1
|
Genomic and Transcriptomic Insights into Salinity Tolerance-Based Niche Differentiation of Synechococcus Clades in Estuarine and Coastal Waters. mSystems 2023; 8:e0110622. [PMID: 36622156 PMCID: PMC9948718 DOI: 10.1128/msystems.01106-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cluster 5 Synechococcus is one of the most important primary producers on earth. However, ecotypes of this genus exhibit complex geographical distributions, and the genetic basis of niche partitioning is still not fully understood. Here, we report distinct distributions of subcluster 5.1 (SC5.1) and subcluster 5.2 (SC5.2) Synechococcus in estuarine waters, and we reveal that salinity is the main factor determining their distribution. Clade III (belonging to SC5.1) and CB4 (belonging to SC5.2) are dominant clades in the study region, with different ecological distributions. We further conducted physiological, genomic, and transcriptomic studies of Synechococcus strains YX04-3 and HK05, which are affiliated with clade III and CB4, respectively. Laboratory tests showed that HK05 could grow at low salinity (13 ppt), whereas the growth of YX04-3 was suppressed when salinity decreased to 13 ppt. Genomic and transcriptomic analysis suggested that euryhaline clade CB4 is capable of dealing with a sudden drop of salinity by releasing compatible solutes through mechanosensitive channels that are coded by the mscL gene, decreasing biosynthesis of organic osmolytes, and increasing expression of heat shock proteins and high light-inducible proteins to protect photosystem. Furthermore, CB4 strain HK05 exhibited a higher growth rate when growing at low salinity than at high salinity. This is likely achieved by reducing its biosynthesis of organic osmolyte activity and increasing its photosynthetic activity at low salinity, which allowed it to enhance the assimilation of inorganic carbon and nitrogen. Together, these results provide new insights regarding the ecological distribution of SC5.2 and SC5.1 ecotypes and their underlying molecular mechanisms. IMPORTANCE Synechococcus is a group of unicellular Cyanobacteria that are widely distributed in global aquatic ecosystems. Salinity is a factor that affects the distribution of microorganisms in estuarine and coastal environments. In this study, we studied the distribution pattern of Synechococcus community along the salinity gradient in a subtropical estuary. By using omic methods, we unveiled genetic traits that determine the niche partitioning of euryhaline and strictly marine Synechococcus. We also explored the strategies employed by euryhaline Synechococcus to cope with a sudden drop of salinity, and revealed possible mechanisms for the higher growth rate of euryhaline Synechococcus in low salinity conditions. This study provides new insight into the genetic basis of niche partitioning of Synechococcus clades.
Collapse
|
2
|
Ford BA, Ranjit P, Mabbutt BC, Paulsen IT, Shah BS. ProX from marine Synechococcus spp. show a sole preference for glycine-betaine with differential affinity between ecotypes. Environ Microbiol 2022; 24:6071-6085. [PMID: 36054310 PMCID: PMC10087775 DOI: 10.1111/1462-2920.16168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/09/2022] [Indexed: 01/12/2023]
Abstract
Osmotic stress, caused by high or fluctuating salt concentrations, is a crucial abiotic factor affecting microbial growth in aquatic habitats. Many organisms utilize common responses to osmotic stress, generally requiring active extrusion of toxic inorganic ions and accumulation of compatible solutes to protect cellular machinery. We heterologously expressed and purified predicted osmoprotectant, proline/glycine betaine-binding proteins (ProX) from two phylogenetically distinct Synechococcus spp. MITS9220 and WH8102. Homologues of this protein are conserved only among Prochlorococcus LLIV and Synechococcus clade I, III and CRD1 strains. Our biophysical characterization show Synechococcus ProX exists as a dimer, with specificity solely for glycine betaine but not to other osmoprotectants tested. We discovered that MITS9220_ProX has a 10-fold higher affinity to glycine betaine than WH8102_ProX, which is further elevated (24-fold) in high salt conditions. The stronger affinity and effect of ionic strength on MITS9220_ProX glycine betaine binding but not on WH8102_ProX alludes to a novel regulatory mechanism, providing critical functional insights into the phylogenetic divergence of picocyanobacterial ProX proteins that may be necessary for their ecological success.
Collapse
Affiliation(s)
- Benjamin A Ford
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Pramita Ranjit
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | | | - Ian T Paulsen
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Bhumika S Shah
- School of Natural Sciences, Macquarie University, Sydney, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Giannoglou M, Andreou V, Thanou I, Markou G, Katsaros G. High pressure assisted extraction of proteins from wet biomass of Arthrospira platensis (spirulina) – A kinetic approach. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Xia Y, Jiang X, Wang Y, Huang Q, Chen D, Hou C, Mu Y, Shen J. Enhanced anaerobic reduction of nitrobenzene at high salinity by betaine acting as osmoprotectant and regulator of metabolism. WATER RESEARCH 2022; 223:118982. [PMID: 36058098 DOI: 10.1016/j.watres.2022.118982] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/24/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Anaerobic technology is extensively applied in the treatment of industrial organic wastewater, but high salinity always triggers microbial cell dehydration, causing the failure of the anaerobic process. In this work, betaine, one kind of compatible solutes which could balance the osmotic pressure of anaerobic biomass, was exogenously added for enhancing the anaerobic reduction of nitrobenzene (NB) at high salinity. Only 100 mg L-1 betaine dosing could significantly promote the removal efficiency of NB within 35 h at 9% salinity (36.92 ± 4.02% without betaine and 72.94 ± 6.57% with betaine). The relieving effects on salt stress could be observed in the promotion of more extracellular polymeric substances (EPS) secretion with betaine addition. Additionally, the oxidation-reduction potential (ORP), as well as the electron transfer system (ETS) value, was increased with betaine addition, which was reflected in the improvement of system removal efficiency and enzyme activity. Microbial community analysis demonstrated that Bacillus and Clostridiisalibacter which were positively correlated with the stability of the anaerobic process were enriched with betaine addition at high salinity. Metagenomic analysis speculated that the encoding genes for salt tolerance (kdpB/oadA/betA/opuD/epsP/epsH) and NB degradation (nfsA/wrbA/ccdA/menC) obtained higher relative abundance with betaine addition under high salt environment, which might be the key to improving salt tolerance of anaerobic biomass. The long-term assessment demonstrated that exogenous addition betaine played an important role in maintaining the stability of the anaerobic system, which would be a potential strategy to achieve a high-efficiency anaerobic process under high salinity conditions.
Collapse
Affiliation(s)
- Yan Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinbai Jiang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Yuxuan Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qian Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
5
|
Boysen AK, Durham BP, Kumler W, Key RS, Heal KR, Carlson L, Groussman RD, Armbrust EV, Ingalls AE. Glycine betaine uptake and metabolism in marine microbial communities. Environ Microbiol 2022; 24:2380-2403. [PMID: 35466501 PMCID: PMC9321204 DOI: 10.1111/1462-2920.16020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
Abstract
Glycine betaine (GBT) is a compatible solute in high concentrations in marine microorganisms. As a component of labile organic matter, GBT has complex biochemical potential as a substrate for microbial use that is unconstrained in the environment. Here we determine the uptake kinetics and metabolic fate of GBT in two natural microbial communities in the North Pacific characterized by different nitrate concentrations. Dissolved GBT had maximum uptake rates of 0.36 and 0.56 nM h−1 with half‐saturation constants of 79 and 11 nM in the high nitrate and low nitrate stations respectively. During multiday incubations, most GBT taken into cells was retained as a compatible solute. Stable isotopes derived from the added GBT were also observed in other metabolites, including choline, carnitine and sarcosine, suggesting that GBT was used for biosynthesis and for catabolism to pyruvate and ammonium. Where nitrate was scarce, GBT was primarily metabolized via demethylation to glycine. Gene transcript data were consistent with SAR11 using GBT as a source of methyl groups to fuel the methionine cycle. Where nitrate concentrations were higher, more GBT was partitioned for lipid biosynthesis by both bacteria and eukaryotic phytoplankton. Our data highlight unexpected metabolic pathways and potential routes of microbial metabolite exchange.
Collapse
Affiliation(s)
- Angela K Boysen
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Bryndan P Durham
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - William Kumler
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Rebecca S Key
- Department of Biology, Genetics Institute, University of Florida, Gainesville, Florida, 32610, USA
| | - Katherine R Heal
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Laura Carlson
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | - Ryan D Groussman
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| | | | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
6
|
Liu M, Liu H, Mei F, Yang N, Zhao D, Ai G, Xiang H, Zheng Y. Identification of the Biosynthetic Pathway of Glycine Betaine That Is Responsible for Salinity Tolerance in Halophilic Thioalkalivibrio versutus D301. Front Microbiol 2022; 13:875843. [PMID: 35516424 PMCID: PMC9062515 DOI: 10.3389/fmicb.2022.875843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Thioalkalivibrio versutus D301 has been widely used in the biodesulfurization process, as it is capable of oxidizing hydrogen sulfide to elemental sulfur under strongly halo-alkaline conditions. Glycine betaine contributes to the increased tolerance to extreme environments in some of Thioalkalivibrio species. However, the biosynthetic pathway of glycine betaine in Thioalkalivibrio remained unknown. Here, we found that genes associated with nitrogen metabolism of T. versutus D301 were significantly upregulated under high-salt conditions, causing the enhanced production of glycine betaine that functions as a main compatible solute in response to the salinity stress. Glycine betaine was synthesized by glycine methylation pathway in T. versutus D301, with glycine N-methyltransferase (GMT) and sarcosine dimethylglycine N-methyltransferase (SDMT) as key enzymes in this pathway. Moreover, substrate specificities of GMT and SDMT were quite different from the well characterized enzymes for glycine methylation in halophilic Halorhodospira halochloris. Our results illustrate the glycine betaine biosynthetic pathway in the genus of Thioalkalivibrio for the first time, providing us with a better understanding of the biosynthesis of glycine betaine in haloalkaliphilic Thioalkalivibrio.
Collapse
Affiliation(s)
- Mengshuang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fangtong Mei
- College of Environment, Hohai University, Nanjing, China
| | - Niping Yang
- School of Life Sciences, Hebei University, Baoding, China
| | - Dahe Zhao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hua Xiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Yanning Zheng,
| |
Collapse
|
7
|
Su C, Deng Q, Chen Z, Lu X, Huang Z, Guan X, Chen M. Denitrifying anaerobic methane oxidation process responses to the addition of growth factor betaine in the MFC-granular sludge coupling system: Enhancing mechanism and metagenomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126139. [PMID: 34492928 DOI: 10.1016/j.jhazmat.2021.126139] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/27/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
To solve the problem of the slow growth of denitrifying anaerobic methane oxidation (DAMO) bacteria during the enrichment process, betaine was added as a growth factor and its influence on the mechanism of DAMO process along with the metagenomic analysis of the process in a MFC-granular sludge coupling system was explored. When the addition of betaine was increased to 0.5 g/L and 1.0 g/L, the NO3--N removal increased to 210 mg/L. Also, the increasing betaine dosage in 1st to 4th chambers resulted in a significant increase in dissolved methane concentration which reached a maximum value of 16.6 ± 1.19 mg/L. When the dosage of betaine was increased from 0 g/L to 1.0 g/L, the dominant bacterial phyla in the 1st to 4th chambers changed to Proteobacteria (20.8-50.7%) from Euryarchaeota (42.0-54.1%) and Methanothrix which was significantly decreased by 17.9-37.4%. There was a slight decline in the DAMO microorganism abundance, possibly due to the increased methyl donors limiting the DAMO microorganism growth. Denitrification metabolism pathway module (increased from 0.10% to 0.15%) of Nitrogen metabolism and Formaldehyde assimilation, and serine pathway of Methane metabolism presented an ascendant trend with the increased betaine dosage as determined by the metagenomics analysis of KEGG metabolism pathway.
Collapse
Affiliation(s)
- Chengyuan Su
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology for Science and Education Combined with Science and Technology Innovation Base, 12 Jiangan Road, Guilin 541004, PR China; University Key Laboratory of Karst Ecology and Environmental Change of Guangxi Province (Guangxi Normal University), 15 Yucai Road, Guilin 541004, PR China.
| | - Qiujin Deng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zhengpeng Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xinya Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Zun Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Xin Guan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| | - Menglin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin 541004, PR China
| |
Collapse
|
8
|
Investigations of Dimethylglycine, Glycine Betaine, and Ectoine Uptake by a Betaine-Carnitine-Choline Transporter Family Transporter with Diverse Substrate Specificity in Vibrio Species. J Bacteriol 2020; 202:JB.00314-20. [PMID: 32817090 DOI: 10.1128/jb.00314-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023] Open
Abstract
Fluctuations in osmolarity are one of the most prevalent stresses to which bacteria must adapt, both hypo- and hyperosmotic conditions. Most bacteria cope with high osmolarity by accumulating compatible solutes (osmolytes) in the cytoplasm to maintain the turgor pressure of the cell. Vibrio parahaemolyticus, a halophile, utilizes at least six compatible solute transporters for the uptake of osmolytes: two ABC family ProU transporters and four betaine-carnitine-choline transporter (BCCT) family transporters. The full range of compatible solutes transported by this species has yet to be determined. Using an osmolyte phenotypic microarray plate for growth analyses, we expanded the known osmolytes used by V. parahaemolyticus to include N,N-dimethylglycine (DMG), among others. Growth pattern analysis of four triple-bccT mutants, possessing only one functional BCCT, indicated that BccT1 (VP1456), BccT2 (VP1723), and BccT3 (VP1905) transported DMG. BccT1 was unusual in that it could take up both compounds with methylated head groups (glycine betaine [GB], choline, and DMG) and cyclic compounds (ectoine and proline). Bioinformatics analysis identified the four coordinating amino acid residues for GB in the BccT1 protein. In silico modeling analysis demonstrated that GB, DMG, and ectoine docked in the same binding pocket in BccT1. Using site-directed mutagenesis, we showed that a strain with all four residues mutated resulted in the loss of uptake of GB, DMG, and ectoine. We showed that three of the four residues were essential for ectoine uptake, whereas only one of the residues was important for GB uptake. Overall, we have demonstrated that DMG is a highly effective compatible solute for Vibrio species and have elucidated the amino acid residues in BccT1 that are important for the coordination of GB, DMG, and ectoine transport.IMPORTANCE Vibrio parahaemolyticus possesses at least six osmolyte transporters, which allow the bacterium to adapt to high-salinity conditions. In this study, we identified several additional osmolytes that were utilized by V. parahaemolyticus We demonstrated that the compound DMG, which is present in the marine environment, was a highly effective osmolyte for Vibrio species. We determined that DMG is transported via BCCT family carriers, which have not been shown previously to take up this compound. BccT1 was a carrier for GB, DMG, and ectoine, and we identified the amino acid residues essential for the coordination of these compounds. The data suggest that for BccT1, GB is more easily accommodated than ectoine in the transporter binding pocket.
Collapse
|
9
|
Role of N, N-Dimethylglycine and Its Catabolism to Sarcosine in Chromohalobacter salexigens DSM 3043. Appl Environ Microbiol 2020; 86:AEM.01186-20. [PMID: 32631860 DOI: 10.1128/aem.01186-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/28/2020] [Indexed: 11/20/2022] Open
Abstract
Chromohalobacter salexigens DSM 3043 can grow on N,N-dimethylglycine (DMG) as the sole C, N, and energy source and utilize sarcosine as the sole N source under aerobic conditions. However, little is known about the genes and enzymes involved in the conversion of DMG to sarcosine in this strain. In the present study, gene disruption and complementation assays indicated that the csal_0990, csal_0991, csal_0992, and csal_0993 genes are responsible for DMG degradation to sarcosine. The csal_0990 gene heterologously expressed in Escherichia coli was proven to encode an unusual DMG dehydrogenase (DMGDH). The enzyme, existing as a monomer of 79 kDa with a noncovalently bound flavin adenine dinucleotide, utilized both DMG and sarcosine as substrates and exhibited dual coenzyme specificity, preferring NAD+ to NADP+ The optimum pH and temperature of enzyme activity were determined to be 7.0 and 60°C, respectively. Kinetic parameters of the enzyme toward its substrates were determined accordingly. Under high-salinity conditions, the presence of DMG inhibited growth of the wild type and induced the production and accumulation of trehalose and glucosylglycerate intracellularly. Moreover, exogenous addition of DMG significantly improved the growth rates of the four DMG- mutants (Δcsal_0990, Δcsal_0991, Δcsal_0992, and Δcsal_0993) incubated at 37°C in S-M63 synthetic medium with sarcosine as the sole N source. 13C nuclear magnetic resonance (13C-NMR) experiments revealed that not only ectoine, glutamate, and N-acetyl-2,4-diaminobutyrate but also glycine betaine (GB), DMG, sarcosine, trehalose, and glucosylglycerate are accumulated intracellularly in the four mutants.IMPORTANCE Although N,N-dimethylglycine (DMG) dehydrogenase (DMGDH) activity was detected in cell extracts of microorganisms, the genes encoding microbial DMGDHs have not been determined until now. In addition, to our knowledge, the physiological role of DMG in moderate halophiles has never been investigated. In this study, we identified the genes involved in DMG degradation to sarcosine, characterized an unusual DMGDH, and investigated the role of DMG in Chromohalobacter salexigens DSM 3043 and its mutants. Our results suggested that the conversion of DMG to sarcosine is accompanied by intramolecular delivery of electrons in DMGDH and intermolecular electron transfer between DMGDH and other electron acceptors. Moreover, an unidentified methyltransferase catalyzing the production of glycine betaine (GB) from DMG but sharing no homology with the reported sarcosine DMG methyltransferases was predicted to be present in the cells. The results of this study expand our understanding of the physiological role of DMG and its catabolism to sarcosine in C. salexigens.
Collapse
|
10
|
CosR Is a Global Regulator of the Osmotic Stress Response with Widespread Distribution among Bacteria. Appl Environ Microbiol 2020; 86:AEM.00120-20. [PMID: 32169942 DOI: 10.1128/aem.00120-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Bacteria accumulate small, organic compounds called compatible solutes via uptake from the environment or biosynthesis from available precursors to maintain the turgor pressure of the cell in response to osmotic stress. The halophile Vibrio parahaemolyticus has biosynthesis pathways for the compatible solutes ectoine (encoded by ectABC-asp_ect) and glycine betaine (encoded by betIBA-proXWV), four betaine-carnitine-choline transporters (encoded by bccT1 to bccT4), and a second ProU transporter (encoded by proVWX). All of these systems are osmotically inducible with the exception of bccT2 Previously, it was shown that CosR, a MarR-type regulator, was a direct repressor of ectABC-asp_ect in Vibrio species. In this study, we investigated whether CosR has a broader role in the osmotic stress response. Expression analyses demonstrated that betIBA-proXWV, bccT1, bccT3, bccT4, and proVWX are repressed in low salinity. Examination of an in-frame cosR deletion mutant showed that expression of these systems is derepressed in the mutant at low salinity compared with the wild type. DNA binding assays demonstrated that purified CosR binds directly to the regulatory region of both biosynthesis systems and four transporters. In Escherichia coli green fluorescent protein (GFP) reporter assays, we demonstrated that CosR directly represses transcription of betIBA-proXWV, bccT3, and proVWX Similar to Vibrio harveyi, we showed betIBA-proXWV was directly activated by the quorum-sensing LuxR homolog OpaR, suggesting a conserved mechanism of regulation among Vibrio species. Phylogenetic analysis demonstrated that CosR is ancestral to the Vibrionaceae family, and bioinformatics analysis showed widespread distribution among Gammaproteobacteria in general. Incidentally, in Aliivibrio fischeri, Aliivibrio finisterrensis, Aliivibrio sifiae, and Aliivibrio wodanis, an unrelated MarR-type regulator gene named ectR was clustered with ectABC-asp, which suggests the presence of another novel ectoine biosynthesis regulator. Overall, these data show that CosR is a global regulator of osmotic stress response that is widespread among bacteria.IMPORTANCE Vibrio parahaemolyticus can accumulate compatible solutes via biosynthesis and transport, which allow the cell to survive in high salinity conditions. There is little need for compatible solutes under low salinity conditions, and biosynthesis and transporter systems need to be repressed. However, the mechanism(s) of this repression is not known. In this study, we showed that CosR played a major role in the regulation of multiple compatible solute systems. Phylogenetic analysis showed that CosR is present in all members of the Vibrionaceae family as well as numerous Gammaproteobacteria Collectively, these data establish CosR as a global regulator of the osmotic stress response that is widespread in bacteria, controlling many more systems than previously demonstrated.
Collapse
|
11
|
Rossoni AW, Price DC, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber APM. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 2019; 8:e45017. [PMID: 31149898 PMCID: PMC6629376 DOI: 10.7554/elife.45017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Dana C Price
- Department of Plant BiologyRutgers UniversityNew BrunswickUnited States
| | - Mark Seger
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | - Dagmar Lyska
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Peter Lammers
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | | | - Andreas PM Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
12
|
Celepli N, Sundh J, Ekman M, Dupont CL, Yooseph S, Bergman B, Ininbergs K. Meta-omic analyses of Baltic Sea cyanobacteria: diversity, community structure and salt acclimation. Environ Microbiol 2017; 19:673-686. [PMID: 27871145 DOI: 10.1111/1462-2920.13592] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023]
Abstract
Cyanobacteria are important phytoplankton in the Baltic Sea, an estuarine-like environment with pronounced north to south gradients in salinity and nutrient concentrations. Here, we present a metagenomic and -transcriptomic survey, with subsequent analyses targeting the genetic identity, phylogenetic diversity, and spatial distribution of Baltic Sea cyanobacteria. The cyanobacterial community constituted close to 12% of the microbial population sampled during a pre-bloom period (June-July 2009). The community was dominated by unicellular picocyanobacteria, specifically a few highly abundant taxa (Synechococcus and Cyanobium) with a long tail of low abundance representatives, and local peaks of bloom-forming heterocystous taxa. Cyanobacteria in the Baltic Sea differed genetically from those in adjacent limnic and marine waters as well as from cultivated and sequenced picocyanobacterial strains. Diversity peaked at brackish salinities 3.5-16 psu, with low N:P ratios. A shift in community composition from brackish to marine strains was accompanied by a change in the repertoire and expression of genes involved in salt acclimation. Overall, the pre-bloom cyanobacterial population was more genetically diverse, widespread and abundant than previously documented, with unicellular picocyanobacteria being the most abundant clade along the entire Baltic Sea salinity gradient.
Collapse
Affiliation(s)
- Narin Celepli
- Department of Ecology, Environment and Plant Sciences, Stockholm University/Science for Life Laboratory, Solna, 17121, Sweden
| | - John Sundh
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus University, Kalmar, 391 82, Sweden
| | - Martin Ekman
- Department of Ecology, Environment and Plant Sciences, Stockholm University/Science for Life Laboratory, Solna, 17121, Sweden
| | - Chris L Dupont
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA, 92037, USA
| | - Shibu Yooseph
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Birgitta Bergman
- Department of Ecology, Environment and Plant Sciences, Stockholm University/Science for Life Laboratory, Solna, 17121, Sweden
| | - Karolina Ininbergs
- Department of Ecology, Environment and Plant Sciences, Stockholm University/Science for Life Laboratory, Solna, 17121, Sweden
| |
Collapse
|
13
|
Lai SJ, Deng YC, Lai MC. Comparison of Enzymatic Traits between Native and Recombinant Glycine Sarcosine N-Methyltransferase from Methanohalophilus portucalensis FDF1T. PLoS One 2016; 11:e0168666. [PMID: 28036340 PMCID: PMC5201303 DOI: 10.1371/journal.pone.0168666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
The halophilic methanoarchaeon Methanohalophilus portucalensis FDF1T possesses the ability to synthesize the osmolyte betaine from its precursor, glycine, in response to extracellular salt stress through a three-step transmethylation process. Analysis of recombinant glycine sarcosine N-methyltransferase (rGSMT) and recombinant sarcosine dimethylglycine N-methyltransferase (rSDMT) from Escherichia coli indicated that betaine synthesis is rate-limited by rGSMT and is constitutively activated by rSDMT. Therefore, it is of interest to purify native GSMT from Methanohalophilus portucalensis to further compare its enzymatic characteristics and kinetics with rGSMT. In this study, native GSMT was purified through DEAE ion exchange and gel filtration chromatography with 95% purity. The enzymatic characteristics of GSMT and rGSMT showed similar trends of activities that were activated by high concentrations of monovalent cations. Both were feedback-inhibited by the end product, betaine, and competitively inhibited by S-adenosylhomocysteine (SAH). Native GSMT was 2-fold more sensitive to SAH than rGSMT. Notably, comparison of the kinetic parameters illustrated that the turnover rate of glycine methylation of GSMT was promoted by potassium ions, whereas rGSMT was activated by increasing protein-glycine binding affinity. These results suggest that GSMT and rGSMT may have different levels of post-translational modifications. Our preliminary mass spectrometry evidence indicated that there was no detectable phosphosite on GSMT after the complicated purification processes, whereas purified rGSMT still possessed 23.1% of its initial phosphorylation level. We believe that a phosphorylation-mediated modification may be involved in the regulation of this energy consuming betaine synthesis pathway during the stress response in halophilic methanoarchaea.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Institute of Biological Chemistry, Academia Sinica. Taipei, Taiwan
| | - Yu-Chen Deng
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chin Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
14
|
Growth and antioxidant production of Spirulina in different NaCl concentrations. Biotechnol Lett 2016; 38:1089-96. [DOI: 10.1007/s10529-016-2087-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
|
15
|
Zou H, Chen N, Shi M, Xian M, Song Y, Liu J. The metabolism and biotechnological application of betaine in microorganism. Appl Microbiol Biotechnol 2016; 100:3865-76. [PMID: 27005411 DOI: 10.1007/s00253-016-7462-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/29/2022]
Abstract
Glycine betaine (betaine) is widely distributed in nature and can be found in many microorganisms, including bacteria, archaea, and fungi. Due to its particular functions, many microorganisms utilize betaine as a functional chemical and have evolved different metabolic pathways for the biosynthesis and catabolism of betaine. As in animals and plants, the principle role of betaine is to protect microbial cells against drought, osmotic stress, and temperature stress. In addition, the role of betaine in methyl group metabolism has been observed in a variety of microorganisms. Recent studies have shown that betaine supplementation can improve the performance of microbial strains used for the fermentation of lactate, ethanol, lysine, pyruvate, and vitamin B12, during which betaine can act as stress protectant or methyl donor for the biosynthesis of structurally complex compounds. In this review, we summarize the transport, synthesis, catabolism, and functions of betaine in microorganisms and discuss potential engineering strategies that employ betaine as a methyl donor for the biosynthesis of complex secondary metabolites such as a variety of vitamins, coenzymes, and antibiotics. In conclusion, the biocompatibility, C/N ratio, abundance, and comprehensive metabolic information of betaine collectively indicate that this molecule has great potential for broad applications in microbial biotechnology.
Collapse
Affiliation(s)
- Huibin Zou
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. .,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.
| | - Ningning Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mengxun Shi
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yimin Song
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Junhong Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
16
|
Lai SJ, Lai MC, Lee RJ, Chen YH, Yen HE. Transgenic Arabidopsis expressing osmolyte glycine betaine synthesizing enzymes from halophilic methanogen promote tolerance to drought and salt stress. PLANT MOLECULAR BIOLOGY 2014; 85:429-41. [PMID: 24803410 DOI: 10.1007/s11103-014-0195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/17/2014] [Indexed: 05/24/2023]
Abstract
Glycine betaine (betaine) has the highest cellular osmoprotective efficiency which does not accumulate in most glycophytes. The biosynthetic pathway for betaine in higher plants is derived from the oxidation of low-accumulating metabolite choline that limiting the ability of most plants to produce betaine. Halophilic methanoarchaeon Methanohalophilus portucalensis FDF1(T) is a model anaerobic methanogen to study the acclimation of water-deficit stresses which de novo synthesize betaine by the stepwise methylation of glycine, catalyzed by glycine sarcosine N-methyltransferase (GSMT) and sarcosine dimethylglycine N-methyltransferase. In this report, genes encoding these betaine biosynthesizing enzymes, Mpgsmt and Mpsdmt, were introduced into Arabidopsis. The homozygous Mpgsmt (G), Mpsdmt (S), and their cross, Mpgsmt and Mpsdmt (G × S) plants showed increased accumulation of betaine. Water loss from detached leaves was slower in G, S, and G × S lines than wild-type (WT). Pot-grown transgenic plants showed better growth than WT after 9 days of withholding water or irrigating with 300 mM NaCl. G, S, G × S lines also maintained higher relative water content and photosystem II activity than WT under salt stress. This suggests heterologously expressed Mpgsmt and Mpsdmt could enhance tolerance to drought and salt stress in Arabidopsis. We also found a twofold increase in quaternary ammonium compounds in salt-stressed leaves of G lines, presumably due to the activation of GSMT activity by high salinity. This study demonstrates that introducing stress-activated enzymes is a way of avoiding the divergence of primary metabolites under normal growing conditions, while also providing protection in stressful environments.
Collapse
Affiliation(s)
- Shu-Jung Lai
- Department of Life Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
| | | | | | | | | |
Collapse
|
17
|
Blank CE. Phylogenetic distribution of compatible solute synthesis genes support a freshwater origin for cyanobacteria. JOURNAL OF PHYCOLOGY 2013; 49:880-895. [PMID: 27007313 DOI: 10.1111/jpy.12098] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/22/2013] [Indexed: 06/05/2023]
Abstract
Previous work using ancestral state reconstruction of habitat salinity preference proposed that the early cyanobacteria likely lived in a freshwater environment. The aim of this study was to test that hypothesis by performing phylogenetic analyses of the genes underlying salinity preferences in the cyanobacteria. Phylogenetic analysis of compatible solute genes shows that sucrose synthesis genes were likely ancestral in the cyanobacteria, and were also likely inherited during the cyanobacterial endosymbiosis and into the photosynthetic algae and land plants. In addition, the genes for the synthesis of compatible solutes that are necessary for survival in marine and hypersaline environments (such as glucosylglycerol, glucosylglycerate, and glycine betaine) were likely acquired independently high up (i.e., more recently) in the cyanobacterial tree. Because sucrose synthesis is strongly associated with growth in a low salinity environment, this independently supports a freshwater origin for the cyanobacteria. It is also consistent with geologic evidence showing that the early oceans were much warmer and saltier than modern oceans-sucrose synthesis alone would have been insufficient for early cyanobacteria to have colonized early Precambrian oceans that had a higher ionic strength. Indeed, the acquisition of an expanded set of new compatible solute genes may have enabled the historical colonization of marine and hypersaline environments by cyanobacteria, midway through their evolutionary history.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, Montana, 59812-1296, USA
| |
Collapse
|
18
|
Li S, Chen X, Liu L, Chen J. Pyruvate production inCandida glabrata: manipulation and optimization of physiological function. Crit Rev Biotechnol 2013; 36:1-10. [DOI: 10.3109/07388551.2013.811636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Characterization and regulation of the osmolyte betaine synthesizing enzymes GSMT and SDMT from halophilic methanogen Methanohalophilus portucalensis. PLoS One 2011; 6:e25090. [PMID: 21949863 PMCID: PMC3176816 DOI: 10.1371/journal.pone.0025090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/26/2011] [Indexed: 11/20/2022] Open
Abstract
The halophilic methanoarchaeon Methanohalophilus portucalensis can synthesize the osmolyte betaine de novo in response to extracellular salt stress. Betaine is generated by the stepwise methylation of glycine to form sarcosine, N, N-dimethylglycine and betaine by using S-adenosyl-L-methionine (AdoMet) as the methyl donor. The complete gene cluster of Mpgsmt-sdmt was cloned from Southern hybridization and heterologous expressed in E. coli respectively. The recombinant MpGSMT and MpSDMT both retained their in vivo functional activities in E. coli BL21(DE3)RIL to synthesize and accumulate betaine and conferred elevated survival ability in betaine transport deficient mutant E. coli MKH13 under high salt stress. The dramatic activating effects of sodium and potassium ions on the in vitro methyltransferase activities of MpGSMT, but not MpSDMT or bacterial GSMT and SDMT, revealed that GSMT from halophilic methanoarchaeon possesses novel regulate mechanism in betaine biosynthesis pathway. The circular dichroism spectra showed the fluctuated peaks at 206 nm were detected in the MpGSMT under various concentrations of potassium or sodium ions. This fluctuated difference may cause by a change in the β-turn structure located at the conserved glycine- and sarcosine-binding residue Arg167 of MpGSMT. The analytical ultracentrifugation analysis indicated that the monomer MpGSMT switched to dimeric form increased from 7.6% to 70% with KCl concentration increased from 0 to 2.0 M. The level of potassium and sodium ions may modulate the substrate binding activity of MpGSMT through the conformational change. Additionally, MpGSMT showed a strong end product, betaine, inhibitory effect and was more sensitive to the inhibitor AdoHcy. The above results indicated that the first enzymatic step involved in synthesizing the osmolyte betaine in halophilic archaea, namely, GSMT, may also play a major role in coupling the salt-in and compatible solute (osmolyte) osmoadaptative strategies in halophilic methanogens for adapting to high salt environments.
Collapse
|
20
|
|
21
|
Abstract
Compatible solutes are a functional group of small, highly soluble organic molecules that demonstrate compatibility in high amounts with cellular metabolism. The accumulation of compatible solutes is often observed during the acclimation of organisms to adverse environmental conditions, particularly to salt and drought stress. Among cyanobacteria, sucrose, trehalose, glucosylglycerol and glycine betaine are used as major compatible solutes. Interestingly, a close correlation has been discovered between the final salt tolerance limit and the primary compatible solute in these organisms. In addition to the dominant compatible solutes, many strains accumulate mixtures of these compounds, including minor compounds such as glucosylglycerate or proline as secondary or tertiary solutes. In particular, the accumulation of sucrose and trehalose results in an increase in tolerance to general stresses such as desiccation and high temperatures. During recent years, the biochemical and molecular basis of compatible solute accumulation has been characterized using cyanobacterial model strains that comprise different salt tolerance groups. Based on these data, the distribution of genes involved in compatible solute synthesis among sequenced cyanobacterial genomes is reviewed, and thereby, the major compatible solutes and potential salt tolerance of these strains can be predicted. Knowledge regarding cyanobacterial salt tolerance is not only useful to characterize strain-specific adaptations to ecological niches, but it can also be used to generate cells with increased tolerance to adverse environmental conditions for biotechnological purposes.
Collapse
Affiliation(s)
- Stephan Klähn
- Universität Rostock, Institut für Biowissenschaften, Pflanzenphysiologie, Rostock, Germany
| | | |
Collapse
|
22
|
Lv XY, Guo LZ, Song L, Fu Q, Zhao K, Li AX, Luo XL, Lu WD. Purification and characterization of a novel extracellular carboxylesterase from the moderately halophilic bacterium Thalassobacillus sp. strain DF-E4. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0135-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
23
|
Gustavs L, Eggert A, Michalik D, Karsten U. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. PROTOPLASMA 2010; 243:3-14. [PMID: 19585217 DOI: 10.1007/s00709-009-0060-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 06/10/2009] [Indexed: 05/27/2023]
Abstract
Growth of five aeroterrestrial green algal strains (Trebouxiophyceae) in response to changing water availabilities-caused by osmotic (ionic) and matric (desiccation) stresses-was investigated in comparison with a freshwater and a marine strain. All investigated algae displayed good growth under brackish conditions while four out of the five aeroterrestrial strains even grew well under full marine conditions (28-40 psu). The comparison between growth responses in liquid medium, on solid agarose, and on glass fiber filters at 100% air humidity indicated a broad growth tolerance of aeroterrestrial algae towards diminished water availability. While two aeroterrestrial strains even grew better on solid medium which mimics natural biofilm conditions, the aquatic strains showed significant growth inhibition under matric stress. Except Stichococcus sp., which contained the C6-polyol sorbitol, all other aeroterrestrial green algae investigated synthesized and accumulated the C5-polyol ribitol in response to osmotic stress. Using (13)C NMR spectroscopy and HPLC, it could be verified that ribitol functions as an osmotically regulated organic solute. This is the first proof of ribitol in free-living aeroterrestrial green algae. The biochemical capability to synthesize polyols under environmental stress conditions seems to support algal life outside aquatic habitats.
Collapse
Affiliation(s)
- Lydia Gustavs
- Department of Biological Sciences, Applied Ecology, University of Rostock, Albert-Einstein-Strasse 3, 18051 Rostock, Germany.
| | | | | | | |
Collapse
|
24
|
Mao X, Olman V, Stuart R, Paulsen IT, Palenik B, Xu Y. Computational prediction of the osmoregulation network in Synechococcus sp. WH8102. BMC Genomics 2010; 11:291. [PMID: 20459751 PMCID: PMC2874817 DOI: 10.1186/1471-2164-11-291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 05/10/2010] [Indexed: 11/16/2022] Open
Abstract
Background Osmotic stress is caused by sudden changes in the impermeable solute concentration around a cell, which induces instantaneous water flow in or out of the cell to balance the concentration. Very little is known about the detailed response mechanism to osmotic stress in marine Synechococcus, one of the major oxygenic phototrophic cyanobacterial genera that contribute greatly to the global CO2 fixation. Results We present here a computational study of the osmoregulation network in response to hyperosmotic stress of Synechococcus sp strain WH8102 using comparative genome analyses and computational prediction. In this study, we identified the key transporters, synthetases, signal sensor proteins and transcriptional regulator proteins, and found experimentally that of these proteins, 15 genes showed significantly changed expression levels under a mild hyperosmotic stress. Conclusions From the predicted network model, we have made a number of interesting observations about WH8102. Specifically, we found that (i) the organism likely uses glycine betaine as the major osmolyte, and others such as glucosylglycerol, glucosylglycerate, trehalose, sucrose and arginine as the minor osmolytes, making it efficient and adaptable to its changing environment; and (ii) σ38, one of the seven types of σ factors, probably serves as a global regulator coordinating the osmoregulation network and the other relevant networks.
Collapse
Affiliation(s)
- Xizeng Mao
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
25
|
Xu S, Zhou J, Liu L, Chen J. Proline enhances Torulopsis glabrata growth during hyperosmotic stress. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0131-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Klähn S, Steglich C, Hess WR, Hagemann M. Glucosylglycerate: a secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol 2010; 12:83-94. [DOI: 10.1111/j.1462-2920.2009.02045.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Characterization of osmolyte betaine synthesizing sarcosine dimethylglycine N-methyltransferase from Methanohalophilus portucalensis. Arch Microbiol 2009; 191:735-43. [DOI: 10.1007/s00203-009-0501-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/23/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
|
28
|
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 2009; 73:249-99. [PMID: 19487728 PMCID: PMC2698417 DOI: 10.1128/mmbr.00035-08] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45 degrees N to 40 degrees S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
Collapse
Affiliation(s)
- D J Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
McCoy JG, Bailey LJ, Ng YH, Bingman CA, Wrobel R, Weber APM, Fox BG, Phillips GN. Discovery of sarcosine dimethylglycine methyltransferase from Galdieria sulphuraria. Proteins 2009; 74:368-77. [PMID: 18623062 DOI: 10.1002/prot.22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An enzyme with sarcosine dimethylglycine methyltransferase (SDMT) activity has been identified in the thermophilic eukaryote, Galdieria sulphuraria. The crystal structure of the enzyme, solved to a resolution of 1.95 A, revealed a fold highly similar to that of mycolic acid synthases. The kcat and apparent K(M) values were 64.3 min(-1) and 2.0 mM for sarcosine and 85.6 min(-1) and 2.8 mM for dimethylglycine, respectively. Apparent K(M) values of S-adenosylmethionine were 144 and 150 microM for sarcosine and dimethylglycine, respectively, and the enzyme melting temperature was 61.1 degrees C. Modeling of cofactor binding in the active site based on the structure of methoxy mycolic acid synthase 2 revealed a number of conserved interactions within the active site.
Collapse
Affiliation(s)
- Jason G McCoy
- Center for Eukaryotic Structural Genomics and Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|