1
|
Krusche-Mandl I, Holzer S, Döring K, Nia A, Sturz GD, Kasparek MF, Patsch JM, Noebauer-Huhmann IM, Erhart J, Hajdu S. Comparison of MDCT Imaging and HR-pQCT for Assessment of Osseus Consolidation in Symptomatic Scaphoid Non-Union Treated with Avascular Bone Grafting and Percutaneous Screw Fixation-A Prospective Clinical Pilot Study. J Clin Med 2025; 14:1476. [PMID: 40094934 PMCID: PMC11900464 DOI: 10.3390/jcm14051476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/19/2025] Open
Abstract
Background/objectives: This study prospectively evaluated clinical outcomes and osseous consolidation in patients with symptomatic scaphoid non-union treated with avascular bone grafting and percutaneous screw fixation. Two imaging methods, MDCT (multi-detector computed tomography) and HR-pQCT (high-resolution peripheric quantitative computer tomography), were employed to assess bone healing. Methods: In Vienna, eight consecutive patients with nine symptomatic scaphoid non-unions underwent revision surgery. Clinical outcomes were measured using DASH and PRWE scores, grip strength, and thumb strength. MDCT and HR-pQCT imaging were conducted 6 and 12 weeks post-operatively. Results: The median DASH score improved significantly from 43.3 (range 3.3-76.7) pre-operatively to 26.6 (p = 0.024) at 3 months and 16.2 (p = 0.06) at 12 months post-operatively. At 5-6 years, the median DASH score was 2 (range 0-15). At 6 weeks, both MDCT and HR-pQCT detected >50% bone healing at the distal interface. At the proximal interface, HR-pQCT detected >50% healing in all cases, whereas MDCT still showed <50% healing in 25% of cases. By 12 weeks, both methods demonstrated >50% osseous consolidation at both interfaces. Conclusions: Avascular iliac grafting with screw fixation achieved excellent long-term clinical outcomes for symptomatic scaphoid non-union. HR-pQCT proved superior to MDCT for assessing early bone healing.
Collapse
Affiliation(s)
- Irena Krusche-Mandl
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
| | - Sabrina Holzer
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
- Department of Orthopedics and Trauma Surgery, Krankenhaus der Barmherzigen Brüder Eisenstadt, 7000 Eisenstadt, Austria
| | - Kevin Döring
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
| | - Arastoo Nia
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
| | - Géraldine Désirée Sturz
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
| | - Maximilian F. Kasparek
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
- Department of Orthopaedic Surgery and Trauma Surgery, Evangelisches Krankenhaus, 1180 Vienna, Austria
| | - Janina M. Patsch
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna, Medical University of Vienna, 1090 Vienna, Austria; (J.M.P.); (I.-M.N.-H.)
| | - Iris-Melanie Noebauer-Huhmann
- Department of Biomedical Imaging and Image-Guided Therapy, General Hospital of Vienna, Medical University of Vienna, 1090 Vienna, Austria; (J.M.P.); (I.-M.N.-H.)
| | - Jochen Erhart
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
- Department of Orthopedics and Trauma Surgery, Krankenhaus der Barmherzigen Brüder Eisenstadt, 7000 Eisenstadt, Austria
| | - Stefan Hajdu
- Department of Orthopedics and Trauma Surgery, General Hospital of Vienna, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (I.K.-M.); (K.D.); (G.D.S.); (M.F.K.); (J.E.); (S.H.)
| |
Collapse
|
2
|
Xiao P, Haque E, Zhang T, Dong XN, Huang Y, Wang X. Can DXA image-based deep learning model predict the anisotropic elastic behavior of trabecular bone? J Mech Behav Biomed Mater 2021; 124:104834. [PMID: 34544016 DOI: 10.1016/j.jmbbm.2021.104834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022]
Abstract
3D image-based finite element (FE) and bone volume fraction (BV/TV)/fabric tensor modeling techniques are currently used to determine the apparent stiffness tensor of trabecular bone for assessing its anisotropic elastic behavior. Inspired by the recent success of deep learning (DL) techniques, we hypothesized that DL modeling techniques could be used to predict the apparent stiffness tensor of trabecular bone directly using dual-energy X-ray absorptiometry (DXA) images. To test the hypothesis, a convolutional neural network (CNN) model was trained and validated to predict the apparent stiffness tensor of trabecular bone cubes using their DXA images. Trabecular bone cubes obtained from human cadaver proximal femurs were used to obtain simulated DXA images as input, and the apparent stiffness tensor of the trabecular cubes determined by using micro-CT based FE simulations was used as output (ground truth) to train the DL model. The prediction accuracy of the DL model was evaluated by comparing it with the micro-CT based FE models, histomorphometric parameter based multiple linear regression models, and BV/TV/fabric tensor based multiple linear regression models. The results showed that DXA image-based DL model achieved high fidelity in predicting the apparent stiffness tensor of trabecular bone cubes (R2 = 0.905-0.973), comparable to or better than the histomorphometric parameter based multiple linear regression and BV/TV/fabric tensor based multiple linear regression models, thus supporting the hypothesis of this study. The outcome of this study could be used to help develop DXA image-based DL techniques for clinical assessment of bone fracture risk.
Collapse
Affiliation(s)
| | | | - Tinghe Zhang
- Electrical and Computer Engineering University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - X Neil Dong
- Health and Kinesiology, University of Texas at Tyler, Tyler, TX, 75799, USA
| | - Yufei Huang
- Electrical and Computer Engineering University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | | |
Collapse
|
3
|
Wei W, Wu Y, Zeng Y, Shen B. [Progress of change in bone mineral density after knee arthroplasty]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:124-129. [PMID: 33448210 DOI: 10.7507/1002-1892.202006068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To summarize research progress of change in bone mineral density (BMD) after knee arthroplasty and its diagnostic methods, influencing factors, and drug prevention and treatment. Methods The relevant literature at home and abroad was reviewed and summarized from research status of the advantages and disadvantages of BMD assessment methods, the trend of changes in BMD after knee arthroplasty and its influencing factors, and the differences in effectiveness of drugs. Results The central BMD and mean BMD around the prosthesis decrease after knee arthroplasty, which is closely associated with body position, age, weight, daily activities, and the fixation methods, design, and material of prosthesis. Denosumab, bisphosphonates, and teriparatide et al. can decrease BMD loss after knee arthroplasty. Conclusion BMD after knee arthroplasty decreases, which is related to various factors, but the mechanism is unclear. At present, some inhibitors of bone resorption can decrease BMD loss after knee arthroplasty. However, its long-term efficacy remains to be further explored.
Collapse
Affiliation(s)
- Wenxing Wei
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yuangang Wu
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yi Zeng
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Bin Shen
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
4
|
Troy KL, Mancuso ME, Johnson JE, Wu Z, Schnitzer TJ, Butler TA. Bone Adaptation in Adult Women Is Related to Loading Dose: A 12-Month Randomized Controlled Trial. J Bone Miner Res 2020; 35:1300-1312. [PMID: 32154945 PMCID: PMC7363573 DOI: 10.1002/jbmr.3999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 02/07/2020] [Accepted: 02/27/2020] [Indexed: 11/26/2022]
Abstract
Although strong evidence exists that certain activities can increase bone density and structure in people, it is unclear what specific mechanical factors govern the response. This is important because understanding the effect of mechanical signals on bone could contribute to more effective osteoporosis prevention methods and efficient clinical trial design. The degree to which strain rate and magnitude govern bone adaptation in humans has never been prospectively tested. Here, we studied the effects of a voluntary upper extremity compressive loading task in healthy adult women during a 12-month prospective period. A total of 102 women age 21 to 40 years participated in one of two experiments: (i) low (n = 21) and high (n = 24) strain magnitude; or (ii) low (n = 21) and high (n = 20) strain rate. Control (n = 16) no intervention. Strains were assigned using subject-specific finite element models. Load cycles were recorded digitally. The primary outcome was change in ultradistal radius integral bone mineral content (iBMC), assessed with QCT. Interim time points and secondary outcomes were assessed with high resolution pQCT (HRpQCT) at the distal radius. Sixty-six participants completed the intervention, and interim data were analyzed for 77 participants. Likely related to improved compliance and higher received loading dose, both the low-strain rate and high-strain rate groups had significant 12-month increases to ultradistal iBMC (change in control: -1.3 ± 2.7%, low strain rate: 2.7 ± 2.1%, high strain rate: 3.4 ± 2.2%), total iBMC, and other measures. "Loading dose" was positively related to 12-month change in ultradistal iBMC, and interim changes to total BMD, cortical thickness, and inner trabecular BMD. Participants who gained the most bone completed, on average, 128 loading bouts of (mean strain) 575 με at 1878 με/s. We conclude that signals related to strain magnitude, rate, and number of loading bouts contribute to bone adaptation in healthy adult women, but only explain a small amount of variance in bone changes. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Megan E Mancuso
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Joshua E Johnson
- Orthopaedic Biomechanics Research Laboratory, University of Iowa, Iowa City, IA, USA
| | - Zheyang Wu
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
| | - Tiffiny A Butler
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
5
|
Lu Y, Zhu Y, Krause M, Huber G, Li J. Evaluation of the capability of the simulated dual energy X-ray absorptiometry-based two-dimensional finite element models for predicting vertebral failure loads. Med Eng Phys 2019; 69:43-49. [PMID: 31147202 DOI: 10.1016/j.medengphy.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/11/2019] [Accepted: 05/19/2019] [Indexed: 11/17/2022]
Abstract
Prediction of the vertebral failure load is of great importance for the prevention and early treatment of bone fracture. However, an efficient and effective method for accurately predicting the failure load of vertebral bones is still lacking. The aim of the present study was to evaluate the capability of the simulated dual energy X-ray absorptiometry (DXA)-based finite element (FE) model for predicting vertebral failure loads. Thirteen dissected spinal segments (T11/T12/L1) were scanned using a HR-pQCT scanner and then were mechanically tested until failure. The subject-specific three-dimensional (3D) and two-dimensional (2D) FE models of T12 were generated from the HR-pQCT scanner and the simulated DXA images, respectively. Additionally, the areal bone mineral density (aBMD) and areal bone mineral content (aBMC) of T12 were calculated. The failure loads predicted by the simulated DXA-based 2D FE models were more moderately correlated with the experimental failure loads (R2 = 0.66) than the aBMC (R2 = 0.61) and aBMD (R2 = 0.56). The 2D FE models were slightly outperformed by the HR-pQCT-based 3D FE models (R2 = 0.71). The present study demonstrated that the simulated DXA-based 2D FE model has better capability for predicting the vertebral failure loads than the densitometric measurements but is outperformed by the 3D FE model. The 2D FE model is more suitable for clinical use due to the low radiation dose and low cost, but it remains to be validated by further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China; State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, No. 2 Linggong Road, 116024 Dalian, China.
| | - Yifan Zhu
- Department of Engineering Mechanics, Shanghai Jiaotong University, No. 800 Dongchuan Road, 20024 Shanghai, China
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251 Hamburg, Germany
| | - Gerd Huber
- Institute of Biomechanics, TUHH Hamburg University of Technology, Denickestrasse 15, 21073 Hamburg, Germany
| | - Junyan Li
- Department of Design Engineering and Mathematics, School of Science and Technology, Middlesex University, The Burroughs, Hendon, NW4 4BT London, UK
| |
Collapse
|
6
|
Schultz K, Wolf JM. Emerging Technologies in Osteoporosis Diagnosis. J Hand Surg Am 2019; 44:240-243. [PMID: 30177358 DOI: 10.1016/j.jhsa.2018.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/02/2018] [Accepted: 07/13/2018] [Indexed: 02/02/2023]
Abstract
Osteoporosis is a disease defined by diminished bone mass, often resulting in debilitating fragility fractures. As hand surgeons who care for patients with fractures of the distal radius and proximal humerus often related to osteoporosis, it is critical to understand the diagnostic modalities used in the workup of decreased bone density. Although the current reference standard for diagnosing osteoporosis is dual x-ray absorptiometry, this technique has notable drawbacks such as the inability to provide a 3-dimensional image or information about bone microstructure. These limitations result in underdiagnosis of osteoporosis. Other emerging imaging technologies such as quantitative computed tomography, high-resolution peripheral quantitative computed tomography, and quantitative ultrasound offer distinct advantages over dual x-ray absorptiometry. Among these advantages are the production of 3-dimensional images, information about cortical and trabecular microstructure, and reduced radiation exposure. It is essential for hand surgeons to be aware of these evolving diagnostic modalities and the benefits that they offer to provide the best care for patients with osteoporosis.
Collapse
Affiliation(s)
- Kathryn Schultz
- Pritzker School of Medicine, University of Chicago, Chicago, IL.
| | | |
Collapse
|
7
|
Dong XN, Lu Y, Krause M, Huber G, Chevalier Y, Leng H, Maquer G. Variogram-based evaluations of DXA correlate with vertebral strength, but do not enhance the prediction compared to aBMD alone. J Biomech 2018; 77:223-227. [PMID: 30055841 PMCID: PMC6091628 DOI: 10.1016/j.jbiomech.2018.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/12/2018] [Accepted: 07/04/2018] [Indexed: 11/19/2022]
Abstract
Ancillary evaluation of spinal Dual-energy X-ray Absorptiometry (DXA) via variogram-based texture evaluation (e.g., Trabecular Bone Score) is used for improving the fracture risk assessment, despite no proven relationship with vertebral strength. The purpose of this study was thus to determine whether classical variogram-based parameters (sill variance and correlation length) evaluated from simulated DXA scans could help predicting the in vitro vertebral strength. Experimental data of thirteen human full vertebrae (i.e., with posterior elements) and twelve vertebral bodies were obtained from two existing studies. Areal bone mineral density (aBMD) was calculated from 2D projection images of the 3D HR-pQCT scan of the specimens mimicking clinical DXA scans. Stochastic predictors, sill variance and correlation length, were calculated from their experimental variogram. Vertebral strength was measured as the maximum failure load of human vertebrae and vertebral bodies from mechanical tests. Vertebral strength correlated significantly with sill variance (r = 0.727) and correlation length (r = 0.727) for the vertebral bodies, and with correlation length (r = 0.593) for full vertebrae. However, the stochastic predictors improved the strength prediction made by aBMD alone by only 11% for the vertebral bodies while no improvement was observed for the full vertebrae. Despite a correlation, classical variogram parameters such as sill variance and correlation length do not enhance the prediction of in vitro vertebral strength beyond aBMD. It remains unclear why some variogram-based evaluations of DXA improve fracture prediction without a proven relationship with vertebral strength.
Collapse
Affiliation(s)
- Xuanliang Neil Dong
- Department of Health and Kinesiology, University of Texas at Tyler, Tyler, TX, USA.
| | - Yongtao Lu
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, China; Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, and Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerd Huber
- Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Yan Chevalier
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich, Ludwig-Maximilian University, Campus Grosshadern, Munich, Germany
| | - Huijie Leng
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
| | - Ghislain Maquer
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| |
Collapse
|
8
|
Guerri S, Mercatelli D, Aparisi Gómez MP, Napoli A, Battista G, Guglielmi G, Bazzocchi A. Quantitative imaging techniques for the assessment of osteoporosis and sarcopenia. Quant Imaging Med Surg 2018. [PMID: 29541624 DOI: 10.21037/qims.2018.01.05] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone and muscle are two deeply interconnected organs and a strong relationship between them exists in their development and maintenance. The peak of both bone and muscle mass is achieved in early adulthood, followed by a progressive decline after the age of 40. The increase in life expectancy in developed countries resulted in an increase of degenerative diseases affecting the musculoskeletal system. Osteoporosis and sarcopenia represent a major cause of morbidity and mortality in the elderly population and are associated with a significant increase in healthcare costs. Several imaging techniques are currently available for the non-invasive investigation of bone and muscle mass and quality. Conventional radiology, dual energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound often play a complementary role in the study of osteoporosis and sarcopenia, depicting different aspects of the same pathology. This paper presents the different imaging modalities currently used for the investigation of bone and muscle mass and quality in osteoporosis and sarcopenia with special emphasis on the clinical applications and limitations of each technique and with the intent to provide interesting insights into recent advances in the field of conventional imaging, novel high-resolution techniques and fracture risk.
Collapse
Affiliation(s)
- Sara Guerri
- The Unit of Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, Division of Radiology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Daniele Mercatelli
- The Unit of Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| | - Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital, Grafton, Auckland, New Zealand.,Department of Radiology, Hospital Nueve de Octubre, Valencia, Spain
| | - Alessandro Napoli
- Radiology Section, Department of Radiological, Oncological and Anatomopathological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Giuseppe Battista
- Department of Experimental, Diagnostic and Specialty Medicine, Division of Radiology, S.Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy.,Department of Radiology, Scientific Institute "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Alberto Bazzocchi
- The Unit of Diagnostic and Interventional Radiology, The "Rizzoli" Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
9
|
Mao SS, Li D, Luo Y, Syed YS, Budoff MJ. Application of quantitative computed tomography for assessment of trabecular bone mineral density, microarchitecture and mechanical property. Clin Imaging 2016; 40:330-8. [DOI: 10.1016/j.clinimag.2015.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 12/17/2022]
|
10
|
Maquer G, Lu Y, Dall'Ara E, Chevalier Y, Krause M, Yang L, Eastell R, Lippuner K, Zysset PK. The Initial Slope of the Variogram, Foundation of the Trabecular Bone Score, Is Not or Is Poorly Associated With Vertebral Strength. J Bone Miner Res 2016; 31:341-6. [PMID: 26234619 DOI: 10.1002/jbmr.2610] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/14/2015] [Accepted: 07/29/2015] [Indexed: 01/12/2023]
Abstract
Trabecular bone score (TBS) rests on the textural analysis of dual-energy X-ray absorptiometry (DXA) to reflect the decay in trabecular structure characterizing osteoporosis. Yet, its discriminative power in fracture studies remains incomprehensible because prior biomechanical tests found no correlation with vertebral strength. To verify this result possibly owing to an unrealistic setup and to cover a wide range of loading scenarios, the data from three previous biomechanical studies using different experimental settings were used. They involved the compressive failure of 62 human lumbar vertebrae loaded 1) via intervertebral discs to mimic the in vivo situation ("full vertebra"); 2) via the classical endplate embedding ("vertebral body"); or 3) via a ball joint to induce anterior wedge failure ("vertebral section"). High-resolution peripheral quantitative computed tomography (HR-pQCT) scans acquired from prior testing were used to simulate anterior-posterior DXA from which areal bone mineral density (aBMD) and the initial slope of the variogram (ISV), the early definition of TBS, were evaluated. Finally, the relation of aBMD and ISV with failure load (F(exp)) and apparent failure stress (σexp) was assessed, and their relative contribution to a multilinear model was quantified via ANOVA. We found that, unlike aBMD, ISV did not significantly correlate with F(exp) and σexp , except for the "vertebral body" case (r(2) = 0.396, p = 0.028). Aside from the "vertebra section" setup where it explained only 6.4% of σexp (p = 0.037), it brought no significant improvement to aBMD. These results indicate that ISV, a replica of TBS, is a poor surrogate for vertebral strength no matter the testing setup, which supports the prior observations and raises a fortiori the question of the deterministic factors underlying the statistical relationship between TBS and vertebral fracture risk.
Collapse
Affiliation(s)
- Ghislain Maquer
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| | - Yongtao Lu
- Department of Mechanical Engineering and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK.,Institute of Biomechanics, TUHH Hamburg University of Technology, Hamburg, Germany
| | - Enrico Dall'Ara
- Department of Human Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Yan Chevalier
- Klinikum Großhadern, Orthopaedic Department, Laboratory for Biomechanics and Experimental Orthopaedics, Munich, Germany
| | - Matthias Krause
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lang Yang
- Department of Human Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Richard Eastell
- Department of Human Metabolism and INSIGNEO Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - Kurt Lippuner
- Osteoporosis Clinic, Inselspital, University Hospital and University of Bern, Bern, Switzerland
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Ellouz R, Chapurlat R, van Rietbergen B, Christen P, Pialat JB, Boutroy S. Challenges in longitudinal measurements with HR-pQCT: evaluation of a 3D registration method to improve bone microarchitecture and strength measurement reproducibility. Bone 2014; 63:147-57. [PMID: 24614646 DOI: 10.1016/j.bone.2014.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 02/10/2014] [Accepted: 03/02/2014] [Indexed: 02/04/2023]
Abstract
Definition of identical regions between repeated computed tomography (CT) scans is a key factor to monitor changes in bone microarchitecture. In longitudinal studies, accurate determination of the volume of interest (VOI), using three dimensional (3D) registration may improve precision. Therefore, the aim of our study was to investigate the short-term reproducibility of bone geometry, density, microstructure and biomechanical parameters assessed by HR-pQCT and micro-finite element (μFE) derived analyses, using the cross-sectional area (CSA) registration method in comparison with the use of 3D registration, to find overlapping regions between scans. Fifteen healthy individuals (aged 21-47 years) underwent 3 separate scans at the distal radius and tibia, within a one-month interval. Reproducibility was assessed after double contouring the cortical compartment and after applying three different methods to determine the common region between repeated scans: (i) the VOI was determined with no registration, i.e., on 110 slices, (ii) the VOI was determined after CSA-based registration, and (iii) the VOI was determined after 3D registration. Both pre- and post-registration short-term reproducibility for each subject was determined. With no registration, CVrms of geometry parameters ranged from 0.5 to 3.7%, showing a slight variation in the CSA between scans. When the CSA registration method was employed, the variability of geometry (CVrms<1.8%) and density parameters (CVrms<1.8%), was better than that obtained without registration. By removing the effect of repositioning, the 3D registration further improved the reproducibility of cortical bone measurements compared to other methods. Indeed, significant improvements were found for cortical geometry and microstructure measurements (CVrms ranged from 0.4% to 10.7% at both sites; p<0.05), whereas the impact on trabecular bone measurements was restricted to its geometry parameter. The repositioning error was significantly reduced, most markedly at the radius compared to the tibia. For μFE measures, the impact of 3D registration on whole bone stiffness was negligible, indicating adequate assessment of longitudinal changes in estimated biomechanical properties, even without registration. In conclusion, we have shown that the 3D registration improved the identification of the common region retained for longitudinal analysis, contributing to improve the reproducibility of cortical bone parameter measurements. We also quantified the minimally detectable bone changes to help designing future studies with HR-pQCT.
Collapse
Affiliation(s)
| | | | - Bert van Rietbergen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | - Patrik Christen
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands.
| | | | | |
Collapse
|
12
|
Dong XN, Shirvaikar M, Wang X. Biomechanical properties and microarchitecture parameters of trabecular bone are correlated with stochastic measures of 2D projection images. Bone 2013; 56:327-36. [PMID: 23756232 PMCID: PMC3755113 DOI: 10.1016/j.bone.2013.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 04/01/2013] [Accepted: 05/29/2013] [Indexed: 11/22/2022]
Abstract
It is well known that loss of bone mass, quantified by areal bone mineral density (aBMD) using DXA, is associated with the increasing risk of bone fractures. However, bone mineral density alone cannot fully explain changes in fracture risks. On top of bone mass, bone architecture has been identified as another key contributor to fracture risk. In this study, we used a novel stochastic approach to assess the distribution of aBMD from 2D projection images of Micro-CT scans of trabecular bone specimens at a resolution comparable to DXA images. Sill variance, a stochastic measure of distribution of aBMD, had significant relationships with microarchitecture parameters of trabecular bone, including bone volume fraction, bone surface-to-volume ratio, trabecular thickness, trabecular number, trabecular separation and anisotropy. Accordingly, it showed significantly positive correlations with strength and elastic modulus of trabecular bone. Moreover, a combination of aBMD and sill variance derived from the 2D projection images (R2=0.85) predicted bone strength better than using aBMD alone (R2=0.63). Thus, it would be promising to extend the stochastic approach to routine DXA scans to assess the distribution of aBMD, offering a more clinically significant technique for predicting risks of bone fragility fractures.
Collapse
Affiliation(s)
- Xuanliang N Dong
- Department of Health and Kinesiology, The University of Texas at Tyler, Tyler, TX 75799, USA.
| | | | | |
Collapse
|
13
|
Abstract
Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future.
Collapse
Affiliation(s)
- Kyle K Nishiyama
- Metabolic Bone Diseases Unit, Division of Endocrinology, Department of Medicine, College of Physicians and Surgeons, 630 West 168th Street, PH8 West 864, New York, NY 10032, USA
| | | |
Collapse
|
14
|
Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int 2013. [PMID: 23179565 DOI: 10.1007/s00198-012-2160-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
UNLABELLED High-resolution peripheral quantitative computed tomography (HR-pQCT) measurements of distal radius and tibia bone microarchitecture and finite element (FE) estimates of bone strength performed well at classifying postmenopausal women with and without previous fracture. The HR-pQCT measurements outperformed dual energy x-ray absorptiometry (DXA) at classifying forearm fractures and fractures at other skeletal sites. INTRODUCTION Areal bone mineral density (aBMD) is the primary measurement used to assess osteoporosis and fracture risk; however, it does not take into account bone microarchitecture, which also contributes to bone strength. Thus, our objective was to determine if bone microarchitecture measured with HR-pQCT and FE estimates of bone strength could classify women with and without low-trauma fractures. METHODS We used HR-pQCT to assess bone microarchitecture at the distal radius and tibia in 44 postmenopausal women with a history of low-trauma fracture and 88 age-matched controls from the Calgary cohort of the Canadian Multicentre Osteoporosis Study (CaMos) study. We estimated bone strength using FE analysis and simulated distal radius aBMD from the HR-pQCT scans. Femoral neck (FN) and lumbar spine (LS) aBMD were measured with DXA. We used support vector machines (SVM) and a tenfold cross-validation to classify the fracture cases and controls and to determine accuracy. RESULTS The combination of HR-pQCT measures of microarchitecture and FE estimates of bone strength had the highest area under the receiver operating characteristic (ROC) curve of 0.82 when classifying forearm fractures compared to an area under the curve (AUC) of 0.71 from DXA-derived aBMD of the forearm and 0.63 from FN and spine DXA. For all fracture types, FE estimates of bone strength at the forearm alone resulted in an AUC of 0.69. CONCLUSION Models based on HR-pQCT measurements of bone microarchitecture and estimates of bone strength performed better than DXA-derived aBMD at classifying women with and without prior fracture. In future, these models may improve prediction of individuals at risk of low-trauma fracture.
Collapse
Affiliation(s)
- K K Nishiyama
- Schulich School of Engineering, University of Calgary, Calgary, Canada.
| | | | | | | |
Collapse
|
15
|
Humbert L, Whitmarsh T, de Craene M, del Río Barquero LM, Frangi AF. Technical Note: Comparison between single and multiview simulated DXA configurations for reconstructing the 3D shape and bone mineral density distribution of the proximal femur. Med Phys 2012; 39:5272-6. [DOI: 10.1118/1.4736540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
16
|
Patsch JM, Burghardt AJ, Kazakia G, Majumdar S. Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci 2012; 1240:77-87. [PMID: 22172043 DOI: 10.1111/j.1749-6632.2011.06282.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The noninvasive quantification of peripheral compartment-specific bone microarchitecture is feasible with high-resolution peripheral quantitative computed tomography (HR-pQCT) and high-resolution magnetic resonance imaging (HR-MRI). In addition to classic morphometric indices, both techniques provide a suitable basis for virtual biomechanical testing using finite element (FE) analyses. Methodical limitations, morphometric parameter definition, and motion artifacts have to be considered to achieve optimal data interpretation from imaging studies. With increasing availability of in vivo high-resolution bone imaging techniques, special emphasis should be put on quality control including multicenter, cross-site validations. Importantly, conclusions from interventional studies investigating the effects of antiosteoporotic drugs on bone microarchitecture should be drawn with care, ideally involving imaging scientists, translational researchers, and clinicians.
Collapse
Affiliation(s)
- Janina M Patsch
- Musculoskeletal Quantitative Imaging Research, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.
| | | | | | | |
Collapse
|
17
|
Dall'Ara E, Pahr D, Varga P, Kainberger F, Zysset P. QCT-based finite element models predict human vertebral strength in vitro significantly better than simulated DEXA. Osteoporos Int 2012; 23:563-72. [PMID: 21344244 DOI: 10.1007/s00198-011-1568-3] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 02/01/2011] [Indexed: 11/26/2022]
Abstract
SUMMARY While dual energy X-ray absorptiometry (DXA) is considered the gold standard to evaluate fracture risk in vivo, in the present study, the quantitative computed tomography (QCT)-based finite element modeling has been found to provide a quantitative and significantly improved prediction of vertebral strength in vitro. This technique might be used in vivo considering however the much larger doses of radiation needed for QCT. INTRODUCTION Vertebral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. QCT-based finite element (FE) modeling is an engineering method to predict vertebral strength. The aim of this study was to compare the ability of FE and clinical diagnostic tools to predict vertebral strength in vitro using an improved testing protocol. METHODS Thirty-seven vertebral sections were scanned with QCT and high resolution peripheral QCT (HR-pQCT). Bone mineral content (BMC), total BMD (tBMD), areal BMD from lateral (aBMD-lat), and anterior-posterior (aBMD-ap) projections were evaluated for both resolutions. Wedge-shaped fractures were then induced in each specimen with a novel testing setup. Nonlinear homogenized FE models (hFE) and linear micro-FE (μFE) were generated from QCT and HR-pQCT images, respectively. For experiments and models, both structural properties (stiffness, ultimate load) and material properties (apparent modulus and strength) were computed and compared. RESULTS Both hFE and μFE models predicted material properties better than structural ones and predicted strength significantly better than aBMD computed from QCT and HR-pQCT (hFE: R² = 0.79, μFE: R² = 0.88, aBMD-ap: R² = 0.48-0.47, aBMD-lat: R² = 0.41-0.43). Moreover, the hFE provided reasonable quantitative estimations of the experimental mechanical properties without fitting the model parameters. CONCLUSIONS The QCT-based hFE method provides a quantitative and significantly improved prediction of vertebral strength in vitro when compared to simulated DXA. This superior predictive power needs to be verified for loading conditions that simulate even more the in vivo case for human vertebrae.
Collapse
Affiliation(s)
- E Dall'Ara
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gußhausstrasse 27-29, 1040 Vienna, Austria.
| | | | | | | | | |
Collapse
|
18
|
Whitmarsh T, Humbert L, De Craene M, Del Rio Barquero LM, Frangi AF. Reconstructing the 3D shape and bone mineral density distribution of the proximal femur from dual-energy X-ray absorptiometry. IEEE TRANSACTIONS ON MEDICAL IMAGING 2011; 30:2101-2114. [PMID: 21803681 DOI: 10.1109/tmi.2011.2163074] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The accurate diagnosis of osteoporosis has gained increasing importance due to the aging of our society. Areal bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) is an established criterion in the diagnosis of osteoporosis. This measure, however, is limited by its two-dimensionality. This work presents a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image used in clinical routine. A statistical model of the combined shape and BMD distribution is presented, together with a method for its construction from a set of quantitative computed tomography (QCT) scans. A reconstruction is acquired in an intensity based 3D-2D registration process whereby an instance of the model is found that maximizes the similarity between its projection and the DXA image. Reconstruction experiments were performed on the DXA images of 30 subjects, with a model constructed from a database of QCT scans of 85 subjects. The accuracy was evaluated by comparing the reconstructions with the same subject QCT scans. The method presented here can potentially improve the diagnosis of osteoporosis and fracture risk assessment from the low radiation dose and low cost DXA devices currently used in clinical routine.
Collapse
Affiliation(s)
- Tristan Whitmarsh
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Information and Communication Technologies Department, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
19
|
Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res 2011; 469:2179-93. [PMID: 21344275 PMCID: PMC3126972 DOI: 10.1007/s11999-010-1766-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The role of bone structure, one component of bone quality, has emerged as a contributor to bone strength. The application of high-resolution imaging in evaluating bone structure has evolved from an in vitro technology for small specimens to an emerging clinical research tool for in vivo studies in humans. However, many technical and practical challenges remain to translate these techniques into established clinical outcomes. QUESTIONS/PURPOSES We reviewed use of high-resolution CT for evaluating trabecular microarchitecture and cortical ultrastructure of bone specimens ex vivo, extension of these techniques to in vivo human imaging studies, and recent studies involving application of high-resolution CT to characterize bone structure in the context of skeletal disease. METHODS We performed the literature review using PubMed and Google Scholar. Keywords included CT, MDCT, micro-CT, high-resolution peripheral CT, bone microarchitecture, and bone quality. RESULTS Specimens can be imaged by micro-CT at a resolution starting at 1 μm, but in vivo human imaging is restricted to a voxel size of 82 μm (with actual spatial resolution of ~ 130 μm) due to technical limitations and radiation dose considerations. Presently, this mode is limited to peripheral skeletal regions, such as the wrist and tibia. In contrast, multidetector CT can assess the central skeleton but incurs a higher radiation burden on the subject and provides lower resolution (200-500 μm). CONCLUSIONS CT currently provides quantitative measures of bone structure and may be used for estimating bone strength mathematically. The techniques may provide clinically relevant information by enhancing our understanding of fracture risk and establishing the efficacy of antifracture for osteoporosis and other bone metabolic disorders.
Collapse
Affiliation(s)
- Andrew J. Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Thomas M. Link
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| | - Sharmila Majumdar
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, Campus Box 2520, QB3 Building, 2nd Floor, Suite 203, 1700 4th Street, San Francisco, CA 94158 USA
| |
Collapse
|
20
|
Guglielmi G, Nasuto M, La Porta M. Radiological diagnostic progress in skeletal diseases. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2011; 8:13-16. [PMID: 22461797 PMCID: PMC3230917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
High-resolution bone imaging has made tremendous progress in the recent past. Both imaging modalities, computed tomography as well as MR imaging, have improved image quality. New developments such as HR-pQCT now make it possible to acquire in vivo images at peripheral sites with isotropic voxel size in a very short time. Further enhancements in the MR field have made it possible to image more central body sites such as the proximal femur with very high spatial resolution. New analysis methods can obtain direct estimates of biomechanical properties and important information related to bone's topology, as well as parameters of scale and orientation. These accomplishments will be essential in the noninvasive assessment of osteoporosis and fracture risk, will provide insight into the mechanisms behind bone loss, and will increasingly play a role as a tool for assessing treatment efficacy.
Collapse
Affiliation(s)
- Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Michelangelo Nasuto
- Department of Radiology, Scientific Institute “Casa Sollievo della Sofferenza” Hospital, San Giovanni Rotondo, Foggia, Italy
| | - Michele La Porta
- Department of Radiology, “T. Masselli-Mascia” Hospital, San Severo, Foggia, Italy
| |
Collapse
|
21
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2010; 17:568-80. [PMID: 21030841 DOI: 10.1097/med.0b013e328341311d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Kazakia GJ, Burghardt AJ, Link TM, Majumdar S. Variations in morphological and biomechanical indices at the distal radius in subjects with identical BMD. J Biomech 2010; 44:257-66. [PMID: 21071031 DOI: 10.1016/j.jbiomech.2010.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
Determination of osteoporotic status is based primarily on areal bone mineral density (aBMD) obtained through dual X-ray absorptiometry (DXA). However, many fractures occur in patients with T-scores above the WHO threshold of osteoporosis, in part because DXA measures are insensitive to biomechanically important alterations in bone quality. The goal of this study was to determine--within groups of subjects with identical radius aBMD values--the extant variation in densitometric, geometric, microstructural, and biomechanical parameters. High resolution peripheral quantitative computed tomography (HR-pQCT) and DXA radius data from males and females spanning large ranges in age, osteoporotic status, and anthropometrics were compiled. 262 distal radius datasets were processed for this study. HR-pQCT scans were analyzed according to the manufacturer's standard clinical protocol to quantify densitometric, geometric, and microstructural indices. Micro-finite element analysis was performed to calculate biomechanical indices. Factor of risk of wrist fracture was calculated. Simulated aBMD calculated from HR-pQCT data was used to group scans for evaluation of variation in quantified indices. Indices reflecting the greatest variation within aBMD level were BMD in the central portion of the trabecular compartment (max CV 142), trabecular heterogeneity (max CV 90), and intra-cortical porosity (max CV 151). Of the biomechanical indices, cortical load fraction had the greatest variation (max CV 38). Substantial variations in indices reflecting density, structure, and biomechanical competence exist among subjects with identical aBMD levels. Overlap of these indices among osteoporotic status groups reflects the reported incidence of osteoporotic fracture in subjects classified as osteopenic or normal.
Collapse
Affiliation(s)
- Galateia J Kazakia
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, 185 Berry Street, San Francisco, CA, USA.
| | | | | | | |
Collapse
|
23
|
Varga P, Pahr DH, Baumbach S, Zysset PK. HR-pQCT based FE analysis of the most distal radius section provides an improved prediction of Colles' fracture load in vitro. Bone 2010; 47:982-8. [PMID: 20692389 DOI: 10.1016/j.bone.2010.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
The remarkable performances of high-resolution peripheral quantitative computed tomography (HR-pQCT) make the distal radius a favorable site for early diagnosis of osteoporosis and improved Colles' fracture risk assessment. The goal of this study was to investigate if the HR-pQCT-based micro finite element (μFE) method applied on specific sections of the distal radius provides improved predictions of Colles' fracture load in vitro compared to bone mineral content (BMC), bone mineral density (BMD), or histomorphometric indices. HR-pQCT based BMC, BMD, histomorphometric parameters, and μFE models of 9-mm-thick bone sections were used to predict fracture load of 21 distal radii assessed in an experimental model of Colles' fracture reported in a previous study. The analysis was performed on two bone sections: a standard one recommended by the HR-pQCT manufacturer and a second one defined just proximal to the distal subchondral plate. For most of the investigated parameters, significant differences were found between the values of the two sections. Correlations with experimental fracture load and strength were higher in the most distal section, and the difference was statistically significant for μFE strength. Furthermore, the most distal section was computed to have significantly lower ultimate force and strength by 13% and 35%, respectively, than the standard section. BMC provided a better estimation of Colles' fracture load (R(2)=0.942) than aBMD or any other histomorphometric indices. The best prediction was achieved with μFE analyses of the most distal slice (R(2)=0.962), which provided quantitatively correct ultimate forces.
Collapse
Affiliation(s)
- Peter Varga
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Gußhausstraße 27-29, A-1040 Vienna, Austria.
| | | | | | | |
Collapse
|
24
|
Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, Link TM. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010; 95:5045-55. [PMID: 20719835 PMCID: PMC2968722 DOI: 10.1210/jc.2010-0226] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Cross-sectional epidemiological studies have found that patients with type 2 diabetes mellitus (T2DM) have a higher incidence of certain fragility fractures despite normal or elevated bone mineral density (BMD). OBJECTIVE In this study, high-resolution peripheral quantitative computed tomography was applied to characterize cortical and trabecular microarchitecture and biomechanics in the peripheral skeleton of female patients with T2DM. DESIGN AND SETTING A cross-sectional study was conducted in patients with T2DM recruited from a diabetic outpatient clinic. PARTICIPANTS Elderly female patients (age, 62.9 ± 7.7 yr) with a history of T2DM (n = 19) and age- and height-matched controls (n = 19) were recruited. OUTCOME MEASURES Subjects were imaged using high-resolution peripheral quantitative computed tomography at the distal radius and tibia. Quantitative measures of volumetric (BMD), cross-sectional geometry, trabecular and cortical microarchitecture were calculated. Additionally, compressive mechanical properties were determined by micro-finite element analysis. RESULTS Compared to the controls, the T2DM cohort had 10% higher trabecular volumetric BMD (P < 0.05) adjacent to the cortex and higher trabecular thickness in the tibia (13.8%; P < 0.05). Cortical porosity differences alone were consistent with impaired bone strength and were significant in the radius (>+50%; P < 0.05), whereas pore volume approached significance in the tibia (+118%; P = 0.1). CONCLUSION The results of this pilot investigation provide a potential explanation for the inability of standard BMD measures to explain the elevated fracture incidence in patients with T2DM. The findings suggest that T2DM may be associated with impaired resistance to bending loads due to inefficient redistribution of bone mass, characterized by loss of intracortical bone offset by an elevation in trabecular bone density.
Collapse
Affiliation(s)
- Andrew J Burghardt
- Musculoskeletal Quantitative Imaging Research Group, Department of Radiology and Biomedical Imaging, University of California, San Francisco, QB3 Building, Suite 203, San Francisco, California 94158, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Varga P, Dall’Ara E, Pahr DH, Pretterklieber M, Zysset PK. Validation of an HR-pQCT-based homogenized finite element approach using mechanical testing of ultra-distal radius sections. Biomech Model Mechanobiol 2010; 10:431-44. [DOI: 10.1007/s10237-010-0245-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
26
|
Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 2010; 48:601-21. [PMID: 20609895 DOI: 10.1016/j.rcl.2010.02.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The importance of assessing the bone's microarchitectural make-up in addition to its mineral density in the context of osteoporosis has been emphasized in several publications. The high spatial resolution required to resolve the bone's microstructure in a clinically feasible scan time is challenging. At present, the best suited modalities meeting these requirements in vivo are high-resolution peripheral quantitative imaging (HR-pQCT) and magnetic resonance imaging (MRI). Whereas HR-pQCT is limited to peripheral skeleton regions like the wrist and ankle, MRI can also image other sites like the proximal femur but usually with lower spatial resolution. In addition, multidetector computed tomography has been used for high-resolution imaging of trabecular bone structure; however, the radiation dose is a limiting factor. This article provides an overview of the different modalities, technical requirements, and recent developments in this emerging field. Details regarding imaging protocols as well as image postprocessing methods for bone structure quantification are discussed.
Collapse
Affiliation(s)
- Roland Krug
- MQIR, Department of Radiology and Biomedical Imaging, University of California-San Francisco, UCSF China Basin Landing, 185 Berry Street, San Francisco, CA 94107, USA.
| | | | | | | |
Collapse
|
27
|
Bréban S, Padilla F, Fujisawa Y, Mano I, Matsukawa M, Benhamou CL, Otani T, Laugier P, Chappard C. Trabecular and cortical bone separately assessed at radius with a new ultrasound device, in a young adult population with various physical activities. Bone 2010; 46:1620-5. [PMID: 20230926 DOI: 10.1016/j.bone.2010.03.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/27/2010] [Accepted: 03/04/2010] [Indexed: 11/15/2022]
Abstract
The aim was to evaluate a new ultrasound device in a young adult population and to assess its reproducibility via comparison to DXA measurements and geometrical measurements from high-resolution radiographs. Ninety-three subjects aged between 20 and 51 years were recruited and divided into four groups according to their gender and physical activity status: 22 male athletes, 19 male controls, 21 female athletes, and 31 female controls. Ultrasonic measurements were assessed by the prototype LD-100 (Oyo Electric Co., Kyoto, Japan) on the dominant distal radius. Attenuation in the radius (dB), cortical bone thickness (mm), radius thickness (mm), mass density of cancellous bone (mg/cm(3)), and elasticity (GPa) of cancellous bone were obtained. BMD was measured by DXA at the dominant distal radius. Radius images were obtained with a direct high-resolution digital X-ray device (BMA, D(3)A Medical Systems), and radius and cortical thicknesses were estimated using a specific software (ImageJ, Bethesda, USA), in an area site-matched with LD-100. There was a significant positive correlation between site-matched BMD measurement and LD-100 parameters (p<0.004), X-ray radius thickness, and LD-100 parameters except elasticity (p<0.05, r>0.32), X-ray cortical thickness and LD-100 attenuation and cortical thickness (p<0.01). A significantly higher attenuation, cortical and radius thicknesses were found in athletes compared to controls (p<0.05). The radius thickness measured on radiographs was significantly higher in athletes versus controls in both sexes, and cortical thickness was significantly higher in male athletes versus controls. These data suggest a positive influence of physical activity on bone cortical measurements. This study also confirmed the particular interest of bone assessment by ultrasound.
Collapse
Affiliation(s)
- S Bréban
- CTI, U658 Inserm, Orléans, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Age- and gender-related differences in the geometric properties and biomechanical significance of intracortical porosity in the distal radius and tibia. J Bone Miner Res 2010; 25:983-93. [PMID: 19888900 PMCID: PMC3153365 DOI: 10.1359/jbmr.091104] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cortical bone contributes the majority of overall bone mass and bears the bulk of axial loads in the peripheral skeleton. Bone metabolic disorders often are manifested by cortical microstructural changes via osteonal remodeling and endocortical trabecularization. The goal of this study was to characterize intracortical porosity in a cross-sectional patient cohort using novel quantitative computational methods applied to high-resolution peripheral quantitative computed tomography (HR-pQCT) images of the distal radius and tibia. The distal radius and tibia of 151 subjects (57 male, 94 female; 47 +/- 16 years of age, range 20 to 78 years) were imaged using HR-pQCT. Intracortical porosity (Ct.Po) was calculated as the pore volume normalized by the sum of the pore and cortical bone volume. Micro-finite element analysis (microFE) was used to simulate 1% uniaxial compression for two scenarios per data set: (1) the original structure and (2) the structure with intracortical porosity artificially occluded. Differential biomechanical indices for stiffness (Delta K), modulus (Delta E), failure load (Delta F), and cortical load fraction (Delta Ct.LF) were calculated as the difference between original and occluded values. Regression analysis revealed that cortical porosity, as depicted by HR-pQCT, exhibited moderate but significant age-related dependence for both male and female cohorts (radius rho = 0.7; tibia rho = 0.5; p < .001). In contrast, standard cortical metrics (Ct.Th, Ct.Ar, and Ct.vBMD) were more weakly correlated or not significantly correlated with age in this population. Furthermore, differential microFE analysis revealed that the biomechanical deficit (Delta K) associated with cortical porosity was significantly higher for postmenopausal women than for premenopausal women (p < .001). Finally, porosity-related measures provided the only significant decade-wise discrimination in the radius for females in their fifties versus females in their sixties (p < .01). Several important conclusions can be drawn from these results. Age-related differences in cortical porosity, as detected by HR-pQCT, are more pronounced than differences in standard cortical metrics. The biomechanical significance of these structural differences increases with age for men and women and provides discriminatory information for menopause-related bone quality effects.
Collapse
|