1
|
Brescia V, Lovero R, Fontana A, Zerlotin R, Colucci SC, Grano M, Cazzolla AP, Di Serio F, Crincoli V, Faienza MF. Reference Intervals (RIs) of the Bone Turnover Markers (BTMs) in Children and Adolescents: A Proposal for Effective Use. Biomedicines 2024; 13:34. [PMID: 39857618 PMCID: PMC11759837 DOI: 10.3390/biomedicines13010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bone turnover markers (BTMs) can provide information on the bone growth of apparently healthy children and adolescents or useful results in the diagnosis and monitoring of the disease condition, comparing them with appropriate reference intervals (RIs). The aim of this study was to establish the RI for the BTM [specific bone alkaline phosphatase (BALP), carboxy-terminal cross-linked collagen type I telopeptide (CTX), N-terminal propeptide pro-collagen type I (PINP), osteocalcin (OC), resistant to acid tartrate phosphatase isoform 5b (TRAcP-5b)] on serum samples from children and adolescents. METHOD 202 samples from children and adolescents (ages 1-18 years) (51.48% male), considered apparently healthy. The biomarker was analyzed on automatic immunometric equipment (TGSTA Technogenetics) and the IDS-iSYS automated system kits The RI of the studied parameters was calculated according to CLSI Guideline C28-A3 with stratification by age and sex. Evaluation of the distribution of values and the meaning of the biomarker concentrations were used to calculate general and specific RI for an age group. RESULTS BTM concentrations vary with pubertal growth. The pattern of change differs for each bone marker. General and age-specific RI were calculated: 1-14 years, 15-18 years for BALP and CTX; 1-13 years, 14-18 years for Oc and PINP and 1-12 years, 13-18 years for TRAcP. DISCUSSION AND CONCLUSIONS Concentrations for biomarker studied vary with age and gender. The proof of concentrations with insignificant changes until puberty led to identification of two groups of RI relating to the covariables (age and sex) for each biomarker.
Collapse
Affiliation(s)
- Vincenzo Brescia
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (V.B.); (R.L.); (A.F.); (F.D.S.)
| | - Roberto Lovero
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (V.B.); (R.L.); (A.F.); (F.D.S.)
| | - Antonietta Fontana
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (V.B.); (R.L.); (A.F.); (F.D.S.)
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Silvia Concetta Colucci
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70124 Bari, Italy;
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy; (R.Z.); (M.G.)
| | - Angela Pia Cazzolla
- Department of Clinical and Experimental Medicine, Università degli Studi di Foggia, 71122 Foggia, Italy
| | - Francesca Di Serio
- Clinical Pathology Unit, AOU Policlinico Consorziale di Bari-Ospedale Giovanni XXIII, 70124 Bari, Italy; (V.B.); (R.L.); (A.F.); (F.D.S.)
| | - Vito Crincoli
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, Piazza G. Cesare 11, 70124 Bari, Italy;
| |
Collapse
|
2
|
Perut F, Roncuzzi L, Gómez-Barrena E, Baldini N. Association between Bone Turnover Markers and Fracture Healing in Long Bone Non-Union: A Systematic Review. J Clin Med 2024; 13:2333. [PMID: 38673606 PMCID: PMC11051214 DOI: 10.3390/jcm13082333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Fracture healing is a very complex and well-orchestrated regenerative process involving many cell types and molecular pathways. Despite the high efficiency of this process, unsatisfying healing outcomes, such as non-union, occur for approximately 5-10% of long bone fractures. Although there is an obvious need to identify markers to monitor the healing process and to predict a potential failure in callus formation to heal the fracture, circulating bone turnover markers' (BTMs) utility as biomarkers in association with radiographic and clinical examination still lacks evidence so far. Methods: A systematic review on the association between BTMs changes and fracture healing in long bone non-union was performed following PRISMA guidelines. The research papers were identified via the PubMed, Cochrane, Cinahl, Web of Science, Scopus, and Embase databases. Studies in which the failure of fracture healing was associated with osteoporosis or genetic disorders were not included. Results: A total of 172 studies were collected and, given the inclusion criteria, 14 manuscripts were included in this review. Changes in circulating BTMs levels were detected during the healing process and across groups (healed vs. non-union patients and healthy vs. patients with non-union). However, we found high heterogeneity in patients' characteristics (fracture site, gender, and age) and in sample scheduling, which made it impossible to perform a meta-analysis. Conclusions: Clinical findings and radiographic features remain the two important components of non-union diagnosis so far. We suggest improving blood sample standardization and clinical data collection in future research to lay the foundations for the effective use of BTMs as tools for diagnosing non-union.
Collapse
Affiliation(s)
- Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (N.B.)
| | - Laura Roncuzzi
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (N.B.)
| | - Enrique Gómez-Barrena
- Department of Orthopedic Surgery and Traumatology, Hospital Universitario La Paz-IdiPAZ, 28046 Madrid, Spain;
- Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (L.R.); (N.B.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
3
|
Siderius M, Arends S, Kobold AM, Wagenmakers L, Koerts K, Spoorenberg A, van der Veer E. Serum levels of bone turnover markers including calculation of Z-scores: Data from a Dutch healthy reference cohort. Bone Rep 2023; 19:101724. [PMID: 38047270 PMCID: PMC10690549 DOI: 10.1016/j.bonr.2023.101724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/12/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Bone turnover markers (BTM) are biochemical compounds reflecting different stages of bone metabolism. Their levels change with age and differ between males and females. This makes clinical interpretation and comparison more difficult. Therefore, our aim was to establish BTM reference values which can be used to calculate Z-scores for use in daily clinical practice. Methods Serum markers of collagen resorption, bone formation/regulation, collagen formation and bone mineralization (sCTX, OC, PINP and BALP, respectively) were measured in non-fasting volunteers without bone-related abnormalities. Raw data was plotted and gender-specific age cohorts were established with their respective means and standard deviations (SD). Z-scores can be calculated using these reference values to correct for the influence of age and gender on BTM. Results In total, 856 individuals were included of which 486 (57 %) were female. Individuals were aged between 7 and 70 years. Highest serum levels of BTM were found in childhood and puberty. Peak levels are higher in boys than girls and prevail at later ages. In adults, BTM levels decrease before reaching stable nadir levels. In adults, 10-year reference cohorts with means and SD were provided to calculate Z-scores. Conclusion With our data, Z-scores of sCTX, OC, PINP and BALP can be calculated using reference categories (for age and gender) of Caucasian healthy volunteers. Clinicians can use BTM Z-scores to determine whether there are changes in bone turnover physiology beyond those expected during aging. BTM Z-scores facilitate harmonization of data interpretation in daily clinical practice and research.
Collapse
Affiliation(s)
- Mark Siderius
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Suzanne Arends
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Anneke Muller Kobold
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Lucie Wagenmakers
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Karin Koerts
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Anneke Spoorenberg
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| | - Eveline van der Veer
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, P.O. Box 30.001, 9700 RB Groningen, the Netherlands
| |
Collapse
|
4
|
Yoshida K, Ishizuka S, Nakamura-Takahashi A, Hasegawa A, Umezawa A, Koshika K, Ichinohe T, Kasahara M. Prenatal asfotase alfa-mediated enzyme replacement therapy restores delayed calcification in a severe infantile form of hypophosphatasia model mice. Eur J Med Genet 2023; 66:104787. [PMID: 37209904 DOI: 10.1016/j.ejmg.2023.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/22/2023]
Abstract
Hypophosphatasia (HPP) is a congenital disorder caused by mutations in the tissue-nonspecific alkaline phosphatase (TNALP) gene. The pathogenesis of HPP varies, ranging from severe cases in which there is total absence of fetal bone calcification, which leads to stillbirth, to relatively mild cases in which the effects are confined to the teeth, such as early loss of the primary teeth. In recent years, the establishment of enzyme supplementation as a treatment method has prolonged survival in patients; however, this approach does not provide sufficient improvement for failed calcification. Furthermore, the effects of enzyme replacement therapy on the jawbone and periodontal tissues have not yet been studied in detail. Therefore, in this study, we investigated the therapeutic effects of enzyme replacement therapy on jawbone hypocalcification in mice. Recombinant TNALP was administered to mothers before birth and newborns immediately after birth, and the effect of treatment was evaluated at 20 days of age. The treated HPP mice had improved mandible (mandibular length and bone quality) and tooth quality (root length of mandibular first molar, formation of cementum), as well as improved periodontal tissue structure (structure of periodontal ligament). Furthermore, prenatal treatment had an additional therapeutic effect on the degree of mandible and enamel calcification. These results suggest that enzyme replacement therapy is effective for the treatment of HPP, specifically in the maxillofacial region (including the teeth and mandible), and that early initiation of treatment may have additional beneficial therapeutic effects.
Collapse
Affiliation(s)
- Kaori Yoshida
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | | | | - Akihiro Hasegawa
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan; Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Tokyo, Japan
| | - Kyotaro Koshika
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
5
|
Schini M, Vilaca T, Gossiel F, Salam S, Eastell R. Bone Turnover Markers: Basic Biology to Clinical Applications. Endocr Rev 2022; 44:417-473. [PMID: 36510335 PMCID: PMC10166271 DOI: 10.1210/endrev/bnac031] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 11/26/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Bone turnover markers (BTMs) are used widely, in both research and clinical practice. In the last 20 years, much experience has been gained in measurement and interpretation of these markers, which include commonly used bone formation markers bone alkaline phosphatase, osteocalcin, and procollagen I N-propeptide; and commonly used resorption markers serum C-telopeptides of type I collagen, urinary N-telopeptides of type I collagen and tartrate resistant acid phosphatase type 5b. BTMs are usually measured by enzyme-linked immunosorbent assay or automated immunoassay. Sources contributing to BTM variability include uncontrollable components (e.g., age, gender, ethnicity) and controllable components, particularly relating to collection conditions (e.g., fasting/feeding state, and timing relative to circadian rhythms, menstrual cycling, and exercise). Pregnancy, season, drugs, and recent fracture(s) can also affect BTMs. BTMs correlate with other methods of assessing bone turnover, such as bone biopsies and radiotracer kinetics; and can usefully contribute to diagnosis and management of several diseases such as osteoporosis, osteomalacia, Paget's disease, fibrous dysplasia, hypophosphatasia, primary hyperparathyroidism, and chronic kidney disease-mineral bone disorder.
Collapse
Affiliation(s)
- Marian Schini
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tatiane Vilaca
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Fatma Gossiel
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Syazrah Salam
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK.,Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Richard Eastell
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Devlin MJ, Eick GN, Snodgrass JJ. The utility of dried blood spot measurement of bone turnover markers in biological anthropology. Am J Hum Biol 2022; 34:e23816. [PMID: 36214251 PMCID: PMC9787861 DOI: 10.1002/ajhb.23816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES Bone is a dynamic organ under continual turnover influenced by life history stage, energy dynamics, diet, climate, and disease. Bone turnover data have enormous potential in biological anthropology for testing evolutionary and biocultural hypotheses, yet few studies have integrated these biomarkers. In the present article we systematically review the current availability, future viability, and applicability of measuring bone turnover markers (BTMs) in dried blood spot (DBS) samples obtained from finger prick whole blood. METHODS Our review considers clinical and public health relevance, biomarker stability in DBS, assay availability, and cost. We consider biomarkers of bone formation such as osteocalcin (bone matrix protein), PINP (N-terminal propeptide of type I collagen), and alkaline phosphatase (osteoblast enzyme), as well as biomarkers of bone resorption such as CTX (marker of collagen breakdown) and TRACP5b (tartrate-resistant acid phosphatase 5b; osteoclast enzyme). RESULTS Two BTMs have been validated for DBS: osteocalcin (formation) and TRACP5b (resorption). Prime candidates for future development are CTX and PINP, the formation and resorption markers used for clinical monitoring of response to osteoporosis treatment. CONCLUSION BTMs are a field-friendly technique for longitudinal monitoring of skeletal biology during growth, reproduction and aging, combining minimized risk to study participants with maximized ease of sample storage and transport. This combination allows new insights into the effects of energy availability, disease, and physical activity level on bone, and questions about bone gain and loss across life history and in response to environmental factors; these issues are important in human biology, paleoanthropology, bioarchaeology, and forensic anthropology.
Collapse
Affiliation(s)
- Maureen J. Devlin
- Department of AnthropologyUniversity of MichiganAnn ArborMichiganUSA
| | - Geeta N. Eick
- Global Health Biomarker Laboratory, Department of AnthropologyUniversity of OregonEugeneOregonUSA
| | - J. Josh Snodgrass
- Global Health Biomarker Laboratory, Department of AnthropologyUniversity of OregonEugeneOregonUSA,Center for Global HealthUniversity of OregonEugeneOregonUSA,Invited Faculty, Global Station for Indigenous Studies & Cultural DiversityHokkaido UniversitySapparoHokkaidoJapan
| |
Collapse
|
7
|
Thirumalai A, Yuen F, Amory JK, Hoofnagle AN, Swerdloff RS, Liu PY, Long JE, Blithe DL, Wang C, Page ST. Dimethandrolone Undecanoate, a Novel, Nonaromatizable Androgen, Increases P1NP in Healthy Men Over 28 Days. J Clin Endocrinol Metab 2021; 106:e171-e181. [PMID: 33090208 PMCID: PMC7765650 DOI: 10.1210/clinem/dgaa761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Dimethandrolone undecanoate (DMAU) is being developed as a male contraceptive. Daily oral administration of DMAU, a potent androgen that is not aromatized, markedly suppresses serum testosterone (T) and estradiol (E2) in healthy men. E2 deficiency can increase bone resorption in men. OBJECTIVE This work aimed to assess changes in bone turnover markers with DMAU administration in a 28-day study. DESIGN A randomized, double-blind, placebo-controlled study was conducted. SETTING This study took place at 2 academic medical centers. PARTICIPANTS Healthy men, age 18 to50 years (n = 81), participated. INTERVENTION Men received 0, 100, 200, or 400 mg of oral DMAU for 28 days. Serum C-terminal telopeptide of type I collagen (CTX; bone resorption marker) and procollagen type I amino-terminal propeptide (P1NP; bone formation marker) were measured on days 1 and 28. MAIN OUTCOME MEASURES Changes in bone turnover markers and serum hormones over the treatment period were measured. RESULTS On day 28, median serum T and E2 were markedly suppressed in all treatment groups vs placebo (P < .001 for both). Percentage change (%) in serum P1NP significantly differed across treatment groups (P = .007): Serum P1NP significantly increased in the 200 mg (5%, interquartile range [IQR] -7% to 27%) and 400 mg (22%, IQR -1% to 40%) groups relative to placebo (-8%, IQR -20% to 0%). Change (%) in serum CTX did not differ between groups (P = .09). CONCLUSIONS DMAU administration for 28 days to healthy men leads to marked suppression of serum T and E2, yet increases P1NP, a serum marker of bone formation. Longer-term studies of the potent androgen DMAU are warranted to determine its impact on bone health in men.
Collapse
Affiliation(s)
- Arthi Thirumalai
- University of Washington, Seattle, Washington
- Correspondence and Reprint Requests: Arthi Thirumalai, MBBS, Division of Metabolism, Endocrinology and Nutrition, University of Washington, HSB C209, Box 357138, 1959 NE Pacific St, Seattle, WA 98195, USA. E-mail:
| | - Fiona Yuen
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California
| | | | | | - Ronald S Swerdloff
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California
| | - Peter Y Liu
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California
| | - Jill E Long
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Diana L Blithe
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Christina Wang
- The Lundquist Institute at Harbor UCLA Medical Center, Torrance, California
| | | |
Collapse
|
8
|
Dolan E, Varley I, Ackerman KE, Pereira RMR, Elliott-Sale KJ, Sale C. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev 2020; 48:49-58. [PMID: 31913188 DOI: 10.1249/jes.0000000000000215] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone (re)modeling markers can help determine how the bone responds to different types, intensities, and durations of exercise. They also might help predict those at risk of bone injury. We synthesized evidence on the acute and chronic bone metabolic responses to exercise, along with how nutritional factors can moderate this response. Recommendations to optimize future research efforts are made.
Collapse
Affiliation(s)
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Kathryn E Ackerman
- Division of Sports Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Rosa Maria R Pereira
- Rheumatology Division, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Jayne Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|