1
|
Yang SNN, Kertesz MA, Coleman NV. Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases. Environ Microbiol 2025; 27:e70050. [PMID: 39947201 PMCID: PMC11825192 DOI: 10.1111/1462-2920.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Monooxygenase (MO) enzymes are responsible for the oxidation of hydrocarbons and other compounds in the carbon and nitrogen cycles, are important for the biodegradation of pollutants and can act as biocatalysts for chemical manufacture. The soluble di-iron monooxygenases (SDIMOs) are of interest due to their broad substrate range, high enantioselectivity and ability to oxidise inert substrates such as methane. Here, we re-examine the phylogeny and functions of these enzymes, using recent advances in the field and expansions in sequence diversity in databases to highlight relationships between SDIMOs and revisit their classification. We discuss the impact of horizontal gene transfer on SDIMO phylogeny, the potential of SDIMOs for the biodegradation of pollutants and the importance of heterologous expression as a tool for understanding SDIMO functions and enabling their use as biocatalysts. Our analysis highlights current knowledge gaps, most notably, the unknown substrate ranges and physiological roles of enzymes that have so far only been detected via genome or metagenome sequencing. Enhanced understanding of the diversity and functions of the SDIMO enzymes will enable better prediction and management of biogeochemical processes and also enable new applications of these enzymes for biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Sui Nin Nicholas Yang
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Michael A. Kertesz
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nicholas V. Coleman
- Australian Genome Foundry and ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Yang SNN, Haritos V, Kertesz MA, Coleman NV. A novel soluble di-iron monooxygenase from the soil bacterium Solimonas soli. Environ Microbiol 2024; 26:e16567. [PMID: 38233213 DOI: 10.1111/1462-2920.16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
Soluble di-iron monooxygenase (SDIMO) enzymes enable insertion of oxygen into diverse substrates and play significant roles in biogeochemistry, bioremediation and biocatalysis. An unusual SDIMO was detected in an earlier study in the genome of the soil organism Solimonas soli, but was not characterized. Here, we show that the S. soli SDIMO is part of a new clade, which we define as 'Group 7'; these share a conserved gene organization with alkene monooxygenases but have only low amino acid identity. The S. soli genes (named zmoABCD) could be functionally expressed in Pseudomonas putida KT2440 but not in Escherichia coli TOP10. The recombinants made epoxides from C2 C8 alkenes, preferring small linear alkenes (e.g. propene), but also epoxidating branched, carboxylated and chlorinated substrates. Enzymatic epoxidation of acrylic acid was observed for the first time. ZmoABCD oxidised the organochlorine pollutants vinyl chloride (VC) and cis-1,2-dichloroethene (cDCE), with the release of inorganic chloride from VC but not cDCE. The original host bacterium S. soli could not grow on any alkenes tested but grew well on phenol and n-octane. Further work is needed to link ZmoABCD and the other Group 7 SDIMOs to specific physiological and ecological roles.
Collapse
Affiliation(s)
- Sui Nin Nicholas Yang
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Victoria Haritos
- Department of Chemical and Biological Engineering, Monash University, Melbourne, Victoria, Australia
| | - Michael A Kertesz
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Nicholas V Coleman
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
A multicomponent THF hydroxylase initiates tetrahydrofuran degradation in Cupriavidus metallidurans ZM02. Appl Environ Microbiol 2022; 88:e0188021. [PMID: 35108100 DOI: 10.1128/aem.01880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38±0.24 μmol min-1 mg-1 and 1.77±0.37 μmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.
Collapse
|
4
|
Wang P, Li F, Wang W, Wang R, Yang Y, Cui T, Liu N, Li M. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112206. [PMID: 33866286 DOI: 10.1016/j.ecoenv.2021.112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
1,4-Dioxane (dioxane), an emerging groundwater contaminant, is frequently detected in landfill leachates with its structural analog, tetrahydrofuran (THF). Along with undesirable leakage of landfill leachates, dioxane and THF inevitably percolate into groundwater leading to a broader region of contamination. Cometabolic bioremediation is an effective approach to manage commingled THF and dioxane pollution. In this study, a newly isolated bacterium Arthrobacter sp. WN18 is able to co-oxidize dioxane with THF as the primary substrate. Meanwhile, the THF-induced thmADBC gene cluster was responsible for the dioxane degradation rate indicating THF monooxygenase is the essential enzyme that initializing α-hydroxylation of THF and dioxane. Further, γ-butyrolactone and HEAA were characterized as the key metabolites of THF and dioxane, respectively. In addition, WN18 can tolerate the inhibition of trichloroethylene (5.0 mg/L) as a representative of co-existing leachate constituent, and sustain its activity at various pH (5-11), temperatures (15-42 °C), and salinities (up to 4%, as NaCl wt). Like other Arthrobacter species, WN18 also exhibited the capability of fixing nitrogen. All this evidence indicates the feasibility and advantage of WN18 as a thmADBC-catalyzed inoculator to bioremediate co-contamination of THF and dioxane.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Wenmin Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Ruofan Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yadong Yang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Tingchen Cui
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States.
| |
Collapse
|
5
|
Huang H, Qi M, Liu Y, Wang H, Wang X, Qiu Y, Lu Z. Thiamine-Mediated Cooperation Between Auxotrophic Rhodococcus ruber ZM07 and Escherichia coli K12 Drives Efficient Tetrahydrofuran Degradation. Front Microbiol 2020; 11:594052. [PMID: 33362743 PMCID: PMC7758286 DOI: 10.3389/fmicb.2020.594052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrahydrofuran (THF) is a universal solvent widely used in the synthesis of chemicals and pharmaceuticals. As a refractory organic contaminant, it can only be degraded by a small group of microbes. In this study, a thiamine auxotrophic THF-degrading bacterium, Rhodococcus ruber ZM07, was isolated from an enrichment culture H-1. It was cocultured with Escherichia coli K12 (which cannot degrade THF but can produce thiamine) and/or Escherichia coli K12ΔthiE (which can neither degrade THF nor produce thiamine) with or without exogenous thiamine. This study aims to understand the interaction mechanisms between ZM07 and K12. We found that K12 accounted for 30% of the total when cocultured and transferred with ZM07 in thiamine-free systems; in addition, in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system without thiamine, K12ΔthiE disappeared in the 8th transfer, while K12 could still stably exist (the relative abundance remained at approximately 30%). The growth of K12 was significantly inhibited in the thiamine-rich system. Its proportion was almost below 4% after the fourth transfer in both the two-strain (ZM07 and K12) and three-strain (ZM07, K12, and K12ΔthiE) systems; K12ΔthiE’s percentage was higher than K12’s in the three-strain (ZM07, K12, and K12ΔthiE) cocultured system with exogenous thiamine, and both represented only a small proportion (less than 1% by the fourth transfer). The results of the coculture of K12 and K12ΔthiE in thiamine-free medium indicated that intraspecific competition between them may be one of the main reasons for the extinction of K12ΔthiE in the three-strain (ZM07, K12, and K12ΔthiE) system without exogenous thiamine. Furthermore, we found that ZM07 could cooperate with K12 through extracellular metabolites exchanges without physical contact. This study provides novel insight into how microbes cooperate and compete with one another during THF degradation.
Collapse
Affiliation(s)
- Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiming Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yiyang Qiu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Stocka J, Čeponkus J, Šablinskas V, Rodziewicz P. Conformational diversity of the THF molecule in N 2 matrix by means of FTIR matrix isolation experiment and Car-Parrinello molecular dynamics simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 238:118425. [PMID: 32413717 DOI: 10.1016/j.saa.2020.118425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Tetrahydrofuran (THF) is a widely used chemical compound, in particular as a solvent in organic and inorganic synthesis. The THF molecule has also an interesting property, namely, undergoes pseudorotation, similar to the case of the cyclopentane. Low energy difference between the envelope (Cs symmetry) and twisted (C2 symmetry) conformations of the THF molecule leads to the interconversion between the two conformers. We study the influence of the molecular environment (N2) on the Cs-C2 equilibrium of tetrahydrofuran in the THF@N2 system utilizing nitrogen matrix isolation infrared spectroscopy. We observe a different ratio between envelope (Cs) and twisted (C2) conformations with respect to a change of the temperature. FTIR experimental studies are supported by the results of the static density functional theory calculations and Car-Parrinello molecular dynamics simulations. We focus on the dynamics of the pseudorotation process, in particular, the lifetime of the THF conformations and their mutual rearrangements. On the basis of the THF@N2 matrix model, with explicit nitrogen molecules, the anharmonic infrared spectra are generated from the Fourier transformation of the dipole moment autocorrelation function.
Collapse
Affiliation(s)
- Joanna Stocka
- Departament of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Saultekio al. 9, Vilnius 10222, Lithuania
| | - Justinas Čeponkus
- Departament of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Saultekio al. 9, Vilnius 10222, Lithuania
| | - Valdas Šablinskas
- Departament of General Physics and Spectroscopy, Faculty of Physics, Vilnius University, Saultekio al. 9, Vilnius 10222, Lithuania
| | - Pawel Rodziewicz
- Institute of Chemistry, Jan Kochanowski University, Swietokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
7
|
Woiski C, Dobslaw D, Engesser KH. Isolation and characterization of 2-butoxyethanol degrading bacterial strains. Biodegradation 2020; 31:153-169. [PMID: 32356147 PMCID: PMC7299911 DOI: 10.1007/s10532-020-09900-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/10/2020] [Indexed: 10/26/2022]
Abstract
A total of 11 bacterial strains capable of completely degrading 2-butoxyethanol (2-BE) were isolated from forest soil, a biotrickling filter, a bioscrubber, and activated sludge, and identified by 16S rRNA gene sequence analysis. Eight of these strains belong to the genus Pseudomonas; the remaining three strains are Hydrogenophaga pseudoflava BOE3, Gordonia terrae BOE5, and Cupriavidus oxalaticus BOE300. In addition to 2-BE, all isolated strains were able to grow on 2-ethoxyethanol and 2-propoxyethanol, ethanol, n-hexanol, ethyl acetate, 2-butoxyacetic acid (2-BAA), glyoxylic acid, and n-butanol. Apart from the only gram-positive strain isolated, BOE5, none of the strains were able to grow on the nonpolar ethers diethyl ether, di-n-butyl ether, n-butyl vinyl ether, and dibenzyl ether, as well as on 1-butoxy-2-propanol. Strains H. pseudoflava BOE3 and two of the isolated pseudomonads, Pseudomonas putida BOE100 and P. vancouverensis BOE200, were studied in more detail. The maximum growth rates of strains BOE3, BOE100, and BOE200 at 30 °C were 0.204 h-1 at 4 mM, 0.645 h-1 at 5 mM, and 0.395 h-1 at 6 mM 2-BE, respectively. 2-BAA, n-butanol, and butanoic acid were detected as potential metabolites during the degradation of 2-BE. These findings indicate that the degradation of 2-BE by the isolated gram-negative strains proceeds via oxidation to 2-BAA with subsequent cleavage of the ether bond yielding glyoxylate and n-butanol. Since Gordonia terrae BOE5 was the only strain able to degrade nonpolar ethers like diethyl ether, the degradation pathway of 2-BE may be different for this strain.
Collapse
Affiliation(s)
- Christine Woiski
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany.
| | - Daniel Dobslaw
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany
| |
Collapse
|
8
|
Li F, Deng D, Li M. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1898-1908. [PMID: 31877031 DOI: 10.1021/acs.est.9b05671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monitored natural attenuation (MNA) and engineered bioremediation have been recognized as effective and cost-efficient in situ treatments to mitigate 1,4-dioxane (dioxane) contamination. Dioxane metabolism can be initiated by two catabolic enzymes, propane monooxygenase (PRM) and tetrahydrofuran monooxygenase (THM), belonging to the group-6 and 5 of soluble di-iron monooxygenase family, respectively. In this study, we comprehensively compared catalytic behaviors of PRM and THM when individually expressed in the heterologous host, Mycobacterium smegmatis mc2-155. Kinetic results revealed a half-saturation coefficient (Km) of 53.0 ± 13.1 mg/L for PRM, nearly 4 times lower than that of THM (235.8 ± 61.6 mg/L), suggesting that PRM has a higher affinity to dioxane. Exposure with three common co-contaminants (1,1-dichloroethene, trichloroethene, and 1,1,1-trichloroethane) demonstrated that PRM was also more resistant to their inhibition than THM. Thus, dioxane degraders expressing PRM may be more physiologically and ecologically advantageous than those with THM at impacted sites, where dioxane concentration is relatively low (e.g., 250 to 1000 μg/L) with co-occurrence of chlorinated solvents (e.g., 0.5 to 8 mg/L), underscoring the need of surveying both PRM and THM-encoding genes for MNA potential assessment. PRM is also highly versatile, which breaks down cyclic molecules (dioxane, tetrahydrofuran, and cyclohexane), as well as chlorinated and aromatic pollutants, including vinyl chloride, 1,2-dichloroethane, benzene, and toluene. This is the first report regarding the ability of PRM to degrade a variety of short-chain alkanes and ethene in addition to dioxane, unraveling its pivotal role in aerobic biostimulation that utilizes propane, isobutane, or other gaseous alkanes/alkenes (e.g., ethane, butane, and ethene) to select and fuel indigenous microorganisms to tackle the commingled contamination of dioxane and chlorinated compounds.
Collapse
Affiliation(s)
- Fei Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Daiyong Deng
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| |
Collapse
|
9
|
Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula. Appl Microbiol Biotechnol 2020; 104:2255-2269. [DOI: 10.1007/s00253-020-10376-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
10
|
Inoue D, Tsunoda T, Sawada K, Yamamoto N, Sei K, Ike M. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria. CHEMOSPHERE 2020; 238:124606. [PMID: 31446278 DOI: 10.1016/j.chemosphere.2019.124606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This study evaluates the effects of various metals on 1,4-dioxane degradation by the following four bacteria: Pseudonocardia sp. D17; Pseudonocardia sp. N23; Mycobacterium sp. D6; and Rhodococcus aetherivorans JCM 14343. Eight transition metals [Co(II), Cu(II), Fe(II), Fe(III), Mn(II), Mo(VI), Ni(II), and Zn(II)] were used as the test metals. Results revealed, for the first time, that metals had not only inhibitory but also stimulatory effects on 1,4-dioxane biodegradation. Cu(II) had the most severe inhibitory effects on 1,4-dioxane degradation by all of the test strains, with significant inhibition at concentrations as low as 0.01-0.1 mg/L. This inhibition was probably caused by cellular toxicity at higher concentrations, and by inhibition of degradative enzymes at lower concentrations. In contrast, Fe(III) enhanced 1,4-dioxane degradation by Mycobacterium sp. D6 and R. aetherivorans JCM 14343 the most, while degradation by the two Pseudonocardia strains was stimulated most notably in the presence of Mn(II), even at concentrations as low as 0.001 mg/L. Enhanced degradation is likely caused by the stimulation of soluble di-iron monooxygenases (SDIMOs) involved in the initial oxidation of 1,4-dioxane. Differences in the stimulatory effects of the tested metals were likely associated with the particular SDIMO types in the test strains.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Kazuko Sawada
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Kazunari Sei
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan; Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
11
|
Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress. Appl Environ Microbiol 2019; 85:AEM.01196-19. [PMID: 31375492 DOI: 10.1128/aem.01196-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/23/2019] [Indexed: 11/20/2022] Open
Abstract
Bacterial consortia are among the most basic units in the biodegradation of environmental pollutants. Pollutant-degrading strains frequently encounter different types of environmental stresses and must be able to survive with other bacteria present in the polluted environments. In this study, we proposed a noncontact interaction mode between a tetrahydrofuran (THF)-degrading strain, Rhodococcus ruber YYL, and a non-THF-degrading strain, Bacillus cereus MLY1. The metabolic interaction mechanism between strains YYL and MLY1 was explored through physiological and molecular studies and was further supported by the metabolic response profile of strain YYL, both monocultured and cocultured with strain MLY1 at the optimal pH (pH 8.3) and under pH stress (pH 7.0), through a liquid chromatography-mass spectrometry-based metabolomic analysis. The results suggested that the coculture system resists pH stress in three ways: (i) strain MLY1 utilized acid metabolites and impacted the proportion of glutamine, resulting in an elevated intracellular pH of the system; (ii) strain MLY1 had the ability to degrade intermediates, thus alleviating the product inhibition of strain YYL; and (iii) strain MLY1 produced some essential micronutrients for strain YYL to aid the growth of this strain under pH stress, while strain YYL produced THF degradation intermediates for strain MLY1 as major nutrients. In addition, a metabolite cross-feeding interaction with respect to pollutant biodegradation is discussed.IMPORTANCE Rhodococcus species have been discovered in diverse environmental niches and can degrade numerous recalcitrant toxic pollutants. However, the pollutant degradation efficiency of these strains is severely reduced due to the complexity of environmental conditions and limitations in the growth of the pollutant-degrading microorganism. In our study, Bacillus cereus strain MLY1 exhibited strong stress resistance to adapt to various environments and improved the THF degradation efficiency of Rhodococcus ruber YYL by a metabolic cross-feeding interaction style to relieve the pH stress. These findings suggest that metabolite cross-feeding occurred in a complementary manner, allowing a pollutant-degrading strain to collaborate with a nondegrading strain in the biodegradation of various recalcitrant compounds. The study of metabolic exchanges is crucial to elucidate mechanisms by which degrading and symbiotic bacteria interact to survive environmental stress.
Collapse
|
12
|
Qi M, Huang H, Zhang Y, Wang H, Li H, Lu Z. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic. CHEMOSPHERE 2019; 231:173-183. [PMID: 31129398 DOI: 10.1016/j.chemosphere.2019.05.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Our understanding of the tetrahydrofuran (THF) degradation in complex environment is limited. The majority of THF degrading genes reported are group V soluble diiron monooxygenases and share greater than 95% homology with one another. In this study, we used sole-carbon-source incubation combined with high-throughput metagenomic sequencing to investigate this contaminant's degradation in environmental samples. We identified as-yet-uncultivated microbe from the genera Pseudonocardia and fungi Scedosporium sp. (Scedosporium sp. was successfully isolated) as THF degraders as containing THF degradation genes, while microbes from the genera Bordetella, Pandoraea and Rhodanobacter functioned as main cooperators by utilizing acidic intermediates and providing anti-acid mechanisms. Furthermore, a 9387-bp THF degradation cluster designated thmX from the as-yet-uncultivated Pseudonocardia (with 6 main ORFs and with 79-93% amino acid sequence identity with previously reported clusters) was discovered. We also found a THF-degrading related cytochrome P450 monooxygenase from the genus Scedosporium and predicted its cognate reductase for the first time. All the genes and clusters mentioned above were successfully amplified from samples and cloned into the suitable expression vectors. This study will provide novel insights for understanding of THF degradation mechanisms under acid stress conditions and mining new THF degradation genes.
Collapse
Affiliation(s)
- Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hanbo Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China. http://
| |
Collapse
|
13
|
Osborne CD, Haritos VS. Beneath the surface: Evolution of methane activity in the bacterial multicomponent monooxygenases. Mol Phylogenet Evol 2019; 139:106527. [PMID: 31173882 DOI: 10.1016/j.ympev.2019.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/09/2023]
Abstract
The bacterial multicomponent monooxygenase (BMM) family has evolved to oxidise a wide array of hydrocarbon substrates of importance to environmental emissions and biotechnology: foremost amongst these is methane, which requires among the most powerful oxidant in biology to activate. To understand how the BMM evolved methane oxidation activity, we investigated the changes in the enzyme family at different levels: operonic, phylogenetic analysis of the catalytic hydroxylase, subunit or folding factor presence, and sequence-function analysis across the entirety of the BMM phylogeny. Our results show that the BMM evolution of new activities was enabled by incremental increases in oxidative power of the active site, and these occur in multiple branches of the hydroxylase phylogenetic tree. While the hydroxylase primary sequence changes that resulted in increased oxidative power of the enzyme appear to be minor, the principle evolutionary advances enabling methane activity occurred in the other components of the BMM complex and in the recruitment of stability proteins. We propose that enzyme assembly and stabilization factors have independently-evolved multiple times in the BMM family to support enzymes that oxidise increasingly difficult substrates. Herein, we show an important example of evolution of catalytic function where modifications to the active site and substrate accessibility, which are the usual focus of enzyme evolution, are overshadowed by broader scale changes to structural stabilization and non-catalytic unit development. Retracing macroscale changes during enzyme evolution, as demonstrated here, should find ready application to other enzyme systems and in protein design.
Collapse
Affiliation(s)
- Craig D Osborne
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia
| | - Victoria S Haritos
- Department of Chemical Engineering, Monash University, Wellington Road, Clayton 3800, Australia.
| |
Collapse
|
14
|
Li M, Liu Y, He Y, Mathieu J, Hatton J, DiGuiseppi W, Alvarez PJJ. Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. WATER RESEARCH 2017; 112:217-225. [PMID: 28161562 DOI: 10.1016/j.watres.2017.01.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A microcosm study was conducted to assess two biostimulation strategies (relative to natural attenuation) to bioremediate 1,4-dioxane contamination at a site in west Texas. Dioxane concentrations were relatively low (<300 μg/L), which represents a potential challenge to sustain and induce specific degraders. Thus, biostimulation was attempted with an auxiliary substrate known to induce dioxane-degrading monooxygenases (i.e., tetrahydrohyran [THF]) or with a non-inducing growth substrate (1-butanol [1-BuOH]). Amendment of 1-BuOH (100 mg/L) to microcosms that were not oxygen-limited temporarily enhanced dioxane biodegradation by the indigenous microorganisms. However, this stimulatory effect was not sustained by repeated amendments, which might be attributed to i) the inability of 1-BuOH to induce dioxane-degrading enzymes, ii) curing of catabolic plasmids, iii) metabolic flux dilution and catabolite repression, and iv) increased competition by commensal bacteria that do not degrade dioxane. Experiments with the archetype dioxane degrader Pseudonocardia dioxanivorans CB1190 repeatedly amended with 1-BuOH (500 mg/L added weekly for 4 weeks) corroborated the partial curing of catabolic plasmids (9.5 ± 7.4% was the plasmid retention ratio) and proliferation of derivative segregants that lost their ability to degrade dioxane. Addition of THF (300 μg/L) also had limited benefit due to competitive inhibition; significant dioxane degradation occurred only when the THF concentration decreased below approximately 160 μg/L. Overall, these results illustrate the importance of considering the possibility of unintentional hindrance of catabolism associated with the addition of auxiliary carbon sources to bioremediate aquifers impacted with trace concentrations of dioxane.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA; Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - Yuanyuan Liu
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
15
|
Li M, Van Orden ET, DeVries DJ, Xiong Z, Hinchee R, Alvarez PJ. Bench-scale biodegradation tests to assess natural attenuation potential of 1,4-dioxane at three sites in California. Biodegradation 2014; 26:39-50. [DOI: 10.1007/s10532-014-9714-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
|
16
|
Identification of biomarker genes to predict biodegradation of 1,4-dioxane. Appl Environ Microbiol 2014; 80:3209-18. [PMID: 24632253 DOI: 10.1128/aem.04162-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial multicomponent monooxygenase gene targets in Pseudonocardia dioxanivorans CB1190 were evaluated for their use as biomarkers to identify the potential for 1,4-dioxane biodegradation in pure cultures and environmental samples. Our studies using laboratory pure cultures and industrial activated sludge samples suggest that the presence of genes associated with dioxane monooxygenase, propane monooxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase are promising indicators of 1,4-dioxane biotransformation; however, gene abundance was insufficient to predict actual biodegradation. A time course gene expression analysis of dioxane and propane monooxygenases in Pseudonocardia dioxanivorans CB1190 and mixed communities in wastewater samples revealed important associations with the rates of 1,4-dioxane removal. In addition, transcripts of alcohol dehydrogenase and aldehyde dehydrogenase genes were upregulated during biodegradation, although only the aldehyde dehydrogenase was significantly correlated with 1,4-dioxane concentrations. Expression of the propane monooxygenase demonstrated a time-dependent relationship with 1,4-dioxane biodegradation in P. dioxanivorans CB1190, with increased expression occurring after over 50% of the 1,4-dioxane had been removed. While the fraction of P. dioxanivorans CB1190-like bacteria among the total bacterial population significantly increased with decrease in 1,4-dioxane concentrations in wastewater treatment samples undergoing active biodegradation, the abundance and expression of monooxygenase-based biomarkers were better predictors of 1,4-dioxane degradation than taxonomic 16S rRNA genes. This study illustrates that specific bacterial monooxygenase and dehydrogenase gene targets together can serve as effective biomarkers for 1,4-dioxane biodegradation in the environment.
Collapse
|
17
|
Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. Appl Environ Microbiol 2014; 80:2656-64. [PMID: 24532074 DOI: 10.1128/aem.04131-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although tetrahydrofuran-degrading Rhodococcus sp. strain YYL possesses tetrahydrofuran (THF) degradation genes similar to those of other tetrahydrofuran-degrading bacteria, a much higher degradation efficiency has been observed in strain YYL. In this study, nuclear magnetic resonance (NMR)-based metabolomics analyses were performed to explore the metabolic profiling response of strain YYL to exposure to THF. Exposure to THF slightly influenced the metabolome of strain YYL when yeast extract was present in the medium. The metabolic profile of strain YYL over time was also investigated using THF as the sole carbon source to identify the metabolites associated with high-efficiency THF degradation. Lactate, alanine, glutarate, glutamate, glutamine, succinate, lysine, trehalose, trimethylamine-N-oxide (TMAO), NAD(+), and CTP were significantly altered over time in strain YYL grown in 20 mM THF. Real-time quantitative PCR (RT-qPCR) revealed changes in the transcriptional expression levels of 15 genes involved in THF degradation, suggesting that strain YYL could accumulate several disturbances in osmoregulation (trehalose, glutamate, glutamine, etc.), with reduced glycolysis levels, an accelerated tricarboxylic acid cycle, and enhanced protein synthesis. The findings obtained through (1)H NMR metabolomics analyses and the transcriptional expression of the corresponding genes are complementary for exploring the dynamic metabolic profile in organisms.
Collapse
|
18
|
Yao Y, Lu Z, Zhu F, Min H, Bian C. Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:550-558. [PMID: 23994653 DOI: 10.1016/j.jhazmat.2013.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 07/22/2013] [Accepted: 08/04/2013] [Indexed: 06/02/2023]
Abstract
The exchange of tetrahydrofuran (THF)-containing wastewater should significantly affect the performance of an activated sludge system. In this study, the feasibility of using THF-degrading Rhodococcus sp. strain YYL to bioaugment an activated sludge system treating THF wastewater was explored. As indicated by a DGGE analysis, strain YYL alone could not dominate the system, with the concentration of mixed liquor suspended solids (MLSS) decreasing to nearly half of the initial concentration after 45 d, and the microbial diversity was found to be significantly reduced. However, after the reactor was augmented with the mixed culture of strain YYL and two bacilli initially coexisting in the enriched isolation source, strain YYL quickly became dominant in the system and was incorporated into the activated sludge. The concentration of MLSS increased from 2.1g/L to 7.3g/L in 20 d, and the efficiency of THF removal from the system was remarkably improved. After the successful bioaugmentation, more than 95% of THF was completely removed from the wastewater when 20mM THF was continuously loaded into the system. In conclusion, our research first demonstrates that bioaugmentation of activated sludge system for THF degradation is feasible but that successful bioaugmentation should utilize a THF-degrading mixed culture as the inoculum, in which the two bacilli might help strain YYL colonize in activated sludge by co-aggregation.
Collapse
Affiliation(s)
- Yanlai Yao
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, 198 Shiqiao Road, Hangzhou, Zhejiang 310021, China; Institute of Microbiology, College of Life Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| | | | | | | | | |
Collapse
|
19
|
Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species. Appl Environ Microbiol 2013; 79:7702-8. [PMID: 24096414 DOI: 10.1128/aem.02418-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterium Pseudonocardia dioxanivorans CB1190 grows on the cyclic ethers 1,4-dioxane (dioxane) and tetrahydrofuran (THF) as sole carbon and energy sources. Prior transcriptional studies indicated that an annotated THF monooxygenase (THF MO) gene cluster, thmADBC, located on a plasmid in CB1190 is upregulated during growth on dioxane. In this work, transcriptional analysis demonstrates that upregulation of thmADBC occurs during growth on the dioxane metabolite β-hydroxyethoxyacetic acid (HEAA) and on THF. Comparison of the transcriptomes of CB1190 grown on THF and succinate (an intermediate of THF degradation) permitted the identification of other genes involved in THF metabolism. Dioxane and THF oxidation activity of the THF MO was verified in Rhodococcus jostii RHA1 cells heterologously expressing the CB1190 thmADBC gene cluster. Interestingly, these thmADBC expression clones accumulated HEAA as a dead-end product of dioxane transformation, indicating that despite its genes being transcriptionally upregulated during growth on HEAA, the THF MO enzyme is not responsible for degradation of HEAA in CB1190. Similar activities were also observed in RHA1 cells heterologously expressing the thmADBC gene cluster from Pseudonocardia tetrahydrofuranoxydans K1.
Collapse
|
20
|
Lan RS, Smith CA, Hyman MR. Oxidation of Cyclic Ethers by Alkane-Grown Mycobacterium vaccae
JOB5. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/rem.21364] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Li M, Mathieu J, Yang Y, Fiorenza S, Deng Y, He Z, Zhou J, Alvarez PJJ. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9950-9958. [PMID: 23909410 DOI: 10.1021/es402228x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Soluble di-iron monooxygenases (SDIMOs), especially group-5 SDIMOs (i.e., tetrahydrofuran and propane monooxygenases), are of significant interest due to their potential role in the initiation of 1,4-dioxane (dioxane) degradation. Functional gene array (i.e., GeoChip) analysis of Arctic groundwater exposed to dioxane since 1980s revealed that various dioxane-degrading SDIMO genes were widespread, and PCR-DGGE analysis showed that group-5 SDIMOs were present in every tested sample, including background groundwater with no known dioxane exposure history. A group-5 thmA-like gene was enriched (2.4-fold over background, p < 0.05) in source-zone samples with higher dioxane concentrations, suggesting selective pressure by dioxane. Microcosm assays with (14)C-labeled dioxane showed that the highest mineralization capacity (6.4 ± 0.1% (14)CO2 recovery during 15 days, representing over 60% of the amount degraded) corresponded to the source area, which was presumably more acclimated and contained a higher abundance of SDIMO genes. Dioxane mineralization ceased after 7 days and was resumed by adding acetate (0.24 mM) as an auxiliary substrate to replenish NADH, a key coenzyme for the functioning of monoxygenases. Acetylene inactivation tests further corroborated the vital role of monooxygenases in dioxane degradation. This is the first report of the prevalence of oxygenase genes that are likely involved in dioxane degradation and suggests their usefulness as biomarkers of dioxane natural attenuation.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, United States
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Reconstitution of active mycobacterial binuclear iron monooxygenase complex in Escherichia coli. Appl Environ Microbiol 2013; 79:6033-9. [PMID: 23892738 DOI: 10.1128/aem.01856-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial binuclear iron monooxygenases play numerous physiological roles in oxidative metabolism. Monooxygenases of this type found in actinomycetes also catalyze various useful reactions and have attracted much attention as oxidation biocatalysts. However, difficulties in expressing these multicomponent monooxygenases in heterologous hosts, particularly in Escherichia coli, have hampered the development of engineered oxidation biocatalysts. Here, we describe a strategy to functionally express the mycobacterial binuclear iron monooxygenase MimABCD in Escherichia coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the mimABCD gene expression in E. coli revealed that the oxygenase components MimA and MimC were insoluble. Furthermore, although the reductase MimB was expressed at a low level in the soluble fraction of E. coli cells, a band corresponding to the coupling protein MimD was not evident. This situation rendered the transformed E. coli cells inactive. We found that the following factors are important for functional expression of MimABCD in E. coli: coexpression of the specific chaperonin MimG, which caused MimA and MimC to be soluble in E. coli cells, and the optimization of the mimD nucleotide sequence, which led to efficient expression of this gene product. These two remedies enabled this multicomponent monooxygenase to be actively expressed in E. coli. The strategy described here should be generally applicable to the E. coli expression of other actinomycetous binuclear iron monooxygenases and related enzymes and will accelerate the development of engineered oxidation biocatalysts for industrial processes.
Collapse
|
23
|
Chiari L, Anderson E, Tattersall W, Machacek JR, Palihawadana P, Makochekanwa C, Sullivan JP, García G, Blanco F, McEachran RP, Brunger MJ, Buckman SJ. Total, elastic, and inelastic cross sections for positron and electron collisions with tetrahydrofuran. J Chem Phys 2013; 138:074301. [PMID: 23445003 DOI: 10.1063/1.4789584] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Luca Chiari
- ARC Centre for Antimatter-Matter Studies, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Furuya T, Hayashi M, Semba H, Kino K. The mycobacterial binuclear iron monooxygenases require a specific chaperonin-like protein for functional expression in a heterologous host. FEBS J 2013; 280:817-26. [PMID: 23171424 DOI: 10.1111/febs.12070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/06/2012] [Accepted: 11/14/2012] [Indexed: 11/30/2022]
Abstract
The mimABCD gene clusters in Mycobacterium smegmatis strain mc(2) 155 and Mycobacterium goodii strain 12523 encode binuclear iron monooxygenases that oxidize propane and phenol. In this study, we attempted to express each mimABCD gene cluster in a heterologous host. The actinomycetous strain Rhodococcus opacus B-4, which is phylogenetically close to Mycobacterium, was selected as the host. Each mimABCD gene cluster was cloned into the Rhodococcus-Escherichia coli shuttle vector, pTip-QC2, and then introduced into R. opacus cells. Although whole-cell assays were performed with phenol as a substrate, the transformed R. opacus cells did not oxidize this substrate. SDS/PAGE analysis revealed that the oxygenase large subunit MimA was expressed in the insoluble fraction of R. opacus cells. We found that a gene designated mimG, which lies downstream of mimABCD, exhibits similarity in the amino acid sequence of its product with the products of genes encoding the chaperonin GroEL. When the mimG gene was cloned and coexpressed with each mimABCD gene cluster in R. opacus strain B-4, this host successfully acquired oxidation activity towards phenol. SDS/PAGE and western blotting analyses demonstrated that MimA was clearly soluble when in the presence of MimG. These results indicated that MimG played essential roles in the productive folding of MimA, and that the resulting soluble MimA protein led to the active expression of MimABCD.
Collapse
Affiliation(s)
- Toshiki Furuya
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | | | | | | |
Collapse
|
25
|
Masuda H, McClay K, Steffan RJ, Zylstra GJ. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478. J Mol Microbiol Biotechnol 2012; 22:312-6. [PMID: 23147387 DOI: 10.1159/000343817] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
1,4-Dioxane is an important groundwater contaminant. Pseudonocardia sp. strain ENV478 degrades 1,4-dioxane via cometabolism after the growth on tetrahydrofuran (THF) and other carbon sources. Here, we have identified a THF monooxygenase (thm) in ENV478. The thm genes are transcribed constitutively and are induced to higher levels by THF. Decreased translation of the thmB gene encoding one of the monooxygenase subunits by antisense RNA resulted in the loss of its ability to degrade THF and 1,4-dioxane. This is the first study to link thm genes to THF degradation, as well as the cometabolic oxidation of 1,4-dioxane.
Collapse
Affiliation(s)
- Hisako Masuda
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08902-8520, USA
| | | | | | | |
Collapse
|
26
|
Tajima T, Hayashida N, Matsumura R, Omura A, Nakashimada Y, Kato J. Isolation and characterization of tetrahydrofuran-degrading Rhodococcus aetherivorans strain M8. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Hyman M. Biodegradation of gasoline ether oxygenates. Curr Opin Biotechnol 2012; 24:443-50. [PMID: 23116604 DOI: 10.1016/j.copbio.2012.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 09/17/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments.
Collapse
Affiliation(s)
- Michael Hyman
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
28
|
Chemotaxis to furan compounds by furan-degrading Pseudomonas strains. Appl Environ Microbiol 2012; 78:6365-8. [PMID: 22729534 DOI: 10.1128/aem.01104-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two Pseudomonas strains known to utilize furan derivatives were shown to respond chemotactically to furfural, 5-hydroxymethylfurfural, furfuryl alcohol, and 2-furoic acid. In addition, a LysR-family regulatory protein known to regulate furan metabolic genes was found to be involved in regulating the chemotactic response.
Collapse
|
29
|
Rosell M, Gonzalez-Olmos R, Rohwerder T, Rusevova K, Georgi A, Kopinke FD, Richnow HH. Critical evaluation of the 2D-CSIA scheme for distinguishing fuel oxygenate degradation reaction mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4757-4766. [PMID: 22455373 DOI: 10.1021/es2036543] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Although the uniform initial hydroxylation of methyl tert-butyl ether (MTBE) and other oxygenates during aerobic biodegradation has already been proven by molecular tools, variations in carbon and hydrogen enrichment factors (ε(C) and ε(H)) have still been associated with different reaction mechanisms (McKelvie et al. Environ. Sci. Technol. 2009, 43, 2793-2799). Here, we present new laboratory-derived ε(C) and ε(H) data on the initial degradation mechanisms of MTBE, ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by chemical oxidation (permanganate, Fenton reagents), acid hydrolysis, and aerobic bacteria cultures (species of Aquincola, Methylibium, Gordonia, Mycobacterium, Pseudomonas, and Rhodococcus). Plotting of Δδ(2)H/ Δδ(13)C data from chemical oxidation and hydrolysis of ethers resulted in slopes (Λ values) of 22 ± 4 and between 6 and 12, respectively. With A. tertiaricarbonis L108, R. zopfii IFP 2005, and Gordonia sp. IFP 2009, ε(C) was low (<|-1|‰) and ε(H) was insignificant. Fractionation obtained with P. putida GPo1 was similar to acid hydrolysis and M. austroafricanum JOB5 and R. ruber DSM 7511 displayed Λ values previously only ascribed to anaerobic attack. The fractionation patterns rather correlate with the employment of different P450, AlkB, and other monooxygenases, likely catalyzing ether hydroxylation via different transition states. Our data questions the value of 2D-CSIA for a simple distinguishing of oxygenate biotransformation mechanisms, therefore caution and complementary tools are needed for proper interpretation of groundwater plumes at field sites.
Collapse
Affiliation(s)
- Mònica Rosell
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
30
|
Glyoxylate metabolism is a key feature of the metabolic degradation of 1,4-dioxane by Pseudonocardia dioxanivorans strain CB1190. Appl Environ Microbiol 2012; 78:3298-308. [PMID: 22327578 DOI: 10.1128/aem.00067-12] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The groundwater contaminant 1,4-dioxane (dioxane) is transformed by several monooxygenase-expressing microorganisms, but only a few of these, including Pseudonocardia dioxanivorans strain CB1190, can metabolize the compound as a sole carbon and energy source. However, nothing is yet known about the genetic basis of dioxane metabolism. In this study, we used a microarray to study differential expression of genes in strain CB1190 grown on dioxane, glycolate (a previously identified intermediate of dioxane degradation), or pyruvate. Of eight multicomponent monooxygenase gene clusters carried by the strain CB1190 genome, only the monooxygenase gene cluster located on plasmid pPSED02 was upregulated with dioxane relative to pyruvate. Plasmid-borne genes for putative aldehyde dehydrogenases, an aldehyde reductase, and an alcohol oxidoreductase were also induced during growth with dioxane. With both dioxane and glycolate, a chromosomal gene cluster encoding a putative glycolate oxidase was upregulated, as were chromosomal genes related to glyoxylate metabolism through the glyoxylate carboligase pathway. Glyoxylate carboligase activity in cell extracts from cells pregrown with dioxane and in Rhodococcus jostii strain RHA1 cells expressing the putative strain CB1190 glyoxylate carboligase gene further demonstrated the role of glyoxylate metabolism in the degradation of dioxane. Finally, we used (13)C-labeled dioxane amino acid isotopomer analysis to provide additional evidence that metabolites of dioxane enter central metabolism as three-carbon compounds, likely as phosphoglycerate. The routing of dioxane metabolites via the glyoxylate carboligase pathway helps to explain how dioxane is metabolized as a sole carbon and energy source for strain CB1190.
Collapse
|
31
|
Yi T, Lee EH, Ahn YG, Hwang GS, Cho KS. Novel biodegradation pathways of cyclohexane by Rhodococcus sp. EC1. JOURNAL OF HAZARDOUS MATERIALS 2011; 191:393-396. [PMID: 21571424 DOI: 10.1016/j.jhazmat.2011.04.080] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 04/18/2011] [Indexed: 05/30/2023]
Abstract
The metabolism of cyclohexanes by Rodococcus sp. EC1 was investigated using a sequential tracking method of degradation intermediate. Evidence for the formation of cyclohexanol, cyclohexaone, 2-cyclohexen-1-one, and phenol was presented. EC1 metabolized cyclohexane to phenol by aromatization of 2-cyclohexen-1-one, and furthermore gamma-butyrolactone as an intermediate of 2-cyclohexen-1-one was formed. Aromatization by EC1 was confirmed using tetrahydrofuran. Tetrahydrofuran was metabolized through aromatization reaction, involving furan and 2,3-dihydrofuran as key intermediates. EC1 can degrade cyclohexane and tetrahydrofuran in aromatization via desaturation.
Collapse
Affiliation(s)
- Taewoo Yi
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
32
|
Genome sequence of the 1,4-dioxane-degrading Pseudonocardia dioxanivorans strain CB1190. J Bacteriol 2011; 193:4549-50. [PMID: 21725009 DOI: 10.1128/jb.00415-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudonocardia dioxanivorans CB1190 is the first bacterium reported to be capable of growth on the environmental contaminant 1,4-dioxane and the first member of the genus Pseudonocardia for which there is an annotated genome sequence. Preliminary analysis of the genome (chromosome and three plasmids) indicates that strain CB1190 possesses several multicomponent monooxygenases that could be involved in the aerobic degradation of 1,4-dioxane and other environmental contaminants.
Collapse
|
33
|
Sakakibara F, Takagi K, Kataoka R, Kiyota H, Sato Y, Okada S. Isolation and identification of dieldrin-degrading Pseudonocardia sp. strain KSF27 using a soil-charcoal perfusion method with aldrin trans-diol as a structural analog of dieldrin. Biochem Biophys Res Commun 2011; 411:76-81. [PMID: 21708128 DOI: 10.1016/j.bbrc.2011.06.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 06/13/2011] [Indexed: 10/18/2022]
Abstract
We isolated a novel aerobic dieldrin-degrading bacterium from an enrichment culture in a soil-charcoal perfusion system. Enrichment culture using a soil-charcoal perfusion system was an effective way to obtain microorganisms that degrade recalcitrant compounds. The soil-charcoal perfusion was performed using aldrin trans-diol, which was a metabolite of dieldrin. Aldrin trans-diol had higher bioavailability (2.5 mg/l) than dieldrin (0.1-0.25 mg/l), therefore it is possible for microorganisms to utilize it as a substrate in soil. After 100 days of circulation and three exchanges of the medium, the enriched charcoal was harvested and a bacterium isolated. The isolate was designated as strain KSF27 and was found to be closely related to Pseudonocardia spp. as determined by 16S rRNA sequencing analysis. Strain KSF27 degraded aldrin trans-diol by 0.05 μmol/l from an initial concentration of 25.5 μmol/l. The metabolite of aldrin trans-diol was detected by HPLC/MS and determined to be aldrindicarboxylic acid based on retention time and the MS fragment. Moreover, strain KSF27 degraded dieldrin from 14.06 μmol/l to 2.01 μmol/l over a 10-day incubation at 30°C. This strain degraded dieldrin and other persistent organochlorine pesticides, such as α-endosulfan, β-endosulfan, endosulfan sulfate, heptachlor, heptachlor epoxide and chlordecone.
Collapse
Affiliation(s)
- Futa Sakakibara
- Department of Applied Biology and Chemistry, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Zhou YY, Chen DZ, Zhu RY, Chen JM. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. BIORESOURCE TECHNOLOGY 2011; 102:6644-6649. [PMID: 21511464 DOI: 10.1016/j.biortech.2011.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/22/2011] [Accepted: 03/23/2011] [Indexed: 05/30/2023]
Abstract
The efficient tetrahydrofuran (THF)-degrading bacterium, Pseudomonas oleovorans DT4 was used to investigate the substrate interactions during the aerobic biotransformation of THF and BTEX mixtures. Benzene and toluene could be utilized as growth substrates by DT4, whereas cometabolism of m-xylene, p-xylene and ethylbenzene occurred with THF. In binary mixtures, THF degradation was delayed by xylene, ethylbenzene, toluene and benzene in descending order of inhibitory effects. Conversely, benzene (or toluene) degradation was greatly enhanced by THF leading to a higher degradation rate of 39.68 mg/(h g dry weight) and a shorter complete degradation time about 21 h, possibly because THF acted as an "energy generator". Additionally, the induction experiments suggested that BTEX and THF degradation was initiated by independent and inducible enzymes. The transient intermediate hydroquinone was detected in benzene biodegradation with THF while catechol in the process without THF, suggesting that P. oleovorans DT4 possessed two distinguished benzene pathways.
Collapse
Affiliation(s)
- Yu-Yang Zhou
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | | | | | | |
Collapse
|
35
|
Identification of the monooxygenase gene clusters responsible for the regioselective oxidation of phenol to hydroquinone in mycobacteria. Appl Environ Microbiol 2010; 77:1214-20. [PMID: 21183637 DOI: 10.1128/aem.02316-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium goodii strain 12523 is an actinomycete that is able to oxidize phenol regioselectively at the para position to produce hydroquinone. In this study, we investigated the genes responsible for this unique regioselective oxidation. On the basis of the fact that the oxidation activity of M. goodii strain 12523 toward phenol is induced in the presence of acetone, we first identified acetone-induced proteins in this microorganism by two-dimensional electrophoretic analysis. The N-terminal amino acid sequence of one of these acetone-induced proteins shares 100% identity with that of the protein encoded by the open reading frame Msmeg_1971 in Mycobacterium smegmatis strain mc(2)155, whose genome sequence has been determined. Since Msmeg_1971, Msmeg_1972, Msmeg_1973, and Msmeg_1974 constitute a putative binuclear iron monooxygenase gene cluster, we cloned this gene cluster of M. smegmatis strain mc(2)155 and its homologous gene cluster found in M. goodii strain 12523. Sequence analysis of these binuclear iron monooxygenase gene clusters revealed the presence of four genes designated mimABCD, which encode an oxygenase large subunit, a reductase, an oxygenase small subunit, and a coupling protein, respectively. When the mimA gene (Msmeg_1971) of M. smegmatis strain mc(2)155, which was also found to be able to oxidize phenol to hydroquinone, was deleted, this mutant lost the oxidation ability. This ability was restored by introduction of the mimA gene of M. smegmatis strain mc(2)155 or of M. goodii strain 12523 into this mutant. Interestingly, we found that these gene clusters also play essential roles in propane and acetone metabolism in these mycobacteria.
Collapse
|
36
|
Oppenheimer M, Pierce BS, Crawford JA, Ray K, Helm RF, Sobrado P. Recombinant expression, purification, and characterization of ThmD, the oxidoreductase component of tetrahydrofuran monooxygenase. Arch Biochem Biophys 2010; 496:123-31. [PMID: 20159007 DOI: 10.1016/j.abb.2010.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 11/29/2022]
Abstract
Tetrahydrofuran monooxygenase (Thm) catalyzes the NADH-and oxygen-dependent hydroxylation of tetrahydrofuran to 2-hydroxytetrahydrofuran. Thm is composed of a hydroxylase enzyme, a regulatory subunit, and an oxidoreductase named ThmD. ThmD was expressed in Escherichia coli as a fusion to maltose-binding protein (MBP) and isolated to homogeneity after removal of the MBP. Purified ThmD contains covalently bound FAD, [2Fe-2S] center, and was shown to use ferricyanide, cytochrome c, 2,6-dichloroindophenol, and to a lesser extent, oxygen as surrogate electron acceptors. ThmD displays 160-fold preference for NADH over NADPH and functions as a monomer. The flavin-binding domain of ThmD (ThmD-FD) was purified and characterized. ThmD-FD displayed similar activity as the full-length ThmD and showed a unique flavin spectrum with a major peak at 463nm and a small peak at 396 nm. Computational modeling and mutagenesis analyses suggest a novel three-dimensional fold or covalent flavin attachment in ThmD.
Collapse
|
37
|
Leak DJ, Sheldon RA, Woodley JM, Adlercreutz P. Biocatalysts for selective introduction of oxygen. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420802393519] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Metabolism and cometabolism of cyclic ethers by a filamentous fungus, a Graphium sp. Appl Environ Microbiol 2009; 75:5514-22. [PMID: 19581469 DOI: 10.1128/aem.00078-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous fungus Graphium sp. (ATCC 58400) grows on gaseous n-alkanes and diethyl ether. n-Alkane-grown mycelia of this strain also cometabolically oxidize the gasoline oxygenate methyl tert-butyl ether (MTBE). In this study, we characterized the ability of this fungus to metabolize and cometabolize a range of cyclic ethers, including tetrahydrofuran (THF) and 1,4-dioxane (14D). This strain grew on THF and other cyclic ethers, including tetrahydropyran and hexamethylene oxide. However, more vigorous growth was consistently observed on the lactones and terminal diols potentially derived from these ethers. Unlike the case in all previous studies of microbial THF oxidation, a metabolite, gamma-butyrolactone, was observed during growth of this fungus on THF. Growth on THF was inhibited by the same n-alkenes and n-alkynes that inhibit growth of this fungus on n-alkanes, while growth on gamma-butyrolactone or succinate was unaffected by these inhibitors. Propane and THF also behaved as mutually competitive substrates, and propane-grown mycelia immediately oxidized THF, without a lag phase. Mycelia grown on propane or THF exhibited comparable high levels of hemiacetal-oxidizing activity that generated methyl formate from mixtures of formaldehyde and methanol. Collectively, these observations suggest that THF and n-alkanes may initially be oxidized by the same monooxygenase and that further transformation of THF-derived metabolites involves the activity of one or more alcohol dehydrogenases. Both propane- and THF-grown mycelia also slowly cometabolically oxidized 14D, although unlike THF oxidation, this reaction was not sustainable. Specific rates of THF, 14D, and MTBE degradation were very similar in THF- and propane-grown mycelia.
Collapse
|
39
|
McKelvie JR, Hyman MR, Elsner M, Smith C, Aslett DM, Lacrampe-Couloume G, Lollar BS. Isotopic fractionation of methyl tert-butyl ether suggests different initial reaction mechanisms during aerobic biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:2793-2799. [PMID: 19475952 DOI: 10.1021/es803307y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Carbon isotopic enrichment factors (epsilonC) measured during cometabolic biodegradation of methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME) by Pseudonocardia tetrahydrofuranoxydans strain K1 were -2.3 +/- 0.2 per thousand, -1.7 +/- 0.2 per thousand, and -1.7 +/- 0.3 per thousand, respectively. The measured carbon apparent kinetic isotope effect was 1.01 for all compounds, consistent with the expected kinetic isotope effects for both oxidation of the methoxy (or ethoxy) group and enzymatic SN1 biodegradation mechanisms. Significantly, delta13C measurements of the tert-butyl alcohol and tert-amyl alcohol products indicated that the tert-butyl and tert-amyl groups do not participate in the reaction and confirmed that ether biodegradation by strain K1 involves oxidation of the methoxy (or ethoxy) group. Measured hydrogen isotopic enrichment factors (epsilonH) were -100 +/- 10 per thousand, -73 +/- 7 per thousand, and -72 +/- 20 per thousand for MTBE, ETBE, and TAME respectively. Previous results reported for aerobic biodegradation of MTBE by Methylibium petroleiphilum PM1 and Methylibium R8 showed smaller epsilonH values (-35 per thousand and -42 per thousand, respectively). Plots of Delta2H/Delta13C show different slopes for strain K1 compared with strains PM1 and R8, suggesting that different mechanisms are utilized by K1 and PM1/R8 during aerobic MTBE biodegradation.
Collapse
|
40
|
Kim YM, Jeon JR, Murugesan K, Kim EJ, Chang YS. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06. Biodegradation 2008; 20:511-9. [DOI: 10.1007/s10532-008-9240-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 12/04/2008] [Indexed: 11/29/2022]
|
41
|
Kim YH, Cha CJ, Engesser KH, Kim SJ. Degradation of various alkyl ethers by alkyl ether-degrading Actinobacteria isolated from activated sludge of a mixed wastewater treatment. CHEMOSPHERE 2008; 73:1442-1447. [PMID: 18783815 DOI: 10.1016/j.chemosphere.2008.07.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 07/27/2008] [Accepted: 07/28/2008] [Indexed: 05/26/2023]
Abstract
Various substrate specificity groups of alkyl ether (AE)-degrading Actinobacteria coexisted in activated sewage sludge of a mixed wastewater treatment. There were substrate niche overlaps including diethyl ether between linear AE- and cyclic AE-degrading strains and phenetole between monoalkoxybenzene- and linear AE-degrading strains. Representatives of each group showed different substrate specificities and degradation pathways for the preferred substrates. Determining the rates of initial reactions and the initial metabolite(s) from whole cell biotransformation helped us to get information about the degradation pathways. Rhodococcus sp. strain DEE5311 and Rhodococcus rhodochrous strain 117 both were able to degrade anisole and phenetole through aromatic 2-monooxygenation to form 2-alkoxyphenols. In contrast, diethyl ether-oxidizing strain DEE5311 capable of degrading a broad range of linear AE, dibenzyl ether and monoalkoxybenzenes initially transformed anisole and phenetole to phenol via direct O-dealkylation. Compared to this, cyclic AE-degrading Rhodococcus sp. strain THF100 preferred tetrahydrofuran (265 ± 35 nmol min(-1)mg(-1) protein) to diethyl ether (<30), but it cannot oxidize bulkier AE than diethyl ether. Otherwise, 1,4-diethoxybenzene-degrading Rhodococcus sp. strain DEOB100 and Gordonia sp. strain DEOB200 transformed 1,3-/1,4-dialkoxybenzenes to 3-/4-alkoxyphenols by similar manners in the order of rates (nmol min(-1) mg(-1) protein): 1,4-diethoxybenzene (11.1 vs. 3.9)>1,4-dimethoxybenzene (1.6 vs. 2.6)>1,3-dimethoxybenzene (0.6 vs. 0.6). This study suggests that the AE-degrading Actinobacteria can orchestrate various substrate specificity responses to the degradation of various categories of AE pollutants in activated sludge communities.
Collapse
Affiliation(s)
- Yong-Hak Kim
- School of Biological Sciences, Seoul National University, San 56-1 Shinrim, Kwanak, Seoul 151-747, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Nichols NN, Mertens JA. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism. FEMS Microbiol Lett 2008; 284:52-7. [PMID: 18492059 DOI: 10.1111/j.1574-6968.2008.01196.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid (FA) and coenzyme A intermediates. Two P. putida transposon mutants were isolated that had impaired growth on furfural and FA, and DNA flanking the transposon insertion site was cloned from both mutants. The transposons disrupted psfB, a LysR-family regulatory gene in mutant PSF2 and psfF, a GcvR-type regulatory gene in PSF9. Disruption of two genes adjacent to psfB demonstrated that both are important for growth on FA, and ORFs in the proximity of psfB and psfF were transcriptionally activated during growth of P. putida on FA. Transcript levels increased in response to FA by 10-fold (a putative permease gene) to >1000-fold (a putative decarboxylase gene). The LysR-family gene appears to act positively, and the GcvR-family gene negatively, in regulating expression of neighboring genes in response to FA.
Collapse
Affiliation(s)
- Nancy N Nichols
- Fermentation Biotechnology Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, IL 61604, USA.
| | | |
Collapse
|
43
|
Mahendra S, Petzold CJ, Baidoo EE, Keasling JD, Alvarez-Cohen L. Identification of the intermediates of in vivo oxidation of 1 ,4-dioxane by monooxygenase-containing bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:7330-7336. [PMID: 18044507 DOI: 10.1021/es0705745] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
1,4-dioxane is a probable human carcinogen and an emerging water contaminant. Monooxygenase-expressing bacteria have been shown to degrade dioxane via growth-supporting as well as cometabolic mechanisms. In this study, the intermediates of dioxane degradation by monooxygenase-expressing bacteria were determined by triple quadrupole-mass spectrometry and Fourier transform ion cyclotron resonance-mass spectrometry. The major intermediates were identified as 2-hydroxyethoxyacetic acid (HEAA), ethylene glycol, glycolate, and oxalate. Studies with uniformly labeled 14C dioxane showed that over 50% of the dioxane was mineralized to CO2 by CB1190, while 5% became biomass-associated after 48 h. Volatile organic acids and non-volatiles, respectively, accounted for 20 and 11% of the radiolabeled carbon. Although strains cometabolizing dioxane exhibited limited transformation capacities, nearly half of the initial dioxane was recovered as CO2. On the basis of these analytical results, we propose a pathway for dioxane oxidation by monooxygenase-expressing cells in which dioxane is first converted to 2-hydroxy-1,4-dioxane, which is spontaneously oxidized to HEAA. During a second monooxygenation step, HEAA is further hydroxylated, resulting in a mixture of dihydroxyethoxyacetic acids with a hydroxyl group at the ortho or para position. After cleavage of the second ether bond, small organic molecules such as ethylene glycol, glycolate, glyoxalate, and oxalate are progressively formed, which are then mineralized to CO2 via common cellular metabolic pathways. Bioremediation of dioxane via this pathway is not expected to cause an accumulation of toxic compounds in the environment.
Collapse
Affiliation(s)
- Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
44
|
McClay K, Schaefer CE, Vainberg S, Steffan RJ. Biodegradation of bis(2-chloroethyl) ether by Xanthobacter sp. strain ENV481. Appl Environ Microbiol 2007; 73:6870-5. [PMID: 17873075 PMCID: PMC2074973 DOI: 10.1128/aem.01379-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of bis(2-chloroethyl) ether (BCEE) was observed to occur in two bacterial strains. Strain ENV481, a Xanthobacter sp. strain, was isolated by enrichment culturing of samples from a Superfund site located in the northeastern United States. The strain was able to grow on BCEE or 2-chloroethylethyl ether as the sole source of carbon and energy. BCEE degradation in strain ENV481 was facilitated by sequential dehalogenation reactions resulting in the formation of 2-(2-chloroethoxy)ethanol and diethylene glycol (DEG), respectively. 2-Hydroxyethoxyacetic acid was detected as a product of DEG catabolism by the strain. Degradation of BCEE by strain ENV481 was independent of oxygen, and the strain was not able to grow on a mixture of benzene, ethylbenzene, toluene, and xylenes, other prevalent contaminants at the site. Another bacterial isolate, Pseudonocardia sp. strain ENV478 (S. Vainberg et al., Appl. Environ. Microbiol. 72:5218-5224, 2006), degraded BCEE after growth on tetrahydrofuran or propane but was not able to grow on BCEE as a sole carbon source. BCEE degradation by strain ENV478 appeared to be facilitated by a monooxygenase-mediated O-dealkylation mechanism, and it resulted in the accumulation of 2-chloroacetic acid that was not readily degraded by the strain.
Collapse
Affiliation(s)
- Kevin McClay
- Shaw Environmental, Inc., Lawrenceville, NJ 08648, USA
| | | | | | | |
Collapse
|
45
|
Kim YH, Engesser KH, Kim SJ. Physiological, numerical and molecular characterization of alkyl ether-utilizing rhodococci. Environ Microbiol 2007; 9:1497-510. [PMID: 17504487 DOI: 10.1111/j.1462-2920.2007.01269.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Twenty-seven Gram-positive strains were characterized physiologically and numerically and classified them into four groups according to their specific activities for utilization of linear alkyl ethers (AEs), cyclic AEs, monoalkoxybenzenes and 1,4-diethoxybenzene. The comparative analysis of the 16S ribosomal RNA gene and 16S-23S intergenic spacer region showed that they belonged to the genera Rhodococcus and Gordonia. Alkyl ether-utilizing rhodococci appeared to involve various and diverse cytochromes P450 of the families CYP116 (25 positive strains from 27), CYP153 (5/27), CYP249 (1/27) and a new family P450RR1 (27/27). The presence of P450RR1 was strongly related to the specific activity for utilization of 2-methoxyphenol and 2-ethoxyphenol. In addition, 26 of 27 strains contained multiple alkB genes coding for probable non-haem iron containing alkane monooxygenases and hydroxylases. Similar DNA fragments coding for a tetrahydrofuran monooxygenase A subunit (ThmA) were found in all cyclic AE-utilizing strains and nearly identical DNA fragments coding for likely orthologues of a propane monooxygenase A subunit (PrmA) in all linear AE-utilizing strains. The substrate availability in the degradation of aryl AEs, cyclic AEs and linear AEs agreed with the molecular probing of the respective genes encoding cytochrome P450RR1, ThmA and PrmA.
Collapse
Affiliation(s)
- Yong-Hak Kim
- School of Biological Sciences, Seoul National University, San 56-1 Shinrim, Kwanak, Seoul 151-747, Korea.
| | | | | |
Collapse
|
46
|
Kotani T, Kawashima Y, Yurimoto H, Kato N, Sakai Y. Gene structure and regulation of alkane monooxygenases in propane-utilizing Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7. J Biosci Bioeng 2006; 102:184-92. [PMID: 17046531 DOI: 10.1263/jbb.102.184] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 05/30/2006] [Indexed: 11/17/2022]
Abstract
Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 were isolated from soil samples as propane-utilizing bacteria and were found to be able to utilize various gaseous and liquid n-alkanes as carbon and energy sources. One gene cluster, M-prmABCD, and two gene clusters, P-prm1ABCD and P-prm2ABCD, were cloned from the genomes of Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7, respectively. These gene clusters are homologous to the gene cluster encoding the multicomponent propane monooxygenase (prmABCD) of Gordonia sp. TY-5. The expression of prm gene clusters in Mycobacterium sp. TY-6 and Pseudonocardia sp. TY-7 was shown to be induced by gaseous n-alkanes (C2-C4) except methane, suggesting that the products of these genes are involved in gaseous n-alkane oxidation. Homologous genes for an alkane hydroxylase system (alk system) involved in liquid n-alkane oxidation were also cloned from the genomic DNA of Mycobacterium sp. TY-6. The alk gene cluster was transcribed in response to liquid n-alkanes (C11-C15). These results indicate that Mycobacterium sp. TY-6 has two distinct gene clusters for multicomponent monooxygenases involved in alkane oxidation. Whole-cell reactions revealed that propane is oxidized to 1-propanol through terminal oxidation in Mycobacterium sp. TY-6 and that propane is oxidized to 1-propanol and 2-propanol through both terminal and subterminal oxidations in Pseudonocardia sp. TY-7. This study reveals the diversity of propane metabolism present in microorganisms.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Kyoto, Japan
| | | | | | | | | |
Collapse
|
47
|
Kämpfer P, Kohlweyer U, Thiemer B, Andreesen JR. Pseudonocardia tetrahydrofuranoxydans sp. nov. Int J Syst Evol Microbiol 2006; 56:1535-1538. [PMID: 16825626 DOI: 10.1099/ijs.0.64199-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-positive, rod-shaped, non-endospore-forming but mycelium-forming actinobacterium (strain K1(T)) was isolated from an enrichment culture containing tetrahydrofuran (THF) as the sole source of carbon. On the basis of its G+C content (71.3 mol%) and of 16S rRNA gene sequence similarity studies, strain K1(T) was shown to belong to the family Pseudonocardiaceae, most closely related to Pseudonocardia hydrocarbonoxydans (99.3 %), P. benzenivorans (98.8 %) and P. sulfidoxydans (98.3 %). The 16S rRNA gene sequence similarity to other Pseudonocardia species was less than 97 %. Chemotaxonomic data [major menaquinone MK-8(H(4)); major fatty acids C(16 : 0) iso, C(15 : 0) iso and C(17 : 1)omega6c] supported the affiliation of strain K1(T) to the genus Pseudonocardia. The results of DNA-DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of strain K1(T) from the three species P. benzenivorans, P. sulfidoxydans and P. hydrocarbonoxydans, although all four organisms utilized THF. Strain K1(T) represents a novel species, for which the name Pseudonocardia tetrahydrofuranoxydans sp. nov. is proposed, with the type strain K1(T) (=DSM 44239(T)=CIP 109050(T)).
Collapse
MESH Headings
- Actinomycetales/classification
- Actinomycetales/cytology
- Actinomycetales/isolation & purification
- Actinomycetales/physiology
- Bacterial Typing Techniques
- Base Composition
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fatty Acids/analysis
- Fatty Acids/chemistry
- Furans/metabolism
- Genes, rRNA
- Gentian Violet
- Molecular Sequence Data
- Nucleic Acid Hybridization
- Phenazines
- Phylogeny
- Quinones/analysis
- Quinones/chemistry
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Spores, Bacterial
- Water Microbiology
Collapse
Affiliation(s)
- Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | - Ulrike Kohlweyer
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, D-06099 Halle, Germany
| | - Barbara Thiemer
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, D-06099 Halle, Germany
| | - Jan R Andreesen
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, D-06099 Halle, Germany
| |
Collapse
|
48
|
Vainberg S, McClay K, Masuda H, Root D, Condee C, Zylstra GJ, Steffan RJ. Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478. Appl Environ Microbiol 2006; 72:5218-24. [PMID: 16885268 PMCID: PMC1538739 DOI: 10.1128/aem.00160-06] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A bacterium designated Pseudonocardia sp. strain ENV478 was isolated by enrichment culturing on tetrahydrofuran (THF) and was screened to determine its ability to degrade a range of ether pollutants. After growth on THF, strain ENV478 degraded THF (63 mg/h/g total suspended solids [TSS]), 1,4-dioxane (21 mg/h/g TSS), 1,3-dioxolane (19 mg/h/g TSS), bis-2-chloroethylether (BCEE) (12 mg/h/g TSS), and methyl tert-butyl ether (MTBE) (9.1 mg/h/g TSS). Although the highest rates of 1,4-dioxane degradation occurred after growth on THF, strain ENV478 also degraded 1,4-dioxane after growth on sucrose, lactate, yeast extract, 2-propanol, and propane, indicating that there was some level of constitutive degradative activity. The BCEE degradation rates were about threefold higher after growth on propane (32 mg/h/g TSS) than after growth on THF, and MTBE degradation resulted in accumulation of tert-butyl alcohol. Degradation of 1,4-dioxane resulted in accumulation of 2-hydroxyethoxyacetic acid (2HEAA). Despite its inability to grow on 1,4-dioxane, strain ENV478 degraded this compound for > 80 days in aquifer microcosms. Our results suggest that the inability of strain ENV478 and possibly other THF-degrading bacteria to grow on 1,4-dioxane is related to their inability to efficiently metabolize the 1,4-dioxane degradation product 2HEAA but that strain ENV478 may nonetheless be useful as a biocatalyst for remediating 1,4-dioxane-contaminated aquifers.
Collapse
|
49
|
Mahendra S, Alvarez-Cohen L. Kinetics of 1,4-dioxane biodegradation by monooxygenase-expressing bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:5435-42. [PMID: 16999122 DOI: 10.1021/es060714v] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
1,4-Dioxane is a probable human carcinogen, and an important emerging water contaminant. In this study, the biodegradation of dioxane by 20 bacterial isolates was evaluated, and 13 were found to be capable of transforming dioxane. Dioxane served as a growth substrate for Pseudonocardia dioxanivorans CB1190 and Pseudonocardia benzenivorans B5, with yields of 0.09 g protein g dioxane(-1) and 0.03 g protein g dioxane(-1), respectively. Cometabolic transformation of dioxane was observed for monooxygenase-expressing strains that were induced with methane, propane, tetrahydrofuran, or toluene including Methylosinus trichosporium OB3b, Mycobacterium vaccae JOB5, Pseudonocardia K1, Pseudomonas mendocina KR1, Ralstonia pickettii PKO1, Burkholderia cepacia G4, and Rhodococcus RR1. Product toxicity resulted in incomplete dioxane degradation for many of the cometabolic reactions. Brief exposure to acetylene, a known monooxygenase inhibitor, prevented oxidation of dioxane in all cases, supporting the hypothesis that monooxygenase enzymes participated in the transformation of dioxane by these strains. Further, Escherichia coli TG1/pBS(Kan) containing recombinant plasmids derived from the toluene-2- and toluene-4-monooxygenases of G4, KR1 and PKO1 were also capable of cometabolic dioxane transformation. Dioxane oxidation rates measured at 50 mg/L ranged from 0.01 to 0.19 mg hr(-1) mg protein(-1) for the metabolic processes, 0.1-0.38 mg hr(-1) mg protein(-1) for cometabolism by the monooxygenase-induced strains, and 0.17-0.60 mg hr(-1) mg protein(-1) for the recombinant strains. Dioxane was not degraded by M. trichosporium OB3b expressing particulate methane monooxygenase, Pseudomonas putida mt-2 expressing a toluene side-chain monooxygenase, and PseudomonasJS150 and Pseudomonas putida F1 expressing toluene-2,3-dioxygenases. This is the first study to definitively show the role of monooxygenases in dioxane degradation using several independent lines of evidence and to describe the kinetics of metabolic and cometabolic dioxane degradation.
Collapse
Affiliation(s)
- Shaily Mahendra
- Department of Civil and Environmental Engineering, 726 Davis Hall, University of California, Berkeley, California 94720-1710, USA.
| | | |
Collapse
|
50
|
Coleman NV, Bui NB, Holmes AJ. Soluble di-iron monooxygenase gene diversity in soils, sediments and ethene enrichments. Environ Microbiol 2006; 8:1228-39. [PMID: 16817931 DOI: 10.1111/j.1462-2920.2006.01015.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble di-iron monooxygenases (SDIMOs) are key enzymes in the bacterial oxidation of hydrocarbons, and have applications in environmental and industrial biotechnology. SDIMOs from pure cultures are unlikely to represent the total diversity of this enzyme family, so we used polymerase chain reaction to survey the diversity of SDIMO alpha subunit genes in environmental samples, ethene enrichments and ethene-degrading bacterial isolates. From 178 cloned amplicons, 98 restriction fragment length polymorphism types were seen, from which 75 representative SDIMO sequences were obtained; 45 from environmental samples, 25 from enrichments and seven from isolates. The sequences were diverse, including genes similar to ethene (etnC), propene (amoC, pmoC), propane (prmA) and butane (bmoX) monooxygenases, in addition to many novel sequences comprising a new SDIMO group (group 6). Environmental samples showed the highest diversity, with strong representation of group 6 SDIMOs and prmA-like genes. Ethene stimulation of samples resulted in increased frequencies of group 4 SDIMOs (etnC-like). Four ethene-utilizing Mycobacterium isolates (NBB1-NBB4) from enrichments all contained etnC; one isolate (NBB4) also contained three additional SDIMO genes (bmoX-like, amoC-like and group 6). The primers, database, clone libraries and strains reported here provide a resource for future bioremediation and biocatalysis studies, with particular relevance for chlorinated alkene and alkane compounds.
Collapse
Affiliation(s)
- Nicholas V Coleman
- School of Molecular and Microbial Biosciences, Building G08, University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|