoglu OK, Varadarajan KM. Patient-specific musculoskeletal models as a framework for comparing ACL function in unicompartmental versus bicruciate retaining arthroplasty. Proc Inst Mech Eng H 2021; 235:861-872. [PMID: 33913346 DOI: 10.1177/09544119211011827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Unicompartmental knee arthroplasty has been shown to provide superior functional outcomes compared to total knee arthroplasty and have motivated development of advanced implant designs including bicruciate retaining knee arthroplasty. However, few validated frameworks are available to directly compare the effect of implant design and surgical techniques on ligament function and joint kinematics. In the present study, the subject-specific lower extremity models were developed based on musculoskeletal modeling framework using force-dependent kinematics method, and validated against in vivo telemetric data. The experiment data of two subjects who underwent TKA were obtained from the SimTK "Grand Challenge Competition" repository, and integrated into the subject-specific lower extremity model. Five walking gait trials and three different knee implant models for each subject were used as partial inputs for the model to predict knee biomechanics for unicompartmental, bicruciate retaining, and total knee arthroplasty. The results showed no significant differences in the tibiofemoral contact forces or angular kinematic parameters between three groups. However, unicompartmental knee arthroplasty demonstrated significantly more posterior tibial location between 0% and 40% of the gait cycle (p < 0.017). Significant differences in range of tibiofemoral anterior/posterior translation and medial/lateral translation were also observed between unicompartmental and bicruciate retaining arthroplasty (p < 0.017). Peak values of anterior cruciate ligament forces differed between unicompartmental and bicruciate retaining arthroplasty from 10% to 30% of the gait cycle. Findings of this study indicate that unicompartmental and bicruciate retaining arthroplasty do not have identical biomechanics and point to the complementary role of anterior cruciate ligament and articular geometry in guiding knee function. Further, the patient-specific musculoskeletal model developed provides a reliable framework for assessing new implant designs, and effect of surgical techniques on knee biomechanics following arthroplasty.
Collapse
Affiliation(s)
- Qida Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Technology Implementation Research Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Zhenxian Chen
- Key Laboratory of Road Construction Technology and Equipment (Ministry of Education), School of Mechanical Engineering, Chang'an University, Xi'an, China
| | - Zhongmin Jin
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China.,Tribology Research Institute, School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, China.,Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Orhun K Muratoglu
- Technology Implementation Research Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Kartik M Varadarajan
- Technology Implementation Research Center, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Kwon HM, Lee JA, Koh YG, Park KK, Kang KT. Effects of contact stress on patellarfemoral joint and quadriceps force in fixed and mobile-bearing medial unicompartmental knee arthroplasty. J Orthop Surg Res 2020; 15:517. [PMID: 33168023 PMCID: PMC7653850 DOI: 10.1186/s13018-020-02047-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 10/28/2020] [Indexed: 11/10/2022] Open
Abstract
Background Unicompartmental knee arthroplasty (UKA) is an effective treatment for end-stage, symptomatic unicompartmental osteoarthritis of the knee joint. However, patellofemoral joint degeneration is a contraindication to medial UKA. Therefore, the objective of this study was to evaluate the biomechanical effect of medial UKA using fixed-bearing (FB) and mobile-bearing (MB) design prostheses on the patellofemoral joint. Methods A three-dimensional finite-element model of a normal knee joint was developed using medical image data. We performed statistical analysis for each model. The differences in contact stress on the patellofemoral joint and the quadriceps force between the FB and MB designs were evaluated under a deep-knee-bend condition. Results At an early flexion angle, the results of contact stress showed no significant difference between the FB and MB medial UKA models compared with the intact model. However, at high flexion angles, we observed a significant increase in contact stress with the FB models compared with the intact model. On the contrary, in the case of the MB models, we found no statistically significant increment compared with the intact model. A larger quadriceps force was needed to produce an identical flexion angle for both the FB and MB UKA designs than for the intact model. At high flexion angles, a significant increase quadriceps force whit the FB model compared with the intact model. Conclusions Our results indicate that with medial UKA, the contact stress increased and greater quadriceps force was applied to the patellofemoral joint. However, performing UKA on a patellofemoral joint with osteoarthritis should not be difficult, unless anterior knee pain is present, because the increase in contact stress is negligible.
Collapse
Affiliation(s)
- Hyuck Min Kwon
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul, 06698, Republic of Korea
| | - Kwan Kyu Park
- Department of Orthopedic Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
8
|
Lee JA, Koh YG, Kim PS, Kang KW, Kwak YH, Kang KT. Biomechanical effect of tibial slope on the stability of medial unicompartmental knee arthroplasty in posterior cruciate ligament-deficient knees. Bone Joint Res 2020; 9:593-600. [PMID: 33014352 PMCID: PMC7510939 DOI: 10.1302/2046-3758.99.bjr-2020-0128.r1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aims Unicompartmental knee arthroplasty (UKA) has become a popular method of treating knee localized osteoarthritis (OA). Additionally, the posterior cruciate ligament (PCL) is essential to maintaining the physiological kinematics and functions of the knee joint. Considering these factors, the purpose of this study was to investigate the biomechanical effects on PCL-deficient knees in medial UKA. Methods Computational simulations of five subject-specific models were performed for intact and PCL-deficient UKA with tibial slopes. Anteroposterior (AP) kinematics and contact stresses of the patellofemoral (PF) joint and the articular cartilage were evaluated under the deep-knee-bend condition. Results As compared to intact UKA, there was no significant difference in AP translation in PCL-deficient UKA with a low flexion angle, but AP translation significantly increased in the PCL-deficient UKA with high flexion angles. Additionally, the increased AP translation became decreased as the posterior tibial slope increased. The contact stress in the PF joint and the articular cartilage significantly increased in the PCL-deficient UKA, as compared to the intact UKA. Additionally, the increased posterior tibial slope resulted in a significant decrease in the contact stress on PF joint but significantly increased the contact stresses on the articular cartilage. Conclusion Our results showed that the posterior stability for low flexion activities in PCL-deficient UKA remained unaffected; however, the posterior stability for high flexion activities was affected. This indicates that a functional PCL is required to ensure normal stability in UKA. Additionally, posterior stability and PF joint may reduce the overall risk of progressive OA by increasing the posterior tibial slope. However, the excessive posterior tibial slope must be avoided. Cite this article: Bone Joint Res 2020;9(9):593–600.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| | - Yong-Gon Koh
- Joint Reconstruction Center, Department of Orthopaedic Surgery, Yonsei Sarang Hospital, Seoul, South Korea
| | - Paul Shinil Kim
- Department of Orthopaedic Surgery, The Bone Hospital, Seoul, South Korea
| | - Ki Won Kang
- Gaja Yonsei Orthopaedic Clinic, Incheon, South Korea
| | - Yoon Hae Kwak
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, Seoul, South Korea
| |
Collapse
|
9
|
Lee JA, Koh YG, Kang KT. Biomechanical and Clinical Effect of Patient-Specific or Customized Knee Implants: A Review. J Clin Med 2020; 9:jcm9051559. [PMID: 32455733 PMCID: PMC7290390 DOI: 10.3390/jcm9051559] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 01/22/2023] Open
Abstract
(1) Background: Although knee arthroplasty or knee replacement is already an effective clinical treatment, it continues to undergo clinical and biomechanical improvements. For an increasing number of conditions, prosthesis based on an individual patient's anatomy is a promising treatment. The aims of this review were to evaluate the clinical and biomechanical efficacy of patient-specific knee prosthesis, explore its future direction, and summarize any published comparative studies. (2) Methods: We searched the PubMed, MEDLINE, Embase, and Scopus databases for articles published prior to February 1, 2020, with the keywords "customized knee prosthesis" and "patient-specific knee prosthesis". We excluded patient-specific instrument techniques. (3) Results: Fifty-seven articles met the inclusion criteria. In general, clinical improvement was greater with a patient-specific knee prosthesis than with a conventional knee prosthesis. In addition, patient-specific prosthesis showed improved biomechanical effect than conventional prosthesis. However, in one study, patient-specific unicompartmental knee arthroplasty showed a relatively high rate of aseptic loosening, particularly femoral component loosening, in the short- to medium-term follow-up. (4) Conclusions: A patient-specific prosthesis provides a more accurate resection and fit of components, yields significant postoperative improvements, and exhibits a high level of patient satisfaction over the short to medium term compared with a conventional prosthesis. However, the tibial insert design of the current patient-specific knee prosthesis does not follow the tibial plateau curvature.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea;
| | - Yong-Gon Koh
- Department of Orthopaedic Surgery, Yonsei Sarang Hospital, 10 Hyoryeong-ro, Seocho-gu, Seoul 06698, Korea;
| | - Kyoung-Tak Kang
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-588-1006
| |
Collapse
|
10
|
Finite Element Study on the Preservation of Normal Knee Kinematics with Respect to the Prosthetic Design in Patient-Specific Medial Unicompartmental Knee Arthroplasty. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1829385. [PMID: 32258105 PMCID: PMC7109557 DOI: 10.1155/2020/1829385] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/07/2020] [Accepted: 02/13/2020] [Indexed: 11/17/2022]
Abstract
Alterations in native knee kinematics in medial unicompartmental knee arthroplasty (UKA) are caused by the nonanatomic articular surface of conventional implants. Technology for an anatomy mimetic patient-specific (PS) UKA has been introduced. However, there have been no studies on evaluating the preservation of native knee kinematics with respect to different prosthetic designs in PS UKA. The purpose of this study was to evaluate the preservation of native knee kinematics with respect to different UKA designs using a computational simulation. We evaluated three different UKA designs: a nonconforming design, an anatomy mimetic design, and a conforming design for use under gait and squat loading conditions. The results show that the anatomy mimetic UKA design achieves closer kinematics to those of a native knee compared to the other two UKA designs under such conditions. The anatomy memetic UKA design exhibited a 0.39 mm and 0.36° decrease in the translation and rotation, respectively, in the swing phase compared with those of the natural knee. In addition, under the gait and squat loading conditions, the conforming UKA design shows limited kinematics compared to the nonconforming UKA design. Our results show that the conformity of each component in PS UKA is an important factor in knee joint kinematics; however, the anatomy mimetic UKA design cannot restore perfect native kinematics.
Collapse
|
11
|
Optimal Design of Patient-Specific Total Knee Arthroplasty for Improvement in Wear Performance. J Clin Med 2019; 8:jcm8112023. [PMID: 31752389 PMCID: PMC6912647 DOI: 10.3390/jcm8112023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 11/17/2022] Open
Abstract
Life expectancy is on the rise and, concurrently, the demand for total knee arthroplasty (TKA), which lasts a lifetime, is increasing. To meet this demand, improved TKA designs have been introduced. Recent advances in radiography and manufacturing techniques have enabled the production of patient-specific TKA. Nevertheless, concerns regarding the wear performance, which limit the lifespan of TKA, remain to be addressed. This study aims at reducing the wear in patient-specific TKA using design optimization and parametric three-dimensional (3D) finite-element (FE) modelling. The femoral component design was implemented in a patient-specific manner, whereas the tibial insert conformity remained to be determined by design variables. The gait cycle loading condition was applied, and the optimized model was validated by the results obtained from the experimental wear tests. The wear predictions were iterated for five million gait cycles using the computational model with force-controlled input. Similar patterns for internal/external rotation and anterior/posterior translation were observed in both initial and optimal models. The wear rates for initial and optimal models were recorded as 23.2 mm3/million cycles and 16.7 mm3/million cycles, respectively. Moreover, the experimental wear rate in the optimal design was 17.8 mm3/million cycles, which validated our optimization procedure. This study suggests that tibial insert conformity is an important factor in influencing the wear performance of patient-specific TKA, and it is capable of providing improved clinical results through enhanced design selections. This finding can boost the future development of patient-specific TKA, and it can be extended to other joint-replacement designs. However, further research is required to explore the potential clinical benefits of the improved wear performance demonstrated in this study.
Collapse
|