1
|
Suen PK, Zheng L, Yang QQ, Mak WS, Pak WY, Mo KY, Chan ML, Liu QQ, Qin L, Sun SSM. Lysine-rich rice partially enhanced the growth and development of skeletal system with better skeletal microarchitecture in young rats. Nutr Res 2024; 121:67-81. [PMID: 38043437 DOI: 10.1016/j.nutres.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Rice is the primary staple food for half of the world's population but is low in lysine content. Previously, we developed transgenic rice with enhanced free lysine content in rice seeds (lysine-rich rice), which was shown safe for consumption and improved the growth in rats. However, the effects of lysine-rich rice on skeletal growth and development remained unknown. In this study, we hypothesized that lysine-rich rice improved skeletal growth and development in weaning rats. Male weaning Sprague-Dawley rats received lysine-rich rice (HFL) diet, wild-type rice (WT) diet, or wild-type rice with various contents of lysine supplementation diet for 70 days. Bone microarchitectures were examined by microcomputed tomography, bone strength was investigated by mechanical test, and dynamics of bone growth were examined by histomorphometric analysis. In addition, we explored the molecular mechanism of lysine and skeletal growth through biochemical testing of growth hormone, bone turnover marker, and amino acid content of rat serum analysis, as well as in a cell culture system. Results indicated that the HFL diet improved rats' bone growth, strength, and microarchitecture compared with the WT diet group. In addition, the HFL diet increased the serum essential amino acids, growth hormone (insulin-like growth factor-1), and bone formation marker concentrations. The cell culture model showed that lysine deficiency reduced insulin-like growth factor-1 and Osterix expression, Akt/mammalian target of rapamycin signaling, and matrix mineralization, and inhibited osteoblast differentiation associated with bone growth. Our findings showed that lysine-rich rice improved skeletal growth and development in weaning rats. A further increase of rice lysine content is highly desirable to fully optimize bone growth and development.
Collapse
Affiliation(s)
- Pui Kit Suen
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Plant Molecular Biology and Agriculture Biotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lizhen Zheng
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Science, China
| | - Qing-Qing Yang
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China; China Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Wan Sheung Mak
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Wan Yu Pak
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kit Ying Mo
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Man-Ling Chan
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qiao-Quan Liu
- China Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China; Institute of Plant Molecular Biology and Agriculture Biotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Shitrit-Tovli A, Sides R, Kalev-Altman R, Meilich D, Becker G, Penn S, Shahar R, Ornan EM. The Use of Post-Natal Skeleton Development as Sensitive Preclinical Model to Test the Quality of Alternative Protein Sources in the Diet. Nutrients 2022; 14:3769. [PMID: 36145152 PMCID: PMC9501083 DOI: 10.3390/nu14183769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary protein is necessary throughout all life stages. Adequate intake of protein during juvenile years is essential to enable appropriate synthesis of bone matrix and achieve the full peak bone mass (PBM). Due to socio-demographic changes, accompanied by environmental damage and ethical problems, a transition to the consumption of different and alternative protein sources in the human diet must occur. This transition requires the precise evaluation of protein quality. Here, we utilize a preclinical model of young rats during their post-natal developmental period to define the nutritive quality of a number of alternative protein sources (soy, spirulina, chickpea, and fly larvae) by their health impact on growth performance and skeletal development. We indicate that when restricted (10% of calories) not one of the tested alternative protein sources have succeeded in causing optimal growth, as compared to the referenced source, casein; yet fly larvae protein followed by chickpea flour were found to be superior to the rest. Growth-plate histology and µ-CT analyses demonstrated a number of changes in growth patterns and bone morphometric parameters. Bone mechanical testing, by three-point bending analyses, was sensitive in demonstrating the effect of the reduction in the amount of the dietary protein. Moreover, the rats' weight and length, as well as their eating patterns, were found to reflect the proteins' quality better than their amino acid composition. Hence, our study emphasizes the importance of evaluating protein as a whole food source, and suggests a new approach for this purpose.
Collapse
Affiliation(s)
- Astar Shitrit-Tovli
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Roni Sides
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Rotem Kalev-Altman
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dana Meilich
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gal Becker
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Svetlana Penn
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ron Shahar
- Koret School of Veterinary, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Efrat Monsonego Ornan
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Effects of Tetraselmis chuii Microalgae Supplementation on Anthropometric, Hormonal and Hematological Parameters in Healthy Young Men: A Double-Blind Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106060. [PMID: 35627597 PMCID: PMC9140704 DOI: 10.3390/ijerph19106060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/05/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023]
Abstract
The aim of this study was to evaluate the effects of Tetraselmis chuii (TC) microalgae supplementation for sixty days on hematological, anthropometric and hormonal parameters in healthy young men. Forty-six men divided into a placebo group (PG; n = 16; 20.77 ± 2.7 years; 72.14 ± 7.18 kg; 1.76 ± 0.07 m), a group supplemented with 25 mg/day of TC (SG 25; n = 15; 20.40 ± 1.40 years; 71.28 ± 8.26 kg; 1.76 ± 0.05 m) and another group supplemented with 200 mg/day of TC (SG 200; n = 15; 20.83 ± 2.45 years; 72.30 ± 11.13 kg; 1.77 ± 0.08 m) participated in this double-blind study. PG ingested 200 mg/day of lactose powder. Participants underwent 4 assessments (baseline, month 1, month 2 and desadaptation) separated in time by an interval of thirty days. At SG 25 and SG 200, significant increases in percent muscle mass, erythropoietin, insulin-like growth factor 1, free testosterone, leukocytes, neutrophils and lymphocytes were observed (p < 0.05). Decreases in the levels of percent fat mass, platelets, hematocrit and mean corpuscular hemoglobin also occurred in these groups (p < 0.05). TC supplementation induced favorable changes on anthropometric, hematological and hormonal levels. In view of the data, it seems that the most effective dose was 25 mg/day of TC.
Collapse
|
4
|
Fournier C, Karagounis LG, Sacco SM, Horcajada MN, Decaens T, Offord EA, Bouzakri K, Ammann P. Impact of moderate dietary protein restriction on glucose homeostasis in a model of oestrogen deficiency. J Nutr Biochem 2022; 102:108952. [PMID: 35122999 DOI: 10.1016/j.jnutbio.2022.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 09/27/2021] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
The need to consume adequate dietary protein to preserve physical function during ageing is well recognized. However, the effect of protein intakes on glucose metabolism is still intensively debated. During age-related oestrogen withdrawal at the time of the menopause, it is known that glucose homeostasis may be impaired but the influence of dietary protein levels in this context is unknown. The aim of the present study is to elucidate the individual and interactive effects of oestrogen deficiency and suboptimal protein intake on glucose homeostasis in a preclinical model involving ovariectomy (OVX) and a 13-week period of a moderately reduced protein intake in 7-month-old ageing rats. To investigate mechanisms of action acting via the pancreas-liver-muscle axis, fasting circulating levels of insulin, glucagon, IGF-1, FGF21 and glycemia were measured. The hepatic lipid infiltration and the protein expression of GLUT4 in the gastrocnemius were analyzed. The gene expression of some hepatokines, myokines and lipid storage/oxidation related transcription factors were quantified in the liver and the gastrocnemius. We show that, regardless of the oestrogen status, moderate dietary protein restriction increases fasting glycaemia without modifying insulinemia, body weight gain and composition. This fasting hyperglycaemia is associated with oestrogen status-specific metabolic alterations in the muscle and liver. In oestrogen-replete (SHAM) rats, GLUT4 was down-regulated in skeletal muscle while in oestrogen-deficient (OVX) rats, hepatic stress-associated hyperglucagonaemia and high serum FGF21 were observed. These findings highlight the importance of meeting dietary protein needs to avoid disturbances in glucose homeostasis in ageing female rats with or without oestrogen withdrawal.
Collapse
Affiliation(s)
- Carole Fournier
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland; Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.
| | - Leonidas G Karagounis
- Nestlé Health Science, Translation Research, Epalinges, Switzerland; Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Sandra M Sacco
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Marie-Noelle Horcajada
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France; Université Grenoble Alpes, 38000 Grenoble, France; Service d'hépato-gastroentérologie, Pôle Digidune, CHU Grenoble Alpes, 38700 La Tronche, France
| | - Elizabeth A Offord
- Nestlé Institute of Health Sciences, Nestlé Research, Société des Produits Nestlé S.A., 1015 Lausanne, Switzerland
| | - Karim Bouzakri
- Department of Genetic Medicine and Development, University of Geneva Medical Center, Geneva, Switzerland; UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Strasbourg, France
| | - Patrick Ammann
- Service of Bone Diseases, Department of Rehabilitation and Geriatrics, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
5
|
Cho JA, Baek SY, Cheong SH, Kim MR. Spirulina Enhances Bone Modeling in Growing Male Rats by Regulating Growth-Related Hormones. Nutrients 2020; 12:nu12041187. [PMID: 32344533 PMCID: PMC7231069 DOI: 10.3390/nu12041187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022] Open
Abstract
In recent years, growth hormone deficiency in children has been treated with hormone therapy despite the possible significant side effects. Therefore, it was deemed beneficial to develop functional foods or dietary supplements for safely improving children's growth. Spirulina platensis is known for its high antioxidant, anti-aging, anti-cancer, and immunity-enhancing properties, as well as its high digestibility and high protein content, but little has been reported about its influence on bone development in children with a normal supply of protein. In this study, we evaluated the effects of spirulina on the bone metabolism and antioxidant profiles of three-week-old growing male rats. The animals were divided into four groups (n = 17 per group) and were fed AIN93G diets with 0% (control), 30% (SP30), 50% (SP50), and 70% (SP70) of casein protein replaced by spirulina, respectively, for seven weeks. We observed that spirulina enhanced bone growth and bone strength by stimulating parathyroid hormone and growth hormone activities, as well its increased antioxidant activity. These results indicate that spirulina provides a suitable dietary supplement and alternative protein source with antioxidant benefits for growth improvement in early developmental stages.
Collapse
Affiliation(s)
- Jin Ah Cho
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
| | - Seong Yeon Baek
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
| | - Sun Hee Cheong
- Department of Marine Bio Food Science, College of Fisheries and Ocean Science, Chonnam National University, Yeosu 550-749, Korea;
| | - Mee Ree Kim
- Department of Food and Nutrition, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea; (J.A.C.); (S.Y.B.)
- Correspondence: ; Tel.: +82-42-821-6837
| |
Collapse
|
6
|
Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res 2017; 39:1-13. [PMID: 28385284 DOI: 10.1016/j.nutres.2016.12.010] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/16/2016] [Accepted: 12/27/2016] [Indexed: 02/08/2023]
Abstract
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population.
Collapse
Affiliation(s)
- Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ.
| | - L Claudia Pop
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| | - Yang Wang
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ
| |
Collapse
|