1
|
Fortney KR, Brothwell JA, Batteiger TA, Duplantier R, Katz BP, Spinola SM. The protein degradation system encoded by hslUV ( ClpYQ) is dispensable for the virulence of Haemophilus ducreyi in human volunteers. Infect Immun 2025; 93:e0057724. [PMID: 40208051 PMCID: PMC12070733 DOI: 10.1128/iai.00577-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Haemophilus ducreyi causes cutaneous ulcers in children who live in yaws-endemic countries and the genital ulcer disease chancroid. In the human host, H. ducreyi resides in an abscess and may need to resist both heat and oxidative stress, which result in aggregation and misfolding of bacterial proteins. In Escherichia coli, the hslUV (clpYQ) operon encodes a proteasome-like complex that degrades misfolded proteins and is upregulated during heat shock. In previous studies, we showed that hslUV transcripts are upregulated in experimental lesions caused by H. ducreyi in human volunteers, suggesting that HslUV may help H. ducreyi adapt to the abscess environment. Here, we constructed an unmarked hslUV operon deletion mutant, 35000HPΔhslUV, in H. ducreyi. Whole-genome sequencing showed that compared to its parent (35000HP), the mutant contained only the deletion of interest. Six volunteers were inoculated at three sites on skin overlying the deltoid on opposite arms with 35000HP and 35000HPΔhslUV. Within 24 h, papules formed at 88.9% (95% CI [69%, 100%]) at both parent and mutant-inoculated sites (P = 1.0). Pustules formed at 44.4% (95% CI [25.6%, 64.3%]) at parent-inoculated sites and 33.3% (95% CI [2.5%, 64.1%]) at mutant-inoculated sites (P = 0.17). Thus, the proteosome-like complex encoded by hslUV was dispensable for H. ducreyi virulence in humans. In the absence of hslUV, H. ducreyi likely utilizes other systems such as the Lon protease, ClpXP, and ClpB/DnaK to combat protein aggregation and misfolding, underscoring the importance of the functional redundancy of such systems in gram-negative pathogens.
Collapse
Affiliation(s)
- Kate R. Fortney
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Julie A. Brothwell
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Teresa A. Batteiger
- Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Rory Duplantier
- Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Barry P. Katz
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Stanley M. Spinola
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
2
|
Zhao N, Wang Y, Liu J, Yang Z, Jian Y, Wang H, Ahmed M, Li M, Bae T, Liu Q. Molybdopterin biosynthesis pathway contributes to the regulation of SaeRS two-component system by ClpP in Staphylococcus aureus. Virulence 2022; 13:727-739. [PMID: 35481455 PMCID: PMC9067530 DOI: 10.1080/21505594.2022.2065961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
In Staphylococcus aureus, the SaeRS two-component system is essential for the bacterium's hemolytic activity and virulence. The Newman strain of S. aureus contains a variant of SaeS sensor kinase, SaeS L18P. Previously, we showed that, in the strain Newman, SaeS L18P is degraded by the membrane-bound protease FtsH. Intriguingly, the knockout mutation of clpP, encoding the cytoplasmic protease ClpP, greatly reduces the expression of SaeS L18P. Here, we report that, in the strain Newman, the positive regulatory role of ClpP on the SaeS L18P expression is due to its destabilizing effect on FtsH and degradation of MoeA, a molybdopterin biosynthesis protein. Although the transcription of ftsH was not affected by ClpP, the expression level of FtsH was increased in the clpP mutant. The destabilizing effect appears to be indirect because ClpXP did not directly degrade FtsH in an in vitro assay. Through transposon mutagenesis, we found out that the moeA gene, encoding the molybdopterin biosynthesis protein A, suppresses the hemolytic activity of S. aureus along with the transcription and expression of SaeS L18P. In a proteolysis assay, ClpXP directly degraded MoeA, demonstrating that MoeA is a substrate of the protease. In a murine bloodstream infection model, the moeA mutant displayed reduced virulence and lower survival compared with the WT strain. Based on these results, we concluded that ClpP positively controls the expression of SaeS L18P in an FtsH and MoeA-dependent manner, and the physiological role of MoeA outweighs its suppressive effect on the SaeRS TCS during infection.
Collapse
Affiliation(s)
- Na Zhao
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Junlan Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyu Yang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mahmoud Ahmed
- Department of Biology, Indiana University Northwest, Gary, IN, USA
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Labana P, Dornan MH, Lafrenière M, Czarny TL, Brown ED, Pezacki JP, Boddy CN. Armeniaspirols inhibit the AAA+ proteases ClpXP and ClpYQ leading to cell division arrest in Gram-positive bacteria. Cell Chem Biol 2021; 28:1703-1715.e11. [PMID: 34293284 DOI: 10.1016/j.chembiol.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 01/16/2023]
Abstract
Multi-drug-resistant bacteria present an urgent threat to modern medicine, creating a desperate need for antibiotics with new modes of action. As natural products remain an unsurpassed source for clinically viable antibiotic compounds, we investigate the mechanism of action of armeniaspirol. The armeniaspirols are a structurally unique class of Gram-positive antibiotic discovered from Streptomyces armeniacus for which resistance cannot be readily obtained. We show that armeniaspirol inhibits the ATP-dependent proteases ClpXP and ClpYQ in vitro and in the model Gram-positive Bacillus subtilis. This inhibition dysregulates the divisome and elongasome supported by an upregulation of key proteins FtsZ, DivIVA, and MreB inducing cell division arrest. The inhibition of ClpXP and ClpYQ to dysregulate cell division represents a unique antibiotic mechanism of action and armeniaspirol is the only known natural product inhibitor of the coveted anti-virulence target ClpP. Thus, armeniaspirol possesses a promising lead scaffold for antibiotic development with unique pharmacology.
Collapse
Affiliation(s)
- Puneet Labana
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Mark H Dornan
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Matthew Lafrenière
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Tomasz L Czarny
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - John P Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
4
|
Adaptation to Adversity: the Intermingling of Stress Tolerance and Pathogenesis in Enterococci. Microbiol Mol Biol Rev 2019; 83:83/3/e00008-19. [PMID: 31315902 DOI: 10.1128/mmbr.00008-19] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enterococcus is a diverse and rugged genus colonizing the gastrointestinal tract of humans and numerous hosts across the animal kingdom. Enterococci are also a leading cause of multidrug-resistant hospital-acquired infections. In each of these settings, enterococci must contend with changing biophysical landscapes and innate immune responses in order to successfully colonize and transit between hosts. Therefore, it appears that the intrinsic durability that evolved to make enterococci optimally competitive in the host gastrointestinal tract also ideally positioned them to persist in hospitals, despite disinfection protocols, and acquire new antibiotic resistances from other microbes. Here, we discuss the molecular mechanisms and regulation employed by enterococci to tolerate diverse stressors and highlight the role of stress tolerance in the biology of this medically relevant genus.
Collapse
|
5
|
The ClpCP Complex Modulates Respiratory Metabolism in Staphylococcus aureus and Is Regulated in a SrrAB-Dependent Manner. J Bacteriol 2019; 201:JB.00188-19. [PMID: 31109995 DOI: 10.1128/jb.00188-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/17/2019] [Indexed: 01/13/2023] Open
Abstract
The staphylococcal respiratory regulator (SrrAB) modulates energy metabolism in Staphylococcus aureus Studies have suggested that regulated protein catabolism facilitates energy homeostasis. Regulated proteolysis in S. aureus is achieved through protein complexes composed of a peptidase (ClpQ or ClpP) in association with an AAA+ family ATPase (typically, ClpC or ClpX). In the present report, we tested the hypothesis that SrrAB regulates a Clp complex to facilitate energy homeostasis in S. aureus Strains deficient in one or more Clp complexes were attenuated for growth in the presence of puromycin, which causes enrichment of misfolded proteins. A ΔsrrAB strain had increased sensitivity to puromycin. Epistasis experiments suggested that the puromycin sensitivity phenotype of the ΔsrrAB strain was a result of decreased ClpC activity. Consistent with this, transcriptional activity of clpC was decreased in the ΔsrrAB mutant, and overexpression of clpC suppressed the puromycin sensitivity of the ΔsrrAB strain. We also found that ClpC positively influenced respiration and that it did so upon association with ClpP. In contrast, ClpC limited fermentative growth, while ClpP was required for optimal fermentative growth. Metabolomics studies demonstrated that intracellular metabolic profiles of the ΔclpC and ΔsrrAB mutants were distinct from those of the wild-type strain, supporting the notion that both ClpC and SrrAB affect central metabolism. We propose a model wherein SrrAB regulates energy homeostasis, in part, via modulation of regulated proteolysis.IMPORTANCE Oxygen is used as a substrate to derive energy by the bacterial pathogen Staphylococcus aureus during infection; however, S. aureus can also grow fermentatively in the absence of oxygen. To successfully cause infection, S. aureus must tailor its metabolism to take advantage of respiratory activity. Different proteins are required for growth in the presence or absence of oxygen; therefore, when cells transition between these conditions, several proteins would be expected to become unnecessary. In this report, we show that regulated proteolysis is used to modulate energy metabolism in S. aureus We report that the ClpCP protein complex is involved in specifically modulating aerobic respiratory growth but is dispensable for fermentative growth.
Collapse
|
6
|
Yu Y, Yan F, He Y, Qin Y, Chen Y, Chai Y, Guo JH. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiology (Reading) 2018; 164:848-862. [DOI: 10.1099/mic.0.000658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yiyang Yu
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Fang Yan
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinghao He
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yuxuan Qin
- Department of Biology, Northeastern University, Boston, MA 02115, USA
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yun Chen
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Jian-hua Guo
- Department of Plant Pathology, Nanjing Agricultural University; Engineering Center of Bioresource Pesticide in Jiangsu Province; Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing 210095, PR China
| |
Collapse
|
7
|
Mashruwala AA, Roberts CA, Bhatt S, May KL, Carroll RK, Shaw LN, Boyd JM. Staphylococcus aureus SufT: an essential iron-sulphur cluster assembly factor in cells experiencing a high-demand for lipoic acid. Mol Microbiol 2016; 102:1099-1119. [PMID: 27671355 PMCID: PMC5161685 DOI: 10.1111/mmi.13539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 01/11/2023]
Abstract
Staphylococcus aureus SufT is composed solely of the domain of unknown function 59 (DUF59) and has a role in the maturation of iron-sulphur (Fe-S) proteins. We report that SufT is essential for S. aureus when growth is heavily reliant upon lipoamide-utilizing enzymes, but dispensable when this reliance is decreased. LipA requires Fe-S clusters for lipoic acid (LA) synthesis and a ΔsufT strain had phenotypes suggestive of decreased LA production and decreased activities of lipoamide-requiring enzymes. Fermentative growth, a null clpC allele, or decreased flux through the TCA cycle diminished the demand for LA and rendered SufT non-essential. Abundance of the Fe-S cluster carrier Nfu was increased in a ΔclpC strain and a null clpC allele was unable to suppress the LA requirement of a ΔsufT Δnfu strain. Over-expression of nfu suppressed the LA requirement of the ΔsufT strain. We propose a model wherein SufT, and by extension the DUF59, is essential for the maturation of holo-LipA in S. aureus cells experiencing a high demand for lipoamide-dependent enzymes. The findings presented suggest that the demand for products of Fe-S enzymes is a factor governing the usage of one Fe-S cluster assembly factor over another in the maturation of apo-proteins.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Christina A. Roberts
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Shiven Bhatt
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Kerrie L. May
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| | - Ronan K. Carroll
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FA 33620
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FA 33620
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901
| |
Collapse
|
8
|
XerC Contributes to Diverse Forms of Staphylococcus aureus Infection via agr-Dependent and agr-Independent Pathways. Infect Immun 2016; 84:1214-1225. [PMID: 26857575 DOI: 10.1128/iai.01462-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
We demonstrate that mutation of xerC, which reportedly encodes a homologue of an Escherichia coli recombinase, limits biofilm formation in the methicillin-resistant Staphylococcus aureus strain LAC and the methicillin-sensitive strain UAMS-1. This was not due to the decreased production of the polysaccharide intracellular adhesin (PIA) in either strain because the amount of PIA was increased in a UAMS-1xerC mutant and undetectable in both LAC and its isogenic xerC mutant. Mutation of xerC also resulted in the increased production of extracellular proteases and nucleases in both LAC and UAMS-1, and limiting the production of either class of enzymes increased biofilm formation in the isogenic xerC mutants. More importantly, the limited capacity to form a biofilm was correlated with increased antibiotic susceptibility in both strains in the context of an established biofilm in vivo. Mutation of xerC also attenuated virulence in a murine bacteremia model, as assessed on the basis of the bacterial loads in internal organs and overall lethality. It also resulted in the decreased accumulation of alpha toxin and the increased accumulation of protein A. These findings suggest that xerC may impact the functional status of agr. This was confirmed by demonstrating the reduced accumulation of RNAIII and AgrA in LAC and UAMS-1xerC mutants. However, this cannot account for the biofilm-deficient phenotype of xerC mutants because mutation of agr did not limit biofilm formation in either strain. These results demonstrate that xerC contributes to biofilm-associated infections and acute bacteremia and that this is likely due to agr-independent and -dependent pathways, respectively.
Collapse
|
9
|
Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. J Bacteriol 2014; 196:4140-51. [PMID: 25225270 DOI: 10.1128/jb.02222-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus responds to changing extracellular environments in part by adjusting its proteome through alterations of transcriptional priorities and selective degradation of the preexisting pool of proteins. In Bacillus subtilis, the proteolytic adaptor protein MecA has been shown to play a role in assisting with the proteolytic degradation of proteins involved in competence and the oxidative stress response. However, the targets of TrfA, the MecA homolog in S. aureus, have not been well characterized. In this work, we investigated how TrfA assists chaperones and proteases to regulate the proteolysis of several classes of proteins in S. aureus. By fusing the last 3 amino acids of the SsrA degradation tag to Venus, a rapidly folding yellow fluorescent protein, we obtained both fluorescence-based and Western blot assay-based evidence that TrfA and ClpCP are the adaptor and protease, respectively, responsible for the degradation of the SsrA-tagged protein in S. aureus. Notably, the impact of TrfA on degradation was most prominent during late log phase and early stationary phase, due in part to a combination of transcriptional regulation and proteolytic degradation of TrfA by ClpCP. We also characterized the temporal transcriptional regulation governing TrfA activity, wherein Spx, a redox-sensitive transcriptional regulator degraded by ClpXP, activates trfA transcription while repressing its own promoter. Finally, the scope of TrfA-mediated proteolysis was expanded by identifying TrfA as the adaptor that works with ClpCP to degrade antitoxins in S. aureus. Together, these results indicate that the adaptor TrfA adds temporal nuance to protein degradation by ClpCP in S. aureus.
Collapse
|
10
|
Clp chaperones and proteases are central in stress survival, virulence and antibiotic resistance of Staphylococcus aureus. Int J Med Microbiol 2013; 304:142-9. [PMID: 24457183 DOI: 10.1016/j.ijmm.2013.11.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intracellular proteolysis carried out by energy-dependent proteases is one of the most conserved biological processes. In all cells proteolysis maintains and shapes the cellular proteome by ridding the cell of damaged proteins and by regulating abundance of functional proteins such as regulatory proteins. The ATP-dependent ClpP protease is highly conserved among eubacteria and in the chloroplasts and mitochondria of eukaryotic cells. In the serious human pathogen, Staphylococcus aureus inactivation of clpP rendered the bacterium avirulent emphasizing the central role of proteolysis in virulence. The contribution of the Clp proteins to virulence is likely to occur at multiple levels. First of all, both Clp ATPases and the Clp protease are central players in stress responses required to cope with the adverse conditions met in the host. The ClpP protease has a dual role herein, as it both eliminates stress-damaged proteins as well as ensures the timely degradation of major stress regulators such as Spx, LexA and CtsR. Additionally, as we will summarize in this review, Clp proteases and Clp chaperones impact on such central processes as virulence gene expression, cell wall metabolism, survival in stationary phase, and cell division. These observations together with recent findings that Clp proteins contribute to adaptation to antibiotics highlights the importance of this interesting proteolytic machinery both for understanding pathogenicity of the organism and for treating staphylococcal infections.
Collapse
|
11
|
Regulation of host hemoglobin binding by the Staphylococcus aureus Clp proteolytic system. J Bacteriol 2013; 195:5041-50. [PMID: 23995637 DOI: 10.1128/jb.00505-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein turnover is a key process for bacterial survival mediated by intracellular proteases. Proteolytic degradation reduces the levels of unfolded and misfolded peptides that accumulate in the cell during stress conditions. Three intracellular proteases, ClpP, HslV, and FtsH, have been identified in the Gram-positive bacterium Staphylococcus aureus, a pathogen responsible for significant morbidity and mortality worldwide. Consistent with their crucial role in protein turnover, ClpP, HslV, and FtsH affect a number of cellular processes, including metabolism, stress responses, and virulence. The ClpP protease is believed to be the principal degradation machinery in S. aureus. This study sought to identify the effect of the Clp protease on the iron-regulated surface determinant (Isd) system, which extracts heme-iron from host hemoglobin during infection and is critical to S. aureus pathogenesis. Inactivation of components of the Clp protease alters abundance of several Isd proteins, including the hemoglobin receptor IsdB. Furthermore, the observed changes in IsdB abundance are the result of transcriptional regulation, since transcription of isdB is decreased by clpP or clpX inactivation. In contrast, inactivation of clpC enhances isdB transcription and protein abundance. Loss of clpP or clpX impairs host hemoglobin binding and utilization and results in severe virulence defects in a systemic mouse model of infection. These findings suggest that the Clp proteolytic system is important for regulating nutrient iron acquisition in S. aureus. The Clp protease and Isd complex are widely conserved in bacteria; therefore, these data reveal a novel Clp-dependent regulation pathway that may be present in other bacterial pathogens.
Collapse
|
12
|
Fuchs S, Zühlke D, Pané-Farré J, Kusch H, Wolf C, Reiß S, Binh LTN, Albrecht D, Riedel K, Hecker M, Engelmann S. Aureolib - a proteome signature library: towards an understanding of staphylococcus aureus pathophysiology. PLoS One 2013; 8:e70669. [PMID: 23967085 PMCID: PMC3742771 DOI: 10.1371/journal.pone.0070669] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Gel-based proteomics is a powerful approach to study the physiology of Staphylococcus aureus under various growth restricting conditions. We analyzed 679 protein spots from a reference 2-dimensional gel of cytosolic proteins of S. aureus COL by mass spectrometry resulting in 521 different proteins. 4,692 time dependent protein synthesis profiles were generated by exposing S. aureus to nine infection-related stress and starvation stimuli (H2O2, diamide, paraquat, NO, fermentation, nitrate respiration, heat shock, puromycin, mupirocin). These expression profiles are stored in an online resource called Aureolib (http://www.aureolib.de). Moreover, information on target genes of 75 regulators and regulatory elements were included in the database. Cross-comparisons of this extensive data collection of protein synthesis profiles using the tools implemented in Aureolib lead to the identification of stress and starvation specific marker proteins. Altogether, 226 protein synthesis profiles showed induction ratios of 2.5-fold or higher under at least one of the tested conditions with 157 protein synthesis profiles specifically induced in response to a single stimulus. The respective proteins might serve as marker proteins for the corresponding stimulus. By contrast, proteins whose synthesis was increased or repressed in response to more than four stimuli are rather exceptional. The only protein that was induced by six stimuli is the universal stress protein SACOL1759. Most strikingly, cluster analyses of synthesis profiles of proteins differentially synthesized under at least one condition revealed only in rare cases a grouping that correlated with known regulon structures. The most prominent examples are the GapR, Rex, and CtsR regulon. In contrast, protein synthesis profiles of proteins belonging to the CodY and σ(B) regulon are widely distributed. In summary, Aureolib is by far the most comprehensive protein expression database for S. aureus and provides an essential tool to decipher more complex adaptation processes in S. aureus during host pathogen interaction.
Collapse
Affiliation(s)
- Stephan Fuchs
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Daniela Zühlke
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Jan Pané-Farré
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Harald Kusch
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Carmen Wolf
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Swantje Reiß
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Le Thi Nguyen Binh
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Dirk Albrecht
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Katharina Riedel
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Susanne Engelmann
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| |
Collapse
|
13
|
Reniere ML, Haley KP, Skaar EP. The flexible loop of Staphylococcus aureus IsdG is required for its degradation in the absence of heme. Biochemistry 2011; 50:6730-7. [PMID: 21728357 DOI: 10.1021/bi200999q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradation of specific native proteins allows bacteria to rapidly adapt to changing environments when the activity of those proteins is no longer required. Although these processes are vital to bacterial survival, relatively little is known regarding how bacterial proteins are recognized and targeted for degradation. Staphylococcus aureus is an important human pathogen that requires iron for growth and pathogenesis. In the vertebrate host, S. aureus fulfills its iron requirement by obtaining heme iron from host hemoproteins via IsdG- and IsdI-mediated heme degradation. IsdG and IsdI are structurally and mechanistically analogous but are differentially regulated by iron and heme availability. Specifically, IsdG is targeted for degradation in the absence of heme. Therefore, we utilized the differential regulation of IsdG and IsdI to investigate the mechanism of regulated proteolysis. In contrast to canonical protease recognition sequences, we show that IsdG is targeted for degradation by internally coded sequences. Specifically, a flexible loop near the heme-binding pocket is required for IsdG degradation in the absence of heme.
Collapse
Affiliation(s)
- Michelle L Reniere
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
14
|
Peters BM, Jabra-Rizk MA, Scheper MA, Leid JG, Costerton JW, Shirtliff ME. Microbial interactions and differential protein expression in Staphylococcus aureus -Candida albicans dual-species biofilms. ACTA ACUST UNITED AC 2010; 59:493-503. [PMID: 20608978 PMCID: PMC2936118 DOI: 10.1111/j.1574-695x.2010.00710.x] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fungal species Candida albicans and the bacterial species Staphylococcus aureus are responsible for a majority of hospital-acquired infections and often coinfect critically ill patients as complicating polymicrobial biofilms. To investigate biofilm structure during polymicrobial growth, dual-species biofilms were imaged with confocal scanning laser microscopy. Analyses revealed a unique biofilm architecture where S. aureus commonly associated with the hyphal elements of C. albicans. This physical interaction may provide staphylococci with an invasion strategy because candidal hyphae can penetrate through epithelial layers. To further understand the molecular mechanisms possibly responsible for previously demonstrated amplified virulence during coinfection, protein expression studies were undertaken. Differential in-gel electrophoresis identified a total of 27 proteins to be significantly differentially produced by these organisms during coculture biofilm growth. Among the upregulated staphylococcal proteins was l-lactate dehydrogenase 1, which confers resistance to host-derived oxidative stressors. Among the downregulated proteins was the global transcriptional repressor of virulence factors, CodY. These findings demonstrate that the hyphae-mediated enhanced pathogenesis of S. aureus may not only be due to physical interactions but can also be attributed to the differential regulation of specific virulence factors induced during polymicrobial growth. Further characterization of the intricate interaction between these pathogens at the molecular level is warranted, as it may aid in the design of novel therapeutic strategies aimed at combating fungal–bacterial polymicrobial infection.
Collapse
Affiliation(s)
- Brian M Peters
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland - Baltimore, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
15
|
Proteolytic regulation of toxin-antitoxin systems by ClpPC in Staphylococcus aureus. J Bacteriol 2009; 192:1416-22. [PMID: 20038589 DOI: 10.1128/jb.00233-09] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial toxin-antitoxin (TA) systems typically consist of a small, labile antitoxin that inactivates a specific longer-lived toxin. In Escherichia coli, such antitoxins are proteolytically regulated by the ATP-dependent proteases Lon and ClpP. Under normal conditions, antitoxin synthesis is sufficient to replace this loss from proteolysis, and the bacterium remains protected from the toxin. However, if TA production is interrupted, antitoxin levels decrease, and the cognate toxin is free to inhibit the specific cellular component, such as mRNA, DnaB, or gyrase. To date, antitoxin degradation has been studied only in E. coli, so it remains unclear whether similar mechanisms of regulation exist in other organisms. To address this, we followed antitoxin levels over time for the three known TA systems of the major human pathogen Staphylococcus aureus, mazEF, axe1-txe1, and axe2-txe2. We observed that the antitoxins of these systems, MazE(sa), Axe1, and Axe2, respectively, were all degraded rapidly (half-life [t(1/2)], approximately 18 min) at rates notably higher than those of their E. coli counterparts, such as MazE (t(1/2), approximately 30 to 60 min). Furthermore, when S. aureus strains deficient for various proteolytic systems were examined for changes in the half-lives of these antitoxins, only strains with clpC or clpP deletions showed increased stability of the molecules. From these studies, we concluded that ClpPC serves as the functional unit for the degradation of all known antitoxins in S. aureus.
Collapse
|
16
|
Chatterjee I, Neumayer D, Herrmann M. Senescence of staphylococci: using functional genomics to unravel the roles of ClpC ATPase during late stationary phase. Int J Med Microbiol 2009; 300:130-6. [PMID: 19931487 DOI: 10.1016/j.ijmm.2009.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Disease caused by Staphylococcus aureus frequently takes a chronic persistent course, and such infections are difficult to treat. S. aureus has developed various stress response systems allowing for coordinated expression of virulence factors and adaptation to environmental conditions. Clp ATPase/protease complexes for protein reactivation and degradation are highly conserved systems with a primary function in stress response. In various bacterial species, the role of Clp complexes has been associated with competence, cell wall synthesis, virulence and other physiologic properties. More recently, in S. aureus various Clp ATPases have been found to influence global regulator functions resulting in complex phenotypic changes. In this review, we briefly outline current knowledge including our own work with ClpC ATPase. We could highlight an important role of ClpC that allows for post-stationary regrowth and entry into the bacterial death phase through a functional tricarboxylic acid (TCA) cycle metabolism. We have concluded that ClpC may play a major regulatory role for long-term survival. Furthermore, using functional genomics data, we could extend the global characterization of the functions of ClpC in S. aureus with respect to late-phase phenomena such as S. aureus carbon metabolism, ion homeostasis, oxidative stress response, survival, and programmed cell death. These studies will thus help to further unravel the putative role of Clp ATPases in the chronic-persistent course of disease.
Collapse
Affiliation(s)
- Indranil Chatterjee
- Department of Medical Microbiology, University of Saarland Hospital, Kirrberger Strasse, Haus #43, D-66421 Homburg/Saar, Germany.
| | | | | |
Collapse
|
17
|
van der Veen S, Abee T, de Vos WM, Wells-Bennik MH. Genome-wide screen forListeria monocytogenesgenes important for growth at high temperatures. FEMS Microbiol Lett 2009; 295:195-203. [DOI: 10.1111/j.1574-6968.2009.01586.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Role of Clp proteins in expression of virulence properties of Streptococcus mutans. J Bacteriol 2009; 191:2060-8. [PMID: 19181818 DOI: 10.1128/jb.01609-08] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mutational analysis revealed that members of the Clp system, specifically the ClpL chaperone and the ClpXP proteolytic complex, modulate the expression of important virulence attributes of Streptococcus mutans. Compared to its parent, the DeltaclpL strain displayed an enhanced capacity to form biofilms in the presence of sucrose, had reduced viability, and was more sensitive to acid killing. The DeltaclpP and DeltaclpX strains displayed several phenotypes in common: slow growth, tendency to aggregate in culture, reduced autolysis, and reduced ability to grow under stress, including acidic pH. Unexpectedly, the DeltaclpP and DeltaclpX mutants were more resistant to acid killing and demonstrated enhanced viability in long-term survival assays. Biofilm formation by the DeltaclpP and DeltaclpX strains was impaired when grown in glucose but enhanced in sucrose. In an animal study, the average number of S. mutans colonies recovered from the teeth of rats infected with the DeltaclpP or DeltaclpX strain was slightly lower than that of the parent strain. In Bacillus subtilis, the accumulation of the Spx global regulator, a substrate of ClpXP, has accounted for the DeltaclpXP phenotypes. Searching the S. mutans genome, we identified two putative spx genes, designated spxA and spxB. The inactivation of either of these genes bypassed phenotypes of the clpP and clpX mutants. Western blotting demonstrated that Spx accumulates in the DeltaclpP and DeltaclpX strains. Our results reveal that the proteolysis of ClpL and ClpXP plays a role in the expression of key virulence traits of S. mutans and indicates that the underlying mechanisms by which ClpXP affect virulence traits are associated with the accumulation of two Spx orthologues.
Collapse
|
19
|
Abstract
CodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S. aureus clinical isolates, SA564 and UAMS-1, through allelic replacement, resulted in the overexpression of several virulence genes. The mutant strains had higher levels of hemolytic activity toward rabbit erythrocytes in their culture fluid, produced more polysaccharide intercellular adhesin (PIA), and formed more robust biofilms than did their isogenic parent strains. These phenotypes were associated with derepressed levels of RNA for the hemolytic alpha-toxin (hla), the accessory gene regulator (agr) (RNAII and RNAIII/hld), and the operon responsible for the production of PIA (icaADBC). These data suggest that CodY represses, either directly or indirectly, the synthesis of a number of virulence factors of S. aureus.
Collapse
|
20
|
Frees D, Savijoki K, Varmanen P, Ingmer H. Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol 2007; 63:1285-95. [PMID: 17302811 DOI: 10.1111/j.1365-2958.2007.05598.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clp proteolytic complexes consisting of a proteolytic core flanked by Clp ATPases are widely conserved in bacteria, and their biological roles have received considerable interest. In particular, mutants in the clp genes in the low-GC-content Gram-positive phyla Bacillales and Lactobacillales display a diverse range of phenotypic changes including general stress sensitivity, aberrant cell morphology, failure to initiate developmental programs, and for pathogens, severely attenuated virulence. Extensive research dedicated to unravelling the molecular mechanisms underlying these complex phenotypes has led to fascinating new insights that will be covered by this review. First, Clp ATPases and ClpP-containing proteolytic complexes play indispensable roles in cellular protein quality control systems by refolding or degrading damaged proteins in both stressed and non-stressed cells. Secondly, ClpP proteases and the chaperone activity of Clp ATPases are important for controlling stability and activity of central transcriptional regulators, thereby exerting tremendous impact on cell physiology. Targets include major stress regulators like Spx (oxidative stress), the antisigma factor RsiW (alkaline stress) and HdiR (DNA damage) in addition to regulators of developmental programs like ComK (competence development), sigmaH and Sda (sporulation). Thus, Clp proteins are central in co-ordinating developmental decisions and stress response in low GC Gram-positive bacteria.
Collapse
Affiliation(s)
- Dorte Frees
- Department of Veterinary Pathobiology, Faculty of Life Sciences, University of Copenhagen, Stigbøjlen 4, DK-1870 Frederiksberg C, Denmark
| | | | | | | |
Collapse
|
21
|
Henderson B, Allan E, Coates ARM. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect Immun 2006; 74:3693-706. [PMID: 16790742 PMCID: PMC1489680 DOI: 10.1128/iai.01882-05] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Brian Henderson
- Division of Microbial Diseases, UCL Eastman Dental Institute, University College London, 256 Gray's Inn Road, London WC1X, United Kingdom.
| | | | | |
Collapse
|