1
|
Wang YX, Deng ZH, Li YY, Bai K, Ma J, Liu Y, Chen Q. Function of hematopoiesis and bone marrow niche in inflammation and non-hematopoietic diseases. LIFE MEDICINE 2025; 4:lnaf015. [PMID: 40376111 PMCID: PMC12076419 DOI: 10.1093/lifemedi/lnaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/24/2025] [Indexed: 05/18/2025]
Abstract
Hematopoiesis and the behavior of hematopoietic stem and progenitor cells (HSPCs) are regulated by the bone marrow niche. Here, we introduce the major niche cell types in bone marrow and their response to stress condition. We highlight the hematopoietic response and bone marrow niche adaptation to inflammatory condition and non-hematopoietic diseases, which are not systematically summarized. These emerging data suggest targeting hematopoiesis and bone marrow niche may provide novel therapeutic target to precisely control the progression of the diseases.
Collapse
Affiliation(s)
- Yu-xiang Wang
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Zhao-hua Deng
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Yu-yan Li
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| | - Ke Bai
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
- The Institute of Future Health, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qi Chen
- Center for Cell Lineage Atlas, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory for Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou 510530, China
| |
Collapse
|
2
|
Hughes-Austin JM, Pereira RC, Jorgetti VD, Salusky IB, Ix JH. Static histomorphometry parameters can identify bone turnover status in children and adults with chronic kidney disease. Bone 2025; 190:117329. [PMID: 39528063 DOI: 10.1016/j.bone.2024.117329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Tetracycline labeling for bone biopsy facilitates quantification of the pace of new bone production. As tetracycline labeling needs to be done prior to biopsy, it cannot be used to assess bone turnover in patients presenting with fractures, yet knowing turnover rate in patients experiencing fractures - especially in those with chronic kidney disease (CKD) - may guide appropriate medical therapy after surgical repair. Therefore, we sought to determine the diagnostic accuracy of static markers of bone turnover relative to tetracycline labeling in a pediatric and adult cohort of patients with chronic kidney disease (CKD) undergoing iliac crest biopsy with histomorphometry. METHODS We evaluated two cohorts, one of 147 children and young adults ages 18±10 and another of 151 adults ages 49±13 who had undergone iliac crest biopsy with tetracycline labeling for clinical indications of CKD-mineral and bone disorders. We used bone formation rate relative to bone surface (BFR/BS) based on double tetracycline labeling as our gold standard marker of bone turnover. A blinded investigator used light microscopy without fluorescence to measure static bone turnover parameters. We compared the area under the ROC curve (AUC), sensitivity, and specificity of each static parameter with low and high bone turnover based on BFR/BS. RESULTS In the pediatric and adult cohorts, 35 (24 %) and 70 (46 %) had low bone turnover, respectively, and 18 (12 %) and 30 (20 %) had high bone turnover, respectively. The static parameters with the greatest AUCs for low and high turnover were osteoblast surface/bone surface (Ob.S/BS), osteoclast surface/bone surface (Oc.S/BS), eroded surface/bone surface (ES/BS), osteoid surface/bone surface (OS/BS), osteoid volume/bone volume (OV/BV), and osteoid thickness (O.Th.) in both cohorts. Ob.S/BS had the highest AUC for low and high turnover in the pediatric cohort (0.8204 and 0.8678, respectively) whereas Oc.S/BS had the highest AUC for low turnover (0.8325) and ES/BS had the highest AUC for high turnover (0.7360) in the adult cohort. DISCUSSION Static measures of histomorphometry that do not rely on tetracycline bone labeling can identify low and high bone turnover in children and adults with CKD with moderate to high accuracy. This approach may allow assessment of bone turnover in the setting of clinical fractures where clinicians may have access to bone tissue but where tetracycline labeling is not available.
Collapse
Affiliation(s)
- Jan M Hughes-Austin
- Department of Orthopaedic Surgery, School of Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Renata C Pereira
- Department of Pediatrics, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Isidro B Salusky
- Department of Pediatrics, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego, La Jolla, CA, USA
| |
Collapse
|
3
|
Lu KC, Hung KC, Liao MT, Shih LJ, Chao CT. Vascular Calcification Heterogeneity from Bench to Bedside: Implications for Manifestations, Pathogenesis, and Treatment Considerations. Aging Dis 2024; 16:683-692. [PMID: 38739930 PMCID: PMC11964443 DOI: 10.14336/ad.2024.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/20/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular calcification (VC) is the ectopic deposition of calcium-containing apatite within vascular walls, exhibiting a high prevalence in older adults, and those with diabetes or chronic kidney disease. VC is a subclinical cardiovascular risk trait that increases mortality and functional deterioration. However, effective treatments for VC remain largely unavailable despite multiple attempts. Part of this therapeutic nihilism results from the failure to appreciate the diversity of VC as a pathological complex, with unforeseeable variations in morphology, risk associates, and anatomical and molecular pathogenesis, affecting clinical management strategies. VC should not be considered a homogeneous pathology because accumulating evidence refutes its conceptual and content uniformity. Here, we summarize the pathophysiological sources of VC heterogeneity from the intersecting pathways and networks of cellular, subcellular, and molecular crosstalk. Part of these pathological connections are synergistic or mutually antagonistic. We then introduce clinical implications related to the VC heterogeneity concept. Even within the same individual, a specific artery may exhibit the strongest tendency for calcification compared with other arteries. The prognostic value of VC may only be detectable with a detailed characterization of calcification morphology and features. VC heterogeneity is also evident, as VC risk factors vary between different arterial segments and layers. Therefore, diagnostic and screening strategies for VC may be improved based on VC heterogeneity, including the use of radiomics. Finally, pursuing a homogeneous treatment strategy is discouraged and we suggest a more rational approach by diversifying the treatment spectrum. This may greatly benefit subsequent efforts to identify effective VC therapeutics.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.
| | - Kuo-Chin Hung
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan.
- Department of Pharmacy, Tajen University, Pingtung, Taiwan.
| | - Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Hsinchu Branch, Hsinchu, Taiwan.
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Li-Jane Shih
- Department of Medical Laboratory, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan.
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan.
| | - Chia-Ter Chao
- Division of Nephrology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan.
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
- Division of Nephrology, Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Center of Faculty Development, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
4
|
Lalayiannis AD, Soeiro EMD, Moysés RMA, Shroff R. Chronic kidney disease mineral bone disorder in childhood and young adulthood: a 'growing' understanding. Pediatr Nephrol 2024; 39:723-739. [PMID: 37624528 PMCID: PMC10817832 DOI: 10.1007/s00467-023-06109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
Chronic kidney disease (CKD) mineral and bone disorder (MBD) comprises a triad of biochemical abnormalities (of calcium, phosphate, parathyroid hormone and vitamin D), bone abnormalities (turnover, mineralization and growth) and extra-skeletal calcification. Mineral dysregulation leads to bone demineralization causing bone pain and an increased fracture risk compared to healthy peers. Vascular calcification, with hydroxyapatite deposition in the vessel wall, is a part of the CKD-MBD spectrum and, in turn, leads to vascular stiffness, left ventricular hypertrophy and a very high cardiovascular mortality risk. While the growing bone requires calcium, excess calcium can deposit in the vessels, such that the intake of calcium, calcium- containing medications and high calcium dialysate need to be carefully regulated. Normal physiological bone mineralization continues into the third decade of life, many years beyond the rapid growth in childhood and adolescence, implying that skeletal calcium requirements are much higher in younger people compared to the elderly. Much of the research into the link between bone (de)mineralization and vascular calcification in CKD has been performed in older adults and these data must not be extrapolated to children or younger adults. In this article, we explore the physiological changes in bone turnover and mineralization in children and young adults, the pathophysiology of mineral bone disease in CKD and a potential link between bone demineralization and vascular calcification.
Collapse
Affiliation(s)
- Alexander D Lalayiannis
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK.
- University College London Great Ormond Street Hospital Institute of Child Health, London, UK.
| | | | - Rosa M A Moysés
- Sao Paulo University Faculty of Medicine, Universidade de Sao Paulo Faculdade de Medicina, São Paulo, Brazil
| | - Rukshana Shroff
- University College London Great Ormond Street Hospital Institute of Child Health, London, UK
| |
Collapse
|
5
|
Bao WH, Yang WL, Su CY, Lu XH, He L, Zhang AH. Relationship between gut microbiota and vascular calcification in hemodialysis patients. Ren Fail 2023; 45:2148538. [PMID: 36632746 PMCID: PMC9848239 DOI: 10.1080/0886022x.2022.2148538] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Vascular calcification (VC) is an independent risk factor for cardiovascular mortality in end-stage renal disease (ESRD) patients. The pathogenesis of VC is complicated and unclear. Uremic toxins produced by gut microbiota can promote VC. This study aims to identify the differences in gut microbiota between the different VC groups and the main bacteria associated with VC in hemodialysis (HD) patients in an attempt to open up new preventive and therapeutic approaches and define the probable mechanism for VC in HD patients in the future. METHODS A total of 73 maintenance HD patients were enrolled in this cross-sectional study. According to the abdominal aortic calcification (AAC) scores, the participants were divided into the high AAC score group and the low AAC score group. High-throughput sequencing of the gut microbiota was performed and the results were evaluated by alpha diversity, beta diversity, species correlation, and model predictive analyses. RESULTS The prevalence of VC was 54.79% (40/73) in the study. The majority of phyla in the two groups were the same, including Firmicutes, Actinobacteriota, Proteobacteria, and Bacteroidota. The microbial diversity in the high AAC score group had a decreasing trend (p = 0.050), and the species abundance was significantly lower (p = 0.044) than that in the low AAC score group. The HD patients with high AAC scores showed an increased abundance of Proteobacteria and decreased abundances of Bacteroidota and Synergistota at the phylum level; increased abundances of Escherichia-Shigella, Ruminococcus_gnavus_group, and Lactobacillus; and decreased abundances of Ruminococcus and Lachnospiraceae_NK4A136_group at the genus level (p<0.05). Escherichia-Shigella and Ruminococcus_gnavus_group were positively correlated with VC, and Ruminococcus, Adlercreutzia, Alistipes, and norank_f__Ruminococcaceae were negatively correlated with VC. Escherichia-Shigella had the greatest influence on VC in HD patients, followed by Ruminococcus and Butyricimonas. CONCLUSIONS Our results provide clinical evidence that there was a difference in gut microbiota between the different VC groups in HD patients. Escherichia-Shigella, a lipopolysaccharide (LPS)-producing bacterium, was positively correlated with VC and had the greatest influence on VC. Ruminococcus, a short-chain fatty acid (SCFA)-producing bacterium, was negatively correlated with VC and had the second strongest influence on VC in HD patients. The underlying mechanism is worth studying. These findings hint at a new therapeutic target.
Collapse
Affiliation(s)
- Wen-Han Bao
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Wen-Ling Yang
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Chun-Yan Su
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Xin-Hong Lu
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Lian He
- Department of Nephrology, Peking University Third Hospital, Beijing, PR China,CONTACT Lian He Department of Nephrology, Peking University Third Hospital, Beijing, PR China
| | - Ai-Hua Zhang
- Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, PR China,Ai-Hua Zhang Department of Nephrology, Xuanwu Hospital Capital Medical University, Beijing, PR China
| |
Collapse
|
6
|
Fu R, Meng K, Zhang R, Du X, Jiao J. Bone marrow-derived exosomes promote inflammation and osteoclast differentiation in high-turnover renal osteodystrophy. Ren Fail 2023; 45:2264396. [PMID: 37870853 PMCID: PMC11001343 DOI: 10.1080/0886022x.2023.2264396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/23/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Renal osteodystrophy (ROD) is a type of bone metabolic disorder in patients with chronic kidney disease (CKD). Inflammation is associated with bone loss in ROD. However, its precise mechanism has not yet been elucidated. The present study was conducted to investigate whether exosomes (Exos) in bone marrow (BM) are involved in the pathogenesis of high-turnover ROD.Methods: Bone mass, osteoclast number, and pro-inflammatory cytokines levels of BM supernatant were detected in adenine-induced ROD rats. The effect of Exos derived from BM (BM-Exos) of ROD (ROD-Exos) on inflammatory genes and osteoclast differentiation of BM-derived macrophages (BMMs) were further examined. Then, exosomal miRNA sequencing was performed and an miRNA-mRNA-pathway network was constructed.Results: we found increased osteoclasts and decreased bone mass in ROD rats, as well as inflammatory activation in the BM niche. Furthermore, BMMs from ROD rats displayed overproduction of proinflammatory cytokines and increased osteoclast differentiation, accompanied by nuclear factor κB (NF-κB) signaling activation. Mechanistically, we found that ROD-Exos activates NF-κB signaling to promote the release of proinflammatory cytokines and increase osteoclast differentiation of BMMs. Meanwhile, a total of 24 differentially expressed miRNAs were identified between BM-Exos from ROD and normal control (NC). The miRNA-mRNA-pathway network suggests that rno-miR-9a-5p, rno-miR-133a-3p, rno-miR-30c-5p, rno-miR-206-3p, and rno-miR-17-5p might play pivotal roles in inflammation and osteoclast differentiation. Additionally, we validated that the expression of miR-9a-5p is upregulated in ROD-Exos.Conclusion: The BM niche of ROD alters the miRNA cargo of BM-Exos to promote inflammation and osteoclast differentiation of BMMs, at least partially contributing to the pathogenesis of high-turnover ROD.
Collapse
Affiliation(s)
- Rao Fu
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Meng
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Zhang
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuanyi Du
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jundong Jiao
- Department of Nephrology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Institute of Nephrology, Harbin Medical University, Harbin, China
| |
Collapse
|
7
|
Evenepoel P, Stenvinkel P, Shanahan C, Pacifici R. Inflammation and gut dysbiosis as drivers of CKD-MBD. Nat Rev Nephrol 2023; 19:646-657. [PMID: 37488276 DOI: 10.1038/s41581-023-00736-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Two decades ago, Kidney Disease: Improving Global Outcomes coined the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe the syndrome of biochemical, bone and extra-skeletal calcification abnormalities that occur in patients with CKD. CKD-MBD is a prevalent complication and contributes to the excessively high burden of fractures and cardiovascular disease, loss of quality of life and premature mortality in patients with CKD. Thus far, therapy has focused primarily on phosphate retention, abnormal vitamin D metabolism and parathyroid hormone disturbances, but these strategies have largely proved unsuccessful, thus calling for paradigm-shifting concepts and innovative therapeutic approaches. Interorgan crosstalk is increasingly acknowledged to have an important role in health and disease. Accordingly, mounting evidence suggests a role for both the immune system and the gut microbiome in bone and vascular biology. Gut dysbiosis, compromised gut epithelial barrier and immune cell dysfunction are prominent features of the uraemic milieu. These alterations might contribute to the inflammatory state observed in CKD and could have a central role in the pathogenesis of CKD-MBD. The emerging fields of osteoimmunology and osteomicrobiology add another level of complexity to the pathogenesis of CKD-MBD, but also create novel therapeutic opportunities.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Herestraat, Leuven, Belgium.
| | - Peter Stenvinkel
- Department of Renal Medicine M99, Karolinska University Hospital, Stockholm, Sweden
| | - Catherine Shanahan
- British Heart Foundation Centre of Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, King's College London, London, UK
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory Microbiome Research Center, and Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, GA, USA
| |
Collapse
|
8
|
Saito T, Mizobuchi M, Kato T, Suzuki T, Fujiwara Y, Kanamori N, Makuuchi M, Honda H. One-Year Romosozumab Treatment Followed by One-Year Denosumab Treatment for Osteoporosis in Patients on Hemodialysis: An Observational Study. Calcif Tissue Int 2023; 112:34-44. [PMID: 36287217 DOI: 10.1007/s00223-022-01031-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/10/2022] [Indexed: 01/07/2023]
Abstract
There is limited evidence on the use of romosozumab (ROMO) in the treatment of osteoporosis in patients on hemodialysis (HD); thus, we aimed to investigate this topic. This prospective, observational, single-center cohort study included 13 prior osteoporosis treatment-naïve patients on HD with osteoporosis. They first received ROMO once monthly for 12 months (210 mg; subcutaneously once every month). Thereafter, they received denosumab (DENO) for an additional 12 months (60 mg; subcutaneously once every 6 months). We examined the incidence of new fractures; treatment safety; and temporal changes in the bone mineral density (BMD), bone metabolism markers, and vascular calcification. No new cases of fractures were noted. The median one-year percentage changes (from the baseline) in the BMDs at the lumbar spine (LS), total hip (TH), and femoral neck (FN) were + 9.0%, + 2.5%, and + 4.7%, respectively. These changes were maintained for 24 months. The corresponding relative changes from the baseline to 24 months thereafter were + 14.9%, + 5.4%, and + 6.5%, respectively. The percentage changes in TH BMD and FN BMD were negatively correlated with baseline BMD. Coronary artery and thoracic aorta calcification scores increased slightly from baseline to 12 months thereafter. However, fatal events (cardiovascular disease-associated and all-cause deaths) did not occur during ROMO treatment. Effectiveness of ROMO was better in patients who had severe osteoporosis with low TH BMD, low FN BMD, and high tartrate-resistant acid phosphatase 5b level at ROMO initiation.
Collapse
Affiliation(s)
- Tomohiro Saito
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan.
| | - Masahide Mizobuchi
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Tadashi Kato
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Taihei Suzuki
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | - Yasuro Fujiwara
- Sannoudai Hospital, Isioka-Si, 4-1-38 Higasiishioka, Ibaraki, 315-0037, Japan
| | - Naoaki Kanamori
- Sannoudai Hospital, Isioka-Si, 4-1-38 Higasiishioka, Ibaraki, 315-0037, Japan
| | - Mikio Makuuchi
- Sannoudai Hospital, Isioka-Si, 4-1-38 Higasiishioka, Ibaraki, 315-0037, Japan
| | - Hirokazu Honda
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| |
Collapse
|
9
|
Calcium Supplementation, Risk of Cardiovascular Diseases, and Mortality: A Real-World Study of the Korean National Health Insurance Service Data. Nutrients 2022; 14:nu14122538. [PMID: 35745268 PMCID: PMC9230596 DOI: 10.3390/nu14122538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 01/27/2023] Open
Abstract
Few studies have investigated the effects of calcium supplementation on cardiovascular outcomes in individuals with low calcium intake in real-world settings. This study examined the association between calcium supplementation and cardiovascular outcomes in the Korean population in a real-world setting. This large retrospective cohort study included patients aged ≥45 years first prescribed calcium supplements in 2010. Age- and sex-matched controls were recruited among those who had no prescription for calcium supplements. Longitudinal data were collected on 31 December 2018. Kaplan−Meier estimation and Cox proportional hazard regression analysis were performed. The cumulative incidence of acute myocardial infarction, ischemic stroke, and death was significantly higher in the calcium supplementation group than in the control group (p < 0.05 by log-rank test). The calcium supplementation group had a significantly higher risk of myocardial infarction, ischemic stroke, and death than the control group. Compared to the control group, the hazard ratios (95% confidence intervals) of the incidence of myocardial infarction, stroke, and death in the supplementation group were 1.14 (1.03−1.27), 1.12 (1.05−1.20), and 1.40 (1.32−1.50), respectively, after adjusting for confounding variables. Considering the associated cardiovascular risk, calcium supplementation for osteoporosis treatment should be administered cautiously.
Collapse
|
10
|
Martinez L, Perla M, Tabbara M, Duque JC, Rojas MG, Falcon NS, Pereira-Simon S, Salman LH, Vazquez-Padron RI. Systemic Profile of Cytokines in Arteriovenous Fistula Patients and Their Associations with Maturation Failure. KIDNEY360 2022; 3:677-686. [PMID: 35721613 PMCID: PMC9136910 DOI: 10.34067/kid.0006022021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
Background Systemic cytokines are elevated in patients with chronic kidney disease (CKD) and on hemodialysis compared with the general population. However, whether cytokine levels interfere with vascular remodeling, increasing the risk of arteriovenous fistula (AVF) failure, remains unknown. Methods This is a case-control study of 64 patients who underwent surgery for AVF creation (32 with AVF maturation failure and 32 matching controls with successful maturation). A total of 74 cytokines, including chemokines, interferons, interleukins, and growth factors, were measured in preoperative plasma samples using multiplex assays. Sixty-two patients were included in the statistical analyses. Associations with AVF failure were assessed using paired comparisons and conditional logistic regressions accounting for paired strata. Results Seven cytokines were significantly higher in patients with AVF maturation failure than in matching controls (G-CSF, IL-6, MDC, RANTES, SDF-1α/β, TGFα, and TPO). Of these, G-CSF (odds ratio [OR]=1.71; 95% confidence interval [95% CI], 1.05 to 2.79 per 10 pg/ml), MDC (OR=1.60, 95% CI, 1.08 to 2.38 per 100 pg/ml), RANTES (OR=1.55, 95% CI, 1.10 to 2.17 per 100 pg/ml), SDF-1α/β (OR=1.18, 95% CI, 1.04 to 1.33 per 1000 pg/ml), and TGFα (OR=1.39, 95% CI 1.003, 1.92 per 1 pg/ml) showed an incremental association by logistic regression. Conclusions This study identified a profile of plasma cytokines associated with adverse maturation outcomes in AVFs. These findings may open the doors for future therapeutics and markers for risk stratification.
Collapse
Affiliation(s)
- Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Mikael Perla
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Marwan Tabbara
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan C Duque
- Katz Family Division of Nephrology, Department of Medicine, University of Miami, Miami, Florida
| | - Miguel G Rojas
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Nieves Santos Falcon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Simone Pereira-Simon
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida
| | - Loay H Salman
- Division of Nephrology, Albany Medical College, Albany, New York
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida.,Bruce W. Carter VA Medical Center, Department of Veterans Affairs, Miami, Florida
| |
Collapse
|
11
|
Kandarini Y, Mahadita GW, Herawati S, Wibhuti IBR, Widiana IGR, Ayu NP. High C-Terminal Fibroblast Growth Factor-23, Intact Parathyroid Hormone, and Interleukin-6 as Determinants of Valvular Calcification in Regular Hemodialysis Patients. Int J Gen Med 2022; 15:4227-4236. [PMID: 35480992 PMCID: PMC9035456 DOI: 10.2147/ijgm.s359168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Biggest cause of death in chronic kidney disease-hemodialysis (CKD-HD) patients is cardiovascular disease (CVD). Cardiovascular disease is often associated with mineral bone disorders (MBD), especially vascular and valvular calcification. Biomarkers such as C-terminal-fibroblast growth factor-23 (FGF-23), intact parathyroid hormone (iPTH), and interleukin-6 (IL-6) were investigated. Only few studies have focused on valvular calcification in CKD-HD patients, with controversial results. The present study aimed to investigate whether high C-terminal-FGF-23, iPTH, and IL-6 can be used as determinants of valvular calcification in CKD-MBD patients undergoing regular HD. Patients and Methods This was an analytical cross-sectional study which involved CKD-HD patients aged 18–60 years with no history of CVD, malignancy, and diabetes mellitus. C-terminal FGF-23 was measured using enzyme-linked immunosorbent assay (ELISA) kit, iPTH using chemiluminescent immunometric method, and IL-6 using sandwich enzyme immunoassay technique. Valvular calcification on aortic and mitral valves was examined with echocardiography. Data analysis was done using Chi-squared test or Fisher’s exact test as appropriate and multivariate logistic regression analysis. Results Bivariate analysis with Fisher’s exact test showed significant association of prevalence ratio (PR) of C-terminal FGF-23 (PR = 1.33; p = 0.003; CI (1.017–1.748)), iPTH (PR = 1.361; p = 0.002; CI (1.02–1.816)), and IL-6 (PR = 1.2; p = 0.019; CI (1.000–1.446)) with valvular calcification. Multivariate analysis with logistic regression showed high C-terminal FGF-23 (exp (B) value of 16.44; p = 0.045; CI (1.07–252.75)), iPTH (exp (B) value of 33.312; p = 0.016; CI (1.94–571.71)), and IL-6 (exp (B) value of 21.58; p = 0.0381; CI (1.18–394.87)) were determinants of valvular calcification in CKD-MBD patients undergoing regular HD. Conclusion This study demonstrated that high C-terminal FGF-23, iPTH, and IL-6 were determinants of valvular calcification in CKD-MBD patients undergoing regular HD.
Collapse
Affiliation(s)
- Yenny Kandarini
- Department of Internal Medicine, Division of Nephrology and Hypertension, Udayana University Sanglah Hospital, Denpasar, Bali, Indonesia
- Correspondence: Yenny Kandarini, Department of Internal Medicine, Division of Nephrology and Hypertension, Udayana University Sanglah Hospital, P.B. Sudirman Street, Dangin Puri Klod, West Denpasar, Denpasar, 80234, Bali, Indonesia, Tel +628123803844; +62361 223797, Email
| | - Gede Wira Mahadita
- Department of Internal Medicine, Division of Nephrology and Hypertension, Udayana University Sanglah Hospital, Denpasar, Bali, Indonesia
| | - Sianny Herawati
- Department of Clinical Pathology and Laboratory Medicine, Udayana University Sanglah Hospital, Denpasar, Bali, Indonesia
| | - Ida Bagus Rangga Wibhuti
- Department of Cardiology and Vascular Medicine, Udayana University Sanglah Hospital, Denpasar, Bali, Indonesia
| | - I Gde Raka Widiana
- Department of Internal Medicine, Division of Nephrology and Hypertension, Udayana University Sanglah Hospital, Denpasar, Bali, Indonesia
| | - Nyoman Paramita Ayu
- Department of Internal Medicine, Division of Nephrology and Hypertension, Udayana University Sanglah Hospital, Denpasar, Bali, Indonesia
| |
Collapse
|
12
|
Van Berkel B, Van Ongeval C, Van Craenenbroeck AH, Pottel H, De Vusser K, Evenepoel P. Prevalence, progression and implications of breast artery calcification in patients with chronic kidney disease. Clin Kidney J 2022; 15:295-302. [PMID: 35145644 PMCID: PMC8825218 DOI: 10.1093/ckj/sfab178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Breast arterial calcification (BAC) is increasingly recognized as a specific marker of medial calcification. The present retrospective observational cohort study aimed to define the prevalence, progression rate, risk factors and clinical implications of BAC in chronic kidney disease (CKD) patients across stages of disease. The presence and extent of BAC were determined on mammograms in 310 females (58.7 ± 10.8 years, Caucasian) with CKD across various stages of disease [CKD G2-5D n = 132; transplant (Tx) recipients n = 178]. In a subset of 88 patients, repeat mammography was performed, allowing us to calculate the annualized BAC rate. Overall, BAC was observed in 34.7% of the patients. BAC prevalence (P = 0.02) and BAC score (P = 0.05) increased along the progression of CKD. In the overall cohort, patients with BAC were characterized by older age, more cardiovascular disease, more inflammation, higher pulse pressure and borderline higher prevalence of diabetes and were more often treated with a vitamin K antagonist (VKA). The BAC progression rate was significantly lower in Tx patients as compared with CKD G5D. Progressors were characterized by more inflammation, worse kidney function, higher BAC score and higher serum phosphate level (Tx only) at baseline and were more often treated with a VKA. Major adverse cardiovascular event-free survival was significantly worse in Tx patients with BAC. In conclusion, BAC is common among CKD patients, progresses at a slower pace in Tx patients as compared with CKD 5D and associates with dismal cardiovascular outcomes. BAC score, kidney function, serum phosphate at baseline and VKA usage seem to be important determinants of progression.
Collapse
Affiliation(s)
- Brecht Van Berkel
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven and Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Chantal Van Ongeval
- Department of Imaging and Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Amaryllis H Van Craenenbroeck
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven and Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Hans Pottel
- Department of Public Health and Primary Care, KU Leuven Kulak, Kortrijk, Belgium
| | - Katrien De Vusser
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven and Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven and Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Yamada S, Arase H, Yoshida H, Kitamura H, Tokumoto M, Taniguchi M, Hirakata H, Tsuruya K, Nakano T, Kitazono T. Malnutrition-Inflammation Complex Syndrome (MICS) and Bone Fractures and Cardiovascular Events in Patients Undergoing Hemodialysis: The Q-Cohort Study. Kidney Med 2022; 4:100408. [PMID: 35386605 PMCID: PMC8978069 DOI: 10.1016/j.xkme.2022.100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
14
|
Hauge SC, Abrahamsen B, Gislason G, Olesen JB, Hommel K, Hansen D. Diabetes increases the risk of bone fractures in patients on kidney replacement therapy: A Danish national cohort study. Bone 2021; 153:116158. [PMID: 34461286 DOI: 10.1016/j.bone.2021.116158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients treated with dialysis or living with a kidney transplant (kidney replacement therapy, KRT) have an increased risk of bone fracture. Patients with diabetes also have an increased risk of fracture. The aim of this study was to investigate whether the presence of diabetes in patients on KRT aggravates the risk of fracture. METHODS Nationwide Danish registries were used in this retrospective cohort study. All prevalent adult patients on hemodialysis (HD) or peritoneal dialysis (PD) on 1st of January 2000 and all incident patients starting KRT (HD, PD, kidney transplanted (KTX)) until 31st of December 2011 were included in the KRT group. Adult persons not on KRT and without diabetes on 1st of January 2000 were used as a reference group. Patients were separated in groups with and without (+/-) diabetes. They were followed until first fracture, emigration, death, or end-of-study on 31st of December 2016. RESULTS A total of 4,074,085 not on KRT +/- diabetes and 9053 patients on KRT +/- diabetes were included. Comparing the different groups with diabetes to the corresponding group without diabetes, the unadjusted HR (95% CI) for any first fracture were 1.2 (1.0-1.3) in the HD population, 1.4 (1.1-1.7) in the PD population, and 1.7 (1.4-2.2) in the KTX population. Further adjustments for age, sex, prior fractures, comorbidity and medication did not change these results significantly. CONCLUSIONS Diabetes increases the risk of fracture in patients on KRT.
Collapse
Affiliation(s)
- Sabina Chaudhary Hauge
- Department of Nephrology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark.
| | - Bo Abrahamsen
- Department of Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark.; Institute of Clinical Research, University of Southern Denmark, Winsløwparken 19, 3. Floor, 5000 Odense C, Copenhagen, Denmark; NDORMS, Botnar Centre, Oxford University, Windmill Road, Oxford, OX3 7LD, United Kingdom
| | - Gunnar Gislason
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark; The Danish Heart Foundation, Vognmagergade 7, 3. Floor, 1120 Copenhagen K, Denmark
| | - Jonas Bjerring Olesen
- Department of Cardiology, Copenhagen University Hospital - Herlev and Gentofte, Gentofte Hospitalsvej 1, 2900 Hellerup, Denmark
| | - Kristine Hommel
- Department of Medicine, Holbæk Hospital, Smedelundsgade 60, 4300 Holbæk, Denmark.; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Ditte Hansen
- Department of Nephrology, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, 2730 Herlev, Denmark; Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| |
Collapse
|
15
|
Jørgensen HS, Behets G, Viaene L, Bammens B, Claes K, Meijers B, Naesens M, Sprangers B, Kuypers D, D'Haese PC, Evenepoel P. Static histomorphometry allows for a diagnosis of bone turnover in renal osteodystrophy in the absence of tetracycline labels. Bone 2021; 152:116066. [PMID: 34147707 DOI: 10.1016/j.bone.2021.116066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/08/2021] [Accepted: 06/13/2021] [Indexed: 11/28/2022]
Abstract
A bone biopsy with prior tetracycline labeling is the gold standard to diagnose renal osteodystrophy. In cases of missing tetracycline labels, it is still paramount to gain clinically relevant information from the extracted bone sample, by evaluating the static histomorphometry. This study investigates the diagnostic performance of static histomorphometry for the evaluation of high and low bone turnover. Transiliac bone biopsies taken pre- or post- kidney transplantation, of sufficient quality for a full histomorphometric analysis were included (n = 205). The cohort was randomly split to provide separate exploration and validation subsets. Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC). All histomorphometric parameters were significantly different across categories of low (24%), normal (60%), and high (16%) bone turnover, and all were significant predictors of both high and low bone turnover (AUC 0.71-0.84). Diagnostic performance was very good for high turnover, as a combination of static parameters resulted in negative and positive predictive values (NPV and PPV) of 80% and 96%, respectively. For low turnover, the combined model resulted in PPV of 71% and NPV of 82%. We conclude that in the absence of tetracycline labels, static histomorphometry provide an acceptable alternative for a diagnosis of bone turnover in renal osteodystrophy.
Collapse
Affiliation(s)
- Hanne Skou Jørgensen
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Kidney Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Geert Behets
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| | | | - Bert Bammens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium
| | - Kathleen Claes
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium
| | - Bjorn Meijers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, University of Antwerp, Wilrijk, Belgium
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium; Department of Medicine, Division of Nephrology, University Hospitals Leuven, Belgium.
| |
Collapse
|
16
|
Rodrigues FG, Ormanji MS, Heilberg IP, Bakker SJL, de Borst MH. Interplay between gut microbiota, bone health and vascular calcification in chronic kidney disease. Eur J Clin Invest 2021; 51:e13588. [PMID: 33948936 PMCID: PMC8459296 DOI: 10.1111/eci.13588] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/06/2023]
Abstract
Deregulations in gut microbiota may play a role in vascular and bone disease in chronic kidney disease (CKD). As glomerular filtration rate declines, the colon becomes more important as a site of excretion of urea and uric acid, and an increased bacterial proteolytic fermentation alters the gut microbial balance. A diet with limited amounts of fibre, as well as certain medications (eg phosphate binders, iron supplementation, antibiotics) further contribute to changes in gut microbiota composition among CKD patients. At the same time, both vascular calcification and bone disease are common in patients with advanced kidney disease. This narrative review describes emerging evidence on gut dysbiosis, vascular calcification, bone demineralization and their interrelationship termed the 'gut-bone-vascular axis' in progressive CKD. The role of diet, gut microbial metabolites (ie indoxyl sulphate, p-cresyl sulphate, trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFA)), vitamin K deficiency, inflammatory cytokines and their impact on both bone health and vascular calcification are discussed. This framework may open up novel preventive and therapeutic approaches targeting the microbiome in an attempt to improve cardiovascular and bone health in CKD.
Collapse
Affiliation(s)
- Fernanda G Rodrigues
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Milene S Ormanji
- Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ita P Heilberg
- Nutrition Post-Graduation Program, Universidade Federal de São Paulo, São Paulo, Brazil.,Nephrology Division, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Stephan J L Bakker
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
17
|
Meza K, Biswas S, Zhu YS, Gajjar A, Perelstein E, Kumar J, Akchurin O. Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease. Pediatr Nephrol 2021; 36:1579-1587. [PMID: 33387018 PMCID: PMC8087625 DOI: 10.1007/s00467-020-04846-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/09/2020] [Accepted: 10/27/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Mineral and bone disorder (MBD) and growth impairment are common complications of pediatric chronic kidney disease (CKD). Chronic inflammation detrimentally affects bone health and statural growth in non-CKD settings, but the impact of inflammation on CKD-MBD and growth in pediatric CKD remains poorly understood. This study assessed associations between inflammatory cytokines with biomarkers of CKD-MBD and statural growth in pediatric CKD. METHODS This is a cross-sectional study of children with predialysis CKD stages II-V. Cytokines (IL-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, TNF-α, interferon-γ), bone alkaline phosphatase (BAP), and procollagen type 1 N-terminal propeptide (P1NP) were measured at the same time as standard CKD-MBD biomarkers. Associations between cytokines, CKD-MBD biomarkers, and height z-score were assessed using linear regression analysis. RESULTS Among 63 children, 52.4% had stage 3 CKD, 76.2% non-glomerular CKD etiology, and 21% short stature. TNF-α was the only cytokine associated with parathyroid hormone (PTH) independent of glomerular filtration rate. After stratification by low, medium, and high TNF-α tertiles, significant differences in PTH, serum phosphorus, alkaline phosphatase, BAP, P1NP, and height z-score were found. In a multivariate analysis, TNF-α positively associated with phosphorus, PTH, and alkaline phosphatase and inversely associated with height z-score, independent of kidney function, age, sex, and active vitamin D analogue use. CONCLUSIONS TNF-α is positively associated with biomarkers of CKD-MBD and inversely associated with height z-score, indicating that inflammation likely contributes to the development of CKD-MBD and growth impairment in pediatric CKD. Prospective studies to definitively assess causative effects of inflammation on bone health and growth in children with CKD are warranted.
Collapse
Affiliation(s)
- Kelly Meza
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
| | - Sharmi Biswas
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
| | - Yuan-Shan Zhu
- Weill Cornell Medical College, Department of Medicine, Clinical and Translational Science Center, New York, NY, USA
| | - Anuradha Gajjar
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA
| | - Eduardo Perelstein
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA
| | - Juhi Kumar
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA
| | - Oleh Akchurin
- Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA.
- Weill Cornell Medicine, New York-Presbyterian Phyllis and David Komansky Children's Hospital, 505 East 70th Street-HT 388, New York, NY, 10021, USA.
| |
Collapse
|
18
|
Jørgensen HS, David K, Salam S, Evenepoel P. Traditional and Non-traditional Risk Factors for Osteoporosis in CKD. Calcif Tissue Int 2021; 108:496-511. [PMID: 33586002 DOI: 10.1007/s00223-020-00786-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a state of bone fragility with reduced skeletal resistance to trauma, and consequently increased risk of fracture. A wide range of conditions, including traditional risk factors, lifestyle choices, diseases and their treatments may contribute to bone fragility. It is therefore not surprising that the multi-morbid patient with chronic kidney disease (CKD) is at a particularly high risk. CKD is associated with reduced bone quantity, as well as impaired bone quality. Bone fragility in CKD is a composite of primary osteoporosis, accumulation of traditional and uremia-related risk factors, assaults brought on by systemic disease, and detrimental effects of drugs. Some risk factors are modifiable and represent potential targets for intervention. This review provides an overview of the heterogeneity of bone fragility in CKD.
Collapse
Affiliation(s)
- Hanne Skou Jørgensen
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karel David
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Syazrah Salam
- Sheffield Kidney Institute, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, UK
- Academic Unit of Bone Metabolism and 3 Mellanby Centre for Bone Research, Medical School, University of Sheffield, Sheffield, UK
| | - Pieter Evenepoel
- Nephrology and Renal Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium.
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium.
| | | |
Collapse
|
19
|
Evenepoel P, Cunningham J, Ferrari S, Haarhaus M, Javaid MK, Lafage-Proust MH, Prieto-Alhambra D, Torres PU, Cannata-Andia J. European Consensus Statement on the diagnosis and management of osteoporosis in chronic kidney disease stages G4-G5D. Nephrol Dial Transplant 2021; 36:42-59. [PMID: 33098421 DOI: 10.1093/ndt/gfaa192] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Controlling the excessive fracture burden in patients with chronic kidney disease (CKD) Stages G4-G5D remains an impressive challenge. The reasons are 2-fold. First, the pathophysiology of bone fragility in patients with CKD G4-G5D is complex and multifaceted, comprising a mixture of age-related (primary male/postmenopausal), drug-induced and CKD-related bone abnormalities. Second, our current armamentarium of osteoporosis medications has not been developed for, or adequately studied in patients with CKD G4-G5D, partly related to difficulties in diagnosing osteoporosis in this specific setting and fear of complications. Doubts about the optimal diagnostic and therapeutic approach fuel inertia in daily clinical practice. The scope of the present consensus paper is to review and update the assessment and diagnosis of osteoporosis in patients with CKD G4-G5D and to discuss the therapeutic interventions available and the manner in which these can be used to develop management strategies for the prevention of fragility fracture. As such, it aims to stimulate a cohesive approach to the management of osteoporosis in patients with CKD G4-G5D to replace current variations in care and treatment nihilism.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Department of Nephrology, KU Leuven University Hospitals Leuven, Leuven, Belgium
| | - John Cunningham
- Centre for Nephrology, UCL Medical School, Royal Free Campus, London, UK
| | - Serge Ferrari
- Service of Bone Diseases, Geneva University Hospital, Switzerland
| | - Mathias Haarhaus
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Diaverum Sweden, Stockholm, Sweden
| | | | | | | | - Pablo Ureña Torres
- Department of Dialysis, AURA Nord Saint Ouen, Saint Ouen, France.,Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jorge Cannata-Andia
- Bone and Mineral Research Unit (ISPA) (REDinREN), Hospital Universitario Central Asturias, Oviedo University, Spain
| | | |
Collapse
|
20
|
Abstract
In chronic kidney disease (CKD), disturbance of several metabolic regulatory mechanisms cause premature ageing, accelerated cardiovascular disease (CVD), and mortality. Single-target interventions have repeatedly failed to improve the prognosis for CKD patients. Epigenetic interventions have the potential to modulate several pathogenetic processes simultaneously. Alkaline phosphatase (ALP) is a robust predictor of CVD and all-cause mortality and implicated in pathogenic processes associated with CVD in CKD.
Collapse
|
21
|
Xu Z, Liu X, Li Y, Gao H, He T, Zhang C, Hao W, Teng X. Shuxuetong injection simultaneously ameliorates dexamethasone-driven vascular calcification and osteoporosis. Exp Ther Med 2021; 21:197. [PMID: 33488806 PMCID: PMC7812579 DOI: 10.3892/etm.2021.9630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis (OP) and vascular calcification (VC) share a number of common risk factors, pathophysiological mechanisms and etiology, which are known as bone-vascular axis. The present study aimed to investigate the effects of Shuxuetong (SXT) injection on VC and osteoporosis. A rat model of VC and osteoporosis was induced by dexamethasone (DEX; 1 mg/kg/day for 4 weeks, intramuscularly). Simultaneously, 0.6 ml/kg/day SXT was intraperitoneally injected. Compared with control rats, DEX induced significantly more VC and OP, as determined by increased calcium deposition and alkaline phosphatase activity in the aorta, disturbed structure, decreased levels of cortical bone thickness and trabecular bone area, and increased apoptosis in the bone. SXT injection ameliorated DEX-induced VC and osteoporosis; furthermore, the osteoblastic differentiation of vascular smooth muscle cells and the activation of endoplasmic reticulum stress in the DEX group was also prevented by SXT injection. Compared with control rats, protein expression levels of sclerostin, a crucial crosslink of the bone-vascular axis, were significantly increased in the aorta and bone of rats with DEX, which was also attenuated by SXT injection. Thus, the present study suggested that SXT injection could ameliorate both VC and OP, and may be mediated by the regulation of sclerostin. The present study may provide the basis a novel strategy for the prevention and treatment of VC and OP, which emerge as side-effects of glucocorticoids.
Collapse
Affiliation(s)
- Zhe Xu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xiaoguang Liu
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Yanqing Li
- Department of Gynecology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongliang Gao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Tao He
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunlei Zhang
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Wei Hao
- Department of Anesthesiology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei 050011, P.R. China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
22
|
Salam S, Gallagher O, Hughes D, Khwaja A, Eastell R. The role of static bone histomorphometry in diagnosing renal osteodystrophy. Bone 2021; 142:115689. [PMID: 33065356 DOI: 10.1016/j.bone.2020.115689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Bone biopsy is the gold standard test to diagnose renal osteodystrophy (ROD). There is a preference to perform bone biopsy during renal transplantation but tetracycline bone labelling is usually not possible. We aimed to test if histomorphometry static parameters can identify low and high bone turnover as assessed by dynamic measurement using double tetracycline labelling. METHODS 43 CKD stages 4-5D had trans-iliac bone biopsy using a 4 mm Jamshidi trephine and needle after tetracycline labelling. Quantitative histomorphometry was performed using the Bioquant Osteo histomorphometry system. Normal bone turnover was defined as bone formation rate/bone surface (BFR/BS) of 18-38 μm3/μm2/year. Static parameters of bone turnover included osteoblast surface/bone surface (Ob.S/BS, %), osteoclast surface/bone surface (Oc.S/BS, %) and erosion surface/bone surface (ES/BS, %). Receiver operating characteristics (ROC) analysis was used to evaluate diagnostic accuracy of these static parameters for low and high bone turnover (based on BFR/BS). RESULTS Median (IQR) for BFR/BS in this study was 32.12 (17.76-48.25) μm3/μm2/year. 26% of patients had low, 34% had normal and 40% had high bone turnover. The area under the ROC curve (AUC) for Ob.S/BS, Oc.S/BS and ES/BS were non-significant indicating poor accuracy for identifying low bone turnover. The AUC for Ob.S/BS was 0.697 (95% CI 0.538 to 0.827) indicating fair accuracy for identifying high bone turnover. Oc.S/BS and ES/BS had non-significant AUCs for high bone turnover. CONCLUSIONS Static histomorphometry parameters for bone turnover are unable to replace dynamic parameter in diagnosing ROD. Tetracycline bone labelling is still required.
Collapse
Affiliation(s)
- Syazrah Salam
- Sheffield Kidney Institute, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom; Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, United Kingdom.
| | - Orla Gallagher
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| | - David Hughes
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, United Kingdom; Histopathology Department, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| | - Arif Khwaja
- Sheffield Kidney Institute, Northern General Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, United Kingdom
| | - Richard Eastell
- Department of Oncology and Metabolism, Mellanby Centre for Bone Research, University of Sheffield, United Kingdom
| |
Collapse
|
23
|
Cianciolo G, La Manna G, Capelli I, Gasperoni L, Galassi A, Ciceri P, Cozzolino M. The role of activin: the other side of chronic kidney disease-mineral bone disorder? Nephrol Dial Transplant 2020; 36:966-974. [PMID: 32940690 DOI: 10.1093/ndt/gfaa203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Chronic kidney disease-mineral bone disorder (CKD-MBD) plays a pivotal role in the excess of cardiovascular morbidity and mortality associated with CKD. There is now a growing awareness that pathways involved in CKD-MBD, like canonical Wnt signalling, are activated from the earliest stages of CKD, playing a role in the development of adynamic bone disease with unknown consequences on vasculature. These changes occur before the classic changes in mineral metabolism: secondary hyperparathyroidism, calcitriol deficiency and hyperphosphataemia. Furthermore, vascular calcification is frequently associated and evolves with decreased bone mineral density and deranged bone turnover, while bone and arterial mineralization share common pathways. Therefore, results of clinical trials focused on mineral bone disorder, aimed at preserving bone and cardiovascular health, are considered unsatisfactory. In order to identify more effective therapeutic strategies, it is necessary to clarify the pathways modulating the cross-talk between bone and vasculature and identify new mediators involved in the pathogenesis of CKD-MBD. Much attention has been paid recently to the role of the transforming growth factor-beta superfamily members in renal disease, and in particular of activin A (ActA). Preclinical studies demonstrate an upgrade of ActA signalling in kidney, skeleton, vasculature and heart during CKD. This supports the idea that an endocrine factor produced in the kidney during renal disease, in addition to promoting the progression of kidney damage, deranges other organs' homoeostasis and participates in CKD-MBD. In this review, we analyse the contribution of ActA to kidney fibrosis and inflammation as well as its role in the development of CKD-MBD.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, Bologna, Italy
| | - Andrea Galassi
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Department of Nephrology, Dialysis and Renal Transplant, Renal Research Laboratory, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Mario Cozzolino
- Department of Health Sciences, Renal Division, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| |
Collapse
|
24
|
Evenepoel P, Dejongh S, Verbeke K, Meijers B. The Role of Gut Dysbiosis in the Bone-Vascular Axis in Chronic Kidney Disease. Toxins (Basel) 2020; 12:toxins12050285. [PMID: 32365480 PMCID: PMC7290823 DOI: 10.3390/toxins12050285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of bone mineral density loss and vascular calcification. Bone demineralization and vascular mineralization often concur in CKD, similar to what observed in the general population. This contradictory association is commonly referred to as the 'calcification paradox' or the bone-vascular axis. Mounting evidence indicates that CKD-associated gut dysbiosis may be involved in the pathogenesis of the bone-vascular axis. A disrupted intestinal barrier function, a metabolic shift from a predominant saccharolytic to a proteolytic fermentation pattern, and a decreased generation of vitamin K may, alone or in concert, drive a vascular and skeletal pathobiology in CKD patients. A better understanding of the role of gut dysbiosis in the bone-vascular axis may open avenues for novel therapeutics, including nutriceuticals.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-344591; Fax: +32-16-344599
| | - Sander Dejongh
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| | - Kristin Verbeke
- Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven—University of Leuven, B-3000 Leuven, Belgium
| | - Bjorn Meijers
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven—University of Leuven, B-3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, B-3000 Leuven, Belgium
| |
Collapse
|
25
|
A distinct bone phenotype in ADPKD patients with end-stage renal disease. Kidney Int 2020; 95:412-419. [PMID: 30665572 DOI: 10.1016/j.kint.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/06/2018] [Accepted: 09/13/2018] [Indexed: 12/31/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is among the most common hereditary nephropathies. Low bone turnover osteopenia has been reported in mice with conditional deletion of the PKD1 and PKD2 genes in osteoblasts, and preliminary clinical data also suggest suppressed bone turnover in patients with ADPKD. The present study compared the bone phenotype between patients with end stage renal disease (ESRD) due to ADPKD and controls with ESRD due to other causes. Laboratory parameters of bone mineral metabolism (fibroblast growth factor 23 and sclerostin), bone turnover markers (bone alkaline phosphatase, tartrate-resistant acid phosphatase 5b) and bone mineral density (BMD, by dual energy x-ray absorptiometry, DXA) were assessed in 518 patients with ESRD, including 99 with ADPKD. Bone histomorphometry data were available in 71 patients, including 10 with ADPKD. Circulating levels of bone alkaline phosphatase were significantly lower in patients with ADPKD (17.4 vs 22.6 ng/mL), as were histomorphometric parameters of bone formation. Associations between ADPKD and parameters of bone formation persisted after adjustment for classical determinants including parathyroid hormone, age, and sex. BMD was higher in skeletal sites rich in cortical bone in patients with ADPKD compared to non-ADPKD patients (Z-score midshaft radius -0.04 vs -0.14; femoral neck -0.72 vs -1.02). Circulating sclerostin levels were significantly higher in ADPKD patients (2.20 vs 1.84 ng/L). In conclusion, patients with ESRD due to ADPKD present a distinct bone and mineral phenotype, characterized by suppressed bone turnover, better preserved cortical BMD, and high sclerostin levels.
Collapse
|
26
|
El Hussein MT, Kilfoil L. Managing End-Stage Renal Disease: An Alphabetized Mnemonic Strategy. J Nurse Pract 2019. [DOI: 10.1016/j.nurpra.2019.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Evenepoel P, Opdebeeck B, David K, D'Haese PC. Bone-Vascular Axis in Chronic Kidney Disease. Adv Chronic Kidney Dis 2019; 26:472-483. [PMID: 31831125 DOI: 10.1053/j.ackd.2019.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of osteoporosis and vascular calcification. Bone demineralization and vascular mineralization go often hand in hand in CKD, similar to as in the general population. This contradictory association is independent of aging and is commonly referred to as the "calcification paradox" or the bone-vascular axis. Various common risk factors and mechanisms have been identified. Alternatively, calcifying vessels may release circulating factors that affect bone metabolism, while bone disease may infer conditions that favor vascular calcification. The present review focuses on emerging concepts and major mechanisms involved in the bone-vascular axis in the setting of CKD. A better understanding of these concepts and mechanisms may identify therapeutics able to target and exert beneficial effects on bone and vasculature simultaneously.
Collapse
|
28
|
Mazzaferro S, Cianciolo G, De Pascalis A, Guglielmo C, Urena Torres PA, Bover J, Tartaglione L, Pasquali M, La Manna G. Bone, inflammation and the bone marrow niche in chronic kidney disease: what do we know? Nephrol Dial Transplant 2019; 33:2092-2100. [PMID: 29733407 DOI: 10.1093/ndt/gfy115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/02/2018] [Indexed: 02/06/2023] Open
Abstract
Recent improvements in our understanding of physiology have altered the way in which bone is perceived: no longer is it considered as simply the repository of divalent ions, but rather as a sophisticated endocrine organ with potential extraskeletal effects. Indeed, a number of pathologic conditions involving bone in different ways can now be reconsidered from a bone-centred perspective. For example, in metabolic bone diseases like osteoporosis (OP) and renal osteodystrophy (ROD), the association with a worse cardiovascular outcome can be tentatively explained by the possible derangements of three recently discovered bone hormones (osteocalcin, fibroblast growth factor 23 and sclerostin) and a bone-specific enzyme (alkaline phosphatase). Further, in recent years the close link between bone and inflammation has been better appreciated and a wide range of chronic inflammatory states (from rheumatoid arthritis to ageing) are being explored to discover the biochemical changes that ultimately lead to bone loss and OP. Also, it has been acknowledged that the concept of the bone-vascular axis may explain, for example, the relationship between bone metabolism and vessel wall diseases like atherosclerosis and arteriosclerosis, with potential involvement of a number of cytokines and metabolic pathways. A very important discovery in bone physiology is the bone marrow (BM) niche, the functional unit where stem cells interact, exchanging signals that impact on their fate as bone-forming cells or immune-competent haematopoietic elements. This new element of bone physiology has been recognized to be dysfunctional in diabetes (so-called diabetic mobilopathy), with possible clinical implications. In our opinion, ROD, the metabolic bone disease of renal patients, will in the future probably be identified as a cause of BM niche dysfunction. An integrated view of bone, which includes the BM niche, now seems necessary in order to understand the complex clinical entity of chronic kidney disease-mineral and bone disorders and its cardiovascular burden. Bone is thus becoming a recurrently considered paradigm for different inter-organ communications that needs to be considered in patients with complex diseases.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Cardiovascular Respiratory Nephrologic Geriatric and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy.,Nephrology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Antonio De Pascalis
- Nephrology, Dialysis and Renal Transplant Unit, Vito Fazzi Hospital, Lecce, Italy
| | - Chiara Guglielmo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| | - Pablo A Urena Torres
- Ramsay-Générale de Santé, Clinique du Landy, Department of Nephrology and Dialysis and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Jordi Bover
- Fundació Puigvert, Department of Nephrology IIB Sant Pau, RedinRen, Barcelona, Catalonia, Spain
| | - Lida Tartaglione
- Department of Cardiovascular Respiratory Nephrologic Geriatric and Anesthetic Sciences, Sapienza University of Rome, Rome, Italy
| | - Marzia Pasquali
- Nephrology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, St Orsola Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
29
|
Yoon HE, Kim Y, Shin SJ, Hong YS, Kang KY. Factors associated with low trabecular bone scores in patients with end-stage kidney disease. J Bone Miner Metab 2019; 37:475-483. [PMID: 29956021 DOI: 10.1007/s00774-018-0938-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
Abstract
The trabecular bone score (TBS) is a textural index that indirectly assesses bone trabecular microarchitecture using lumbar spine images obtained by dual-energy X-ray absorptiometry (DXA). This study compared the TBS of patients with end-stage kidney disease (ESKD) with that of matched controls to identify risk factors associated with a low TBS. TBS and bone mineral density (BMD) were assessed in ESKD patients (n = 76) and age- and sex-matched control subjects (n = 76) using DXA. The TBS of both groups was then compared, and risk factors associated with a low TBS (defined as ≤ 1.31) were evaluated. The mean TBS in the ESKD group was significantly lower than that in the control group (1.34 ± 0.15 vs. 1.43 ± 0.08, respectively; p < 0.001). More subjects in the ESKD group had a low TBS [34.2% (ESRD) vs. 5.3% (controls); p < 0.001]. The TBS was negatively correlated with age, alkaline phosphatase and C-reactive protein levels, and dialysis vintage, and positively correlated with BMD at the lumbar spine, femoral neck, and hip. Multivariate analysis identified lower estimated glomerular filtration rate and increased C-reactive protein levels as being significantly associated with a low TBS. In conclusion, ESKD patients had abnormal bone microarchitecture (as assessed by the TBS). The TBS was positively correlated with BMD. Renal function and inflammatory marker levels were independently associated with a low TBS. Thus, TBS may be a useful clinical tool for assessing cancellous bone connectivity in ESKD patients.
Collapse
Affiliation(s)
- Hye Eun Yoon
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Yaeni Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Seok Joon Shin
- Division of Nephrology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
| | - Yeon Sik Hong
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Kwi Young Kang
- Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, #56, Dongsu-Ro, Bupyung-Gu, Incheon, South Korea.
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| |
Collapse
|
30
|
Evenepoel P, Claes K, Meijers B, Laurent M, Bammens B, Naesens M, Sprangers B, Pottel H, Cavalier E, Kuypers D. Poor Vitamin K Status Is Associated With Low Bone Mineral Density and Increased Fracture Risk in End-Stage Renal Disease. J Bone Miner Res 2019; 34:262-269. [PMID: 30427544 DOI: 10.1002/jbmr.3608] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/04/2018] [Accepted: 10/06/2018] [Indexed: 01/04/2023]
Abstract
Chronic kidney disease and osteoporosis are major public health problems associated with an aging population. Vitamin K insufficiency is prevalent among patients with end-stage renal disease (ESRD). Preliminary data indicate that poor vitamin K status may compromise bone health and that increased inflammation may be in the causal pathway. We performed an ancillary analysis of data collected in the frame of prospective observational cohort studies exploring various aspects of bone health in de novo renal transplant recipients to investigate the association between vitamin K status, inflammation, bone mineral density, and incident clinical fractures. Parameters of mineral metabolism (including biointact PTH and FGF23, sclerostin, calcidiol, calcitriol) and inflammation (CRP and IL-6), osteoprotegerin, bone turnover markers (P1NP, BsAP, and TRAP5B), and dephosphorylated-uncarboxylated Matrix Gla Protein (dp-ucMGP) were assessed on blood samples collected immediately prior to kidney transplantation in 468 patients. Areal bone mineral density (aBMD) was measured at the lumbar spine and femoral neck by dual-energy X-ray absorptiometry within 14 days posttransplant. Poor vitamin K status, defined by dp-ucMGP >500 nmol/L, was highly prevalent (90%). High dp-ucMGP levels independently associated with elevated inflammatory markers and low aBMD. No associations were observed between vitamin K status and bone turnover markers. During a median follow-up of 5.1 years, 33 patients sustained a fragility fracture. In Cox-proportional hazards analysis, a dp-ucMGP above median associated with incident fractures, independent of classical determinants, including age, gender, history of fracture, and aBMD (HR 2.21; 95% CI, 1.00 to 4.91; p < 0.05). In conclusion, poor vitamin K status associates with inflammation and low aBMD in patients with ESRD and confers an increased risk of incident fractures in de novo renal transplant recipients. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Kathleen Claes
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Bjorn Meijers
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Michaël Laurent
- Centre for Metabolic Bone Diseases, KU Leuven, Leuven, Belgium
| | - Bert Bammens
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Ben Sprangers
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Hans Pottel
- Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | | | - Dirk Kuypers
- Laboratory of Nephrology, Department of Microbiology and Immunology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium.,Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Elias RM, Dalboni MA, Coelho ACE, Moysés RMA. CKD-MBD: from the Pathogenesis to the Identification and Development of Potential Novel Therapeutic Targets. Curr Osteoporos Rep 2018; 16:693-702. [PMID: 30291515 DOI: 10.1007/s11914-018-0486-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Although we have seen tremendous advances in the comprehension of CKD-MBD pathophysiology during the last few years, this was not accompanied by a significant change in mortality rate and quality of life. This review will address the traditional and updated pathophysiology of CKD-MBD along with the therapeutic limitations that affect CKD-MBD and proposed alternative treatment targets. RECENT FINDINGS An innovative concept brings the osteocyte to the center of CKD-MBD pathophysiology, in contrast to the traditional view of the skeleton as a target organ for disturbances in calcium, phosphate, parathyroid hormone, and vitamin D. Osteocytes, through the synthesis of FGF-23, sclerostin, among others, are able to interact with other organs, making bone an endocrine organ. Thus, osteocyte dysregulation might be an early event during the course of CKD. This review will revisit general concepts on the pathophysiology of CKD-MBD and discuss new perspectives for its treatment.
Collapse
Affiliation(s)
- Rosilene Motta Elias
- Universidade Nove de Julho, UNINOVE, Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil
- Nephrology Division, HCFCMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Aparecida Dalboni
- Universidade Nove de Julho, UNINOVE, Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil
| | | | - Rosa M A Moysés
- Universidade Nove de Julho, UNINOVE, Rua Iperoig, 690 ap 121, São Paulo, SP, 05016-000, Brazil.
- Nephrology Division, HCFCMUSP, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
32
|
Cafiero C, Gigante M, Brunetti G, Simone S, Chaoul N, Oranger A, Ranieri E, Colucci S, Pertosa GB, Grano M, Gesualdo L. Inflammation induces osteoclast differentiation from peripheral mononuclear cells in chronic kidney disease patients: crosstalk between the immune and bone systems. Nephrol Dial Transplant 2018; 33:65-75. [PMID: 28992140 DOI: 10.1093/ndt/gfx222] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Background Inflammation and immune system alterations contribute to bone damage in many pathologies by inducing the differentiation of osteoclasts (OCs), the bone resorbing cells. This link is largely unexplored in chronic kidney disease (CKD) and haemodialysis (HD) patients, in which reduced renal function is accompanied by an increased inflammatory state and skeletal abnormality. Methods We used ex vivo culture experiments to investigate the osteoclastogenic potential of peripheral blood mononuclear cells (PBMCs) of CKD and HD patients, focusing on immune cell subsets and inflammatory cytokines such as LIGHT and receptor activator of nuclear factor κB ligand (RANKL). Results We observed spontaneous osteoclastogenesis with a significant increase in OC formation and bone resorbing activity in late-stage CKD and HD patients when compared with early-stage CKD patients and healthy donors, likely due to an increased expression of RANKL and LIGHT (homologous to Lymphotoxins exhibiting Inducible expression and competing with herpes simplex virus Glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes) in PBMCs. Specific inhibition of these cytokines in PBMCs isolated from CKD stages 3b-5 and HD patients induced the reduction of OC formation in vitro. The phenotypic characterization of peripheral blood cells revealed a significant increase of OC precursors (CD14+CD11b+CD51/61+) and CD14+CD16+ monocytes in advanced CKD and HD patients compared with the control group. Conclusions Our results suggest that circulating inflammatory monocytes from advanced CKD or HD patients trans differentiate into OCs in vitro and play a relevant role in mineral bone disorders and that LIGHT and RANKL represent new potential therapeutic targets in these settings.
Collapse
Affiliation(s)
- Cesira Cafiero
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Margherita Gigante
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Giacomina Brunetti
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Simona Simone
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Nada Chaoul
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Angela Oranger
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Silvia Colucci
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Giovanni B Pertosa
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation Nephrology, Dialysis and Kidney Transplantation Unit, University of Bari, Bari, Italy
| |
Collapse
|
33
|
Liu J, Zhu W, Jiang CM, Feng Y, Xia YY, Zhang QY, Zhang M. Activation of the mTORC1 pathway by inflammation contributes to vascular calcification in patients with end-stage renal disease. J Nephrol 2018; 32:101-110. [PMID: 29761287 DOI: 10.1007/s40620-018-0486-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/29/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic inflammation plays an important role in the progression of vascular calcification (VC). This study was designed to explore the effects and underlying mechanisms of inflammation on VC in the radial arteries of patients with end-stage renal disease (ESRD) with arteriovenostomy. METHODS Forty-eight ESRD patients were divided into control (n = 25) and inflammation groups (n = 23) according to plasma C-reactive protein (CRP) level. Surgically removed tissues from the radial arteries of patients receiving arteriovenostomy were used in this study. Alizarin Red S staining was used to examine calcium deposition. The expression of inflammation markers, bone structure-associated proteins and mammalian target of rapamycin complex1 (mTORC1) pathway-related proteins was assessed by immunohistochemical staining. RESULTS The expression of tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) was increased in the radial arteries of the inflammation group. Additionally, Alizarin Red S staining revealed a marked increase in calcium deposition in the inflammation group compared to controls. Further analysis by immunohistochemical staining demonstrated that the deposition was correlated with the increased expression of bone-associated proteins such as bone morphogenetic proteins-2 (BMP-2) and osteocalcin and collagen I, which suggested that inflammation induces osteogenic differentiation in vascular tissues and that osteogenic cells are the main cellular components involved in VC. Interestingly, there was a parallel increase in the expression of phosphorylated mTOR (p-mTOR) and pribosomal protein S6 kinase 1 (p-S6K1) in the inflammation group. Furthermore, mTORC1 pathway-related proteins were significantly associated with the enhanced expression of bone formation biomarkers. CONCLUSIONS Inflammation contributed to VC in the radial arteries of ESRD patients via the induction of osteogenic differentiation in vessel walls, which could be regulated by the activation of the mTORC1 pathway.
Collapse
Affiliation(s)
- Jing Liu
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Zhu
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Chun Ming Jiang
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yuan Feng
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Yang Yang Xia
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Yan Zhang
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Miao Zhang
- Institute of Nephrology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, NO. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
34
|
Wen Y, Gan H, Li Z, Sun X, Xiong Y, Xia Y. Safety of Low-calcium Dialysate and its Effects on Coronary Artery Calcification in Patients Undergoing Maintenance Hemodialysis. Sci Rep 2018; 8:5941. [PMID: 29654308 PMCID: PMC5899126 DOI: 10.1038/s41598-018-24397-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/03/2018] [Indexed: 11/09/2022] Open
Abstract
To determine the safety of low-calcium-dialysate in patients undergoing maintenance hemodialysis (MHD) and its effects on coronary artery calcification (CAC) and analyze clinical risk factors for CAC. A total of 174 MHD patients were recruited and randomly divided into two groups: high-calcium dialysate (HCD, 1.5 mmol/L Ca2+) and low-calcium dialysate (LCD, 1.25 mmol/L Ca2+). Changes in CAC score (CACS) and cardiac function were evaluated using spiral computed tomography and echocardiography, respectively. Clinical and laboratory parameters were measured. Intra-dialysis adverse reactions were recorded and compared between the two groups. CACS was significantly lower in the LCD group than in the HCD group by the end of the study. Cardiac E/Amax was significantly higher in the LCD group than in the HCD group by the end of the study. There was no significant difference in the frequency of any intra-dialysis adverse reactions between the two groups during the study. LCD is helpful in maintaining cardiac diastolic function and postponing CAC progression. LCD does not increase intra-dialysis adverse reactions. Age may be the most important factor impacting CAC in MHD patients.
Collapse
Affiliation(s)
- Yang Wen
- The first affiliated hospital of Chongqing Medical University, Department of Nephrology, Chongqing, 400016, China
| | - Hua Gan
- The first affiliated hospital of Chongqing Medical University, Department of Nephrology, Chongqing, 400016, China
| | - Zhengrong Li
- The first affiliated hospital of Chongqing Medical University, Department of Nephrology, Chongqing, 400016, China
| | - Ximin Sun
- The first hospital affiliated to Army Medical University, Department of Hepatology, Chongqing, 400038, China
| | - Ying Xiong
- The first affiliated hospital of Chongqing Medical University, Department of Nephrology, Chongqing, 400016, China
| | - Yunfeng Xia
- The first affiliated hospital of Chongqing Medical University, Department of Nephrology, Chongqing, 400016, China.
| |
Collapse
|
35
|
Zoccali C, Vanholder R, Massy ZA, Ortiz A, Sarafidis P, Dekker FW, Fliser D, Fouque D, Heine GH, Jager KJ, Kanbay M, Mallamaci F, Parati G, Rossignol P, Wiecek A, London G. The systemic nature of CKD. Nat Rev Nephrol 2017; 13:344-358. [PMID: 28435157 DOI: 10.1038/nrneph.2017.52] [Citation(s) in RCA: 291] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The accurate definition and staging of chronic kidney disease (CKD) is one of the major achievements of modern nephrology. Intensive research is now being undertaken to unravel the risk factors and pathophysiologic underpinnings of this disease. In particular, the relationships between the kidney and other organs have been comprehensively investigated in experimental and clinical studies in the last two decades. Owing to technological and analytical limitations, these links have been studied with a reductionist approach focusing on two organs at a time, such as the heart and the kidney or the bone and the kidney. Here, we discuss studies that highlight the complex and systemic nature of CKD. Energy balance, innate immunity and neuroendocrine signalling are highly integrated biological phenomena. The diseased kidney disrupts such integration and generates a high-risk phenotype with a clinical profile encompassing inflammation, protein-energy wasting, altered function of the autonomic and central nervous systems and cardiopulmonary, vascular and bone diseases. A systems biology approach to CKD using omics techniques will hopefully enable in-depth study of the pathophysiology of this systemic disease, and has the potential to unravel critical pathways that can be targeted for CKD prevention and therapy.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy
| | - Raymond Vanholder
- Ghent University Hospital, Department of Nephrology, Department of Internal Medicine, University Hospital Gent, De Pintelaan 185, B9000 Ghent, Belgium
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré Hospital, Assistance Publique Hôpitaux de Paris, 9 Avenue Charles de Gaulle, 92100 Boulogne-Billancourt, Paris.,University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), 55 Avenue de Paris, 78000 Versailles, France.,Inserm U-1018, Centre de recherche en épidémiologie et santé des populations (CESP), Equipe 5, Hôpital Paul-Brousse, 16 avenue Paul Vaillant-Couturier, 94807 Villejuif Cedex, France.,Paris-Sud University (PSU), 15 Rue Georges Clemenceau, 91400 Orsay, France.,French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France
| | - Alberto Ortiz
- Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Av. Reyes Católicos, 2, 28040 Madrid, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Thessaloniki, Konstantinoupoleos 49, Thessaloniki 546 42, Greece
| | - Friedo W Dekker
- Department of Clinical Epidemiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Danilo Fliser
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Denis Fouque
- Université de Lyon, UCBL, Carmen, Department of Nephrology, Centre Hospitalier Lyon-Sud, F-69495 Pierre Bénite, France
| | - Gunnar H Heine
- Department Internal Medicine IV-Renal and Hypertensive Disease-Saarland University Medical Centre Kirrberger Straß 66421 Homburg, Saar, Germany
| | - Kitty J Jager
- European Renal Association-European Dialysis and Transplant Association (ERA-EDTA) Registry, Department of Medical Informatics, Meibergdreef 9, 1105 AZ Amsterdam-Zuidoost, The Netherlands
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine,Koç University, Rumelifeneri Yolu 34450 Sarıyer Istanbul, Turkey
| | - Francesca Mallamaci
- CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension Unit, Ospedali Riuniti 89124 Reggio Calabria, Italy.,Nephrology, Dialysis and Transplantation Unit Ospedali Riuniti, 89124 Reggio Calabria Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, S. Luca Hospital, Istituto Auxologico Italiano &Department of Medicine and Surgery, University of Milan-Bicocca, Piazzale Brescia 20, Milan 20149, Italy
| | - Patrick Rossignol
- French-Clinical Research Infrastructure Network (F-CRIN), Pavillon Leriche 2è étage CHU de Toulouse, Place Dr Baylac TSA40031, 31059 TOULOUSE Cedex 3, France.,Inserm, Centre d'Investigations Cliniques-Plurithématique 1433, Cardiovascular and Renal Clinical Trialists (INI-CRCT), Institut Lorrain du Cœur et des Vaisseaux Louis Mathieu, 4 rue Morvan, 54500 Vandoeuvre-les-Nancy, France.,Inserm U1116, Faculté de Médecine, Bâtiment D 1er étage, 9 avenue de la forêt de Haye - BP 184, 54500 Vandœuvre-lès-Nancy Cedex, France.,CHU Nancy, Département de Cardiologie, Institut Lorrain du Cœur et des Vaisseaux, 5 Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France.,Université de Lorraine, 34 Cours Léopold, 54000 Nancy, France
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20/24 Street, Pl-40-027 Katowice, Poland
| | - Gerard London
- INSERM U970, Hopital Européen Georges Pompidou, 20 Rue Leblanc, 75015 Paris, France
| | | |
Collapse
|
36
|
Zhang K, Gao J, Chen J, Liu X, Cai Q, Liu P, Huang H. MICS, an easily ignored contributor to arterial calcification in CKD patients. Am J Physiol Renal Physiol 2016; 311:F663-F670. [PMID: 27335374 DOI: 10.1152/ajprenal.00189.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022] Open
Abstract
In chronic kidney disease (CKD), simultaneous mineral and skeleton changes are prevalent, known as CKD-mineral bone disorder (CKD-MBD). Arterial calcification (AC) is a clinically important complication of CKD-MBD. It can increase arterial stiffness, which leads to severe cardiovascular events. However, current treatments have little effect on regression of AC, as its mechanisms are still unclear. There are multiple risk factors of AC, among which Malnutrition-Inflammation Complex Syndrome (MICS) is a new and crucial one. MICS, a combined syndrome of malnutrition and inflammation, generally begins at the early stage of CKD and becomes obvious in end-stage renal disease (ESRD). It was linked to reverse epidemiology and associated with increased cardiovascular mortality in ESRD patients. Recent data suggest that MICS can trigger CKD-MBD and accelerate the course of AC. In this present review, we summarize the recent understanding about the aggravating effects of MICS on AC and discuss the possible underlying mechanisms. A series of findings indicate that targeting MICS will provide a potential strategy for treating AC in CKD.
Collapse
Affiliation(s)
- Kun Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Jingwei Gao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Jie Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China; Department of Radiation Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xun Liu
- Division of Nephrology, Department of Internal Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; and
| | - Qingqing Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, SunYat-sen University, Guangzhou, China
| | - Pinming Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China
| | - Hui Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, China;
| |
Collapse
|