1
|
Shi C, Yuan Z, Zhong X, Yang Q, Yin Y, Hu L, Wang Y, Liang Y. Light intensity can significantly regulate cadmium transformation into CdS nanoparticles in microalgae (Dunaliella salina and Phaeodactylum tricornutum). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118032. [PMID: 40080938 DOI: 10.1016/j.ecoenv.2025.118032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Light is a critical factor influencing algal growth and contributes to the uptake of metal elements by algae. However, the impact of light on the bioavailability and transformation of heavy metals requires further exploration, particularly in the context of bioremediation efforts. This study explores how varying light intensities (1000, 2000, and 3000 lux) influence the ability of these algae to absorb Cd, distribute it within cells, and transform Cd (II) into CdS NPs. By using ICP-MS, it was found that increasing the light intensity to 2000 lux could increase the Cd uptake capacity of Dunaliella salina and Phaeodactylum tricornutum by 28 % and 14 %, respectively. Changes in the percentage of Cd (II) in each component (medium, intracellular, and adsorption on cell surface) with the different light intensities supported the interpretation that the increase in Cd uptake by algal cells was a result of increased cellular adsorption and accumulation. Further analyses by HRTEM-EDS and SEC-ICP-MS showed that increasing light intensity not only influenced the size of CdS NPs but also significantly enhanced the algae's efficiency in transforming Cd(II) into CdS NPs. It is found that the transformation ratio of CdS NPs by D. salina and P. tricornutum increased to 16 % and 52 % respectively, after 10 days of Cd exposure under 2000 lux light intensity. These findings underscore the significance of light intensity as an environmental factor in the uptake and transformation of Cd by algae, with profound implications for its application in bioremediation.
Collapse
Affiliation(s)
- Chang Shi
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zesheng Yuan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Xin Zhong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qingqing Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
2
|
Retta B, Iovinella M, Ciniglia C. Significance and Applications of the Thermo-Acidophilic Microalga Galdieria sulphuraria (Cyanidiophytina, Rhodophyta). PLANTS (BASEL, SWITZERLAND) 2024; 13:1786. [PMID: 38999626 PMCID: PMC11243675 DOI: 10.3390/plants13131786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Galdieria sulphuraria is a thermo-acidophilic microalga belonging to the Cyanidiophyceae (Rhodophyta) class. It thrives in extreme environments, such as geothermal sulphuric springs, with low pH, high temperatures, and high salinity. This microalga utilises various growth modes, including autotrophic, heterotrophic, and mixotrophic, enabling it to exploit diverse organic carbon sources. Remarkably, G. sulphuraria survives and produces a range of bioactive compounds in these harsh conditions. Moreover, it plays a significant role in environmental remediation by removing nutrients, pathogens, and heavy metals from various wastewater sources. It can also recover rare earth elements from mining wastewater and electronic waste. This review article explores the diverse applications and significant contributions of G. sulphuraria.
Collapse
Affiliation(s)
- Berhan Retta
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy
| | - Manuela Iovinella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Claudia Ciniglia
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
3
|
Dong H, Liu L, Zhou Q, Tang Y, Wang H, Yin Y, Shi J, He B, Li Y, Hu L, Jiang G. Transformation of Mercuric Ions to Mercury Nanoparticles in Diatom Chaetoceros curvisetus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19772-19781. [PMID: 37932229 DOI: 10.1021/acs.est.3c05618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Particulate HgS play crucial roles in the mercury (Hg) cycle. Approximately 20-90% of dissolved Hg can be transformed into particulate HgS by algae. However, detailed knowledge regarding these particles, including sizes and distribution, remains unknown. The present study explored the formation, distribution, and excretion of mercury nanoparticles (HgNPs) in diatom Chaetoceros curvisetus. The results demonstrated that HgNPs (HgS nanoparticles, 29.6-66.2 nm) formed intracellularly upon exposure to 5.0-100.0 μg L-1 Hg(II), accounting for 12-27% of the total Hg. HgNP concentrations significantly increased with increasing intracellular Hg(II) concentrations, while their sizes remained unaffected. HgNPs formed intracellularly and partly accumulated inside the cells (7-11%). Subsequently, the sizes of intracellular HgNPs gradually decreased to facilitate expulsion, 21-50% of which were excreted. These suggested the vital roles of HgNPs in comprehending marine Hg fate. Their unique physicochemical properties and bioavailability would influence Hg biotransformation in the ocean. Additionally, both intracellular and extracellular HgNPs contributed to Hg settling with cells, ultimately leading to Hg burial in sediments. Overall, these findings further deepened our understanding of Hg biotransformation and posed challenges in accurately estimating marine Hg flux and Hg burial.
Collapse
Affiliation(s)
- Hongzhe Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qinfei Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huiling Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Aravind MK, Vignesh NS, Gayathri S, Anjitha N, Athira KM, Gunaseelan S, Arunkumar M, Sanjaykumar A, Karthikumar S, Ganesh Moorthy IM, Ashokkumar B, Pugazhendhi A, Varalakshmi P. Review on rewiring of microalgal strategies for the heavy metal remediation - A metal specific logistics and tactics. CHEMOSPHERE 2023; 313:137310. [PMID: 36460155 DOI: 10.1016/j.chemosphere.2022.137310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Phycoremediation of heavy metals are gaining much attention and becoming an emerging practice for the metal removal in diverse environmental matrices. Still, the physicochemical state of metal polluted sites is often found to be complex and haphazard in nature due to the irregular discharge of wastes, that leads to the lack of conjecture on the application of microalgae for the metal bioremediation. Besides, the foresaid issues might be eventually ended up with futile effect to the polluted site. Therefore, this review is mainly focusing on interpretative assessment on pre-existing microalgal strategies and their merits and demerits for selected metal removal by microalgae through various process such as natural attenuation, nutritional amendment, chemical pretreatment, metal specific modification, immobilization and amalgamation, customization of genetic elements and integrative remediation approaches. Thus, this review provides the ideal knowledge for choosing an efficient metal remediation tactics based on the state of polluted environment. Also, this in-depth description would provide the speculative knowledge of counteractive action required for pass-over the barriers and obstacles during implementation. In addition, the most common metal removal mechanism of microalgae by adsorption was comparatively investigated with different metals through the principal component analysis by grouping various factor such as pH, temperature, initial metal concentration, adsorption capacity, removal efficiency, contact time in different microalgae. Conclusively, the suitable strategies for different heavy metals removal and addressing the complications along with their solution is comprehensively deliberated for metal removal mechanism in microalgae.
Collapse
Affiliation(s)
- Manikka Kubendran Aravind
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nagamalai Sakthi Vignesh
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Santhalingam Gayathri
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Nair Anjitha
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Kottilinkal Manniath Athira
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Sathaiah Gunaseelan
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Malaisamy Arunkumar
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India; International Centre for Genetic Engineering and Biotechnology (ICGEB), Transcription Regulation Group, New Delhi, 110067, India
| | - Ashokkumar Sanjaykumar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - Sankar Karthikumar
- Department of Biotechnology, Kamaraj College of Engineering and Technology, Virudhunagar, 626001, Tamil Nadu, India
| | | | - Balasubramaniem Ashokkumar
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | | | - Perumal Varalakshmi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|
5
|
Pradhan B, Bhuyan PP, Nayak R, Patra S, Behera C, Ki JS, Ragusa A, Lukatkin AS, Jena M. Microalgal Phycoremediation: A Glimpse into a Sustainable Environment. TOXICS 2022; 10:toxics10090525. [PMID: 36136490 PMCID: PMC9502476 DOI: 10.3390/toxics10090525] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 05/28/2023]
Abstract
Microalgae are continually exposed to heavy metals and metalloids (HMMs), which stifles their development and reproduction due to the resulting physiological and metabolic abnormalities, leading to lower crop productivity. They must thus change their way of adapting to survive in such a hostile environment without sacrificing their healthy growth, development, reproductive capacity, or survival. The mode of adaptation involves a complex relationship of signalling cascades that govern gene expression at the transcriptional and post-transcriptional levels, which consequently produces altered but adapted biochemical and physiochemical parameters. Algae have been reported to have altered their physicochemical and molecular perspectives as a result of exposure to a variety of HMMs. Hence, in this review, we focused on how microalgae alter their physicochemical and molecular characteristics as a tolerance mechanism in response to HMM-induced stress. Furthermore, physiological and biotechnological methods can be used to enhance extracellular absorption and clean up. The introduction of foreign DNA into microalgae cells and the genetic alteration of genes can boost the bio-accumulation and remediation capabilities of microalgae. In this regard, microalgae represent an excellent model organism and could be used for HMM removal in the near future.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, Odisha, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela 769001, Odisha, India
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Andrea Ragusa
- CNR-Nanotec, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- Department of Biological and Environmental Sciences and Technologies, Campus Ecotekne, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alexander S. Lukatkin
- Department of General Biology and Ecology, N.P. Ogarev Mordovia State University, Bolshevistskaja Str., 430005 Saransk, Russia
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India
| |
Collapse
|
6
|
Lei P, Zou N, Liu Y, Cai W, Wu M, Tang W, Zhong H. Understanding the risks of mercury sulfide nanoparticles in the environment: Formation, presence, and environmental behaviors. J Environ Sci (China) 2022; 119:78-92. [PMID: 35934468 DOI: 10.1016/j.jes.2022.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/16/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) could be microbially methylated to the bioaccumulative neurotoxin methylmercury (MeHg), raising health concerns. Understanding the methylation of various Hg species is thus critical in predicting the MeHg risk. Among the known Hg species, mercury sulfide (HgS) is the largest Hg reservoir in the lithosphere and has long been considered to be highly inert. However, with advances in the analytical methods of nanoparticles, HgS nanoparticles (HgS NPs) have recently been detected in various environmental matrices or organisms. Furthermore, pioneering laboratory studies have reported the high bioavailability of HgS NPs. The formation, presence, and transformation (e.g., methylation) of HgS NPs are intricately related to several environmental factors, especially dissolved organic matter (DOM). The complexity of the behavior of HgS NPs and the heterogeneity of DOM prevent us from comprehensively understanding and predicting the risk of HgS NPs. To reveal the role of HgS NPs in Hg biogeochemical cycling, research needs should focus on the following aspects: the formation pathways, the presence, and the environmental behaviors of HgS NPs impacted by the dominant influential factor of DOM. We thus summarized the latest progress in these aspects and proposed future research priorities, e.g., developing the detection techniques of HgS NPs and probing HgS NPs in various matrices, further exploring the interactions between DOM and HgS NPs. Besides, as most of the previous studies were conducted in laboratories, our current knowledge should be further refreshed through field observations, which would help to gain better insights into predicting the Hg risks in natural environment.
Collapse
Affiliation(s)
- Pei Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Nan Zou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yujiao Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Weiping Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough Ontario, K9L 0G2, Canada.
| |
Collapse
|
7
|
Hejna M, Kapuścińska D, Aksmann A. Pharmaceuticals in the Aquatic Environment: A Review on Eco-Toxicology and the Remediation Potential of Algae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7717. [PMID: 35805373 PMCID: PMC9266021 DOI: 10.3390/ijerph19137717] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
The pollution of the aquatic environment has become a worldwide problem. The widespread use of pesticides, heavy metals and pharmaceuticals through anthropogenic activities has increased the emission of such contaminants into wastewater. Pharmaceuticals constitute a significant class of aquatic contaminants and can seriously threaten the health of non-target organisms. No strict legal regulations on the consumption and release of pharmaceuticals into water bodies have been implemented on a global scale. Different conventional wastewater treatments are not well-designed to remove emerging contaminants from wastewater with high efficiency. Therefore, particular attention has been paid to the phycoremediation technique, which seems to be a promising choice as a low-cost and environment-friendly wastewater treatment. This technique uses macro- or micro-algae for the removal or biotransformation of pollutants and is constantly being developed to cope with the issue of wastewater contamination. The aims of this review are: (i) to examine the occurrence of pharmaceuticals in water, and their toxicity on non-target organisms and to describe the inefficient conventional wastewater treatments; (ii) present cost-efficient algal-based techniques of contamination removal; (iii) to characterize types of algae cultivation systems; and (iv) to describe the challenges and advantages of phycoremediation.
Collapse
Affiliation(s)
| | | | - Anna Aksmann
- Department of Plant Physiology and Biotechnology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (M.H.); (D.K.)
| |
Collapse
|
8
|
Roy A, Gogoi N, Yasmin F, Farooq M. The use of algae for environmental sustainability: trends and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40373-40383. [PMID: 35332453 DOI: 10.1007/s11356-022-19636-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Algae are photosynthetic prokaryotic or eukaryotic ubiquitously found group of organisms. Their enormous potentiality in coping up with various environmental crises has been well documented. Algae have proven to be ideal for biomonitoring of water pollution and help in removing the pollutants with their process of bioremediation apart from the production of eco-friendly sources of energy. Industries like food and pharmaceuticals are exploiting algae for producing several value-added products. The agricultural sector is also highly benefited from microalgae, as they are the good promoters of crop growth. The CO2-removing potential of algae proves to be an asset in fighting climate change. Moreover, the relatively easy and inexpensive methods of sampling and culturing of algae make them more popular. In this paper, we review the sustainable application aspects of algae in various areas like pollution control, energy production, agriculture, and fighting climate change. Critical discussions have been made on the recent trends and advances of algal technologies indicating future prospects.
Collapse
Affiliation(s)
- Amlan Roy
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India
| | - Nirmali Gogoi
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India.
| | - Farishta Yasmin
- Department of Botany, Nowgong College, 782001, Nagaon, Assam, India
| | - Mohammad Farooq
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Muscat, 123, Oman
| |
Collapse
|
9
|
Ranjbar S, Malcata FX. Is Genetic Engineering a Route to Enhance Microalgae-Mediated Bioremediation of Heavy Metal-Containing Effluents? Molecules 2022; 27:1473. [PMID: 35268582 PMCID: PMC8911655 DOI: 10.3390/molecules27051473] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process-with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.
Collapse
Affiliation(s)
- Saeed Ranjbar
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
de Bakker LB, Gasparinetti P, de Queiroz JM, de Vasconcellos ACS. Economic Impacts on Human Health Resulting from the Use of Mercury in the Illegal Gold Mining in the Brazilian Amazon: A Methodological Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211869. [PMID: 34831624 PMCID: PMC8622153 DOI: 10.3390/ijerph182211869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Artisanal small-scale gold mining (ASGM) in the Amazon results in the dumping of tons of mercury into the environment annually. Despite consensus on the impacts of mercury on human health, there are still unknowns regarding: (i) the extent to which mercury from ASGM can be dispersed in the environment until it becomes toxic to humans; and (ii) the economic value of losses caused by contamination becomes evident. The main objective of this study is to propose a methodology to evaluate the impacts of ASGM on human health in different contexts in the Brazilian Amazon. We connect several points in the literature based on hypotheses regarding mercury dispersion in water, its transformation into methylmercury, and absorption by fish and humans. This methodology can be used as a tool to estimate the extent of environmental damage caused by artisanal gold mining, the severity of damage to the health of individuals contaminated by mercury and, consequently, can contribute to the application of fines to environmental violators. The consequences of contamination are evaluated by dose-response functions relating to mercury concentrations in hair and the development of the following health outcomes: (i) mild mental retardation, (ii) acute myocardial infarction, and (iii) hypertension. From disability-adjusted life years and statistical life value, we found that the economic losses range from 100,000 to 400,000 USD per kilogram of gold extracted. A case study of the Yanomami indigenous land shows that the impacts of mercury from illegal gold mining in 2020 totaled 69 million USD, which could be used by local authorities to compensate the Yanomami people.
Collapse
Affiliation(s)
- Leonardo Barcellos de Bakker
- Leonardo B. Bakker Assessoria, São Clemente Street, Rio de Janeiro 254, Rio de Janeiro 22260-004, Brazil
- Correspondence:
| | - Pedro Gasparinetti
- Conservation Strategy Fund, Av. Churchill 129, Rio de Janeiro 20020-050, Brazil;
| | - Júlia Mello de Queiroz
- Julia Queiroz Consultoria Desenvolvimento Verde, Maria Angelica Street, Rio de Janeiro 382, Rio de Janeiro 22461-152, Brazil;
| | - Ana Claudia Santiago de Vasconcellos
- Laboratory of Professional Education in Health Surveillance, Joaquim Venâncio Polytechnic School of Health, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil;
| |
Collapse
|
11
|
Cossart T, Garcia-Calleja J, Worms IAM, Tessier E, Kavanagh K, Pedrero Z, Amouroux D, Slaveykova VI. Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117771. [PMID: 34271517 DOI: 10.1016/j.envpol.2021.117771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of 199iHg and 201MMHg was used to explore the accumulation, the subcellular distribution and transformations occurring in natural pico-nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg preferentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg concentrations measured in the membrane/organelles and cytosol were comparable for iHg and MMHg. Pico-nanoplankton demethylate added 201MMHg (~4 and 12% per day depending on cellular compartment), although the involved pathways are to further explore. Comparison of the concentrations of 201iHg formed from 201MMHg demethylation in whole system, medium and whole cells showed that 82% of the demethylation was biologically mediated by pico-nanoplankton. No significant methylation of iHg by pico-nanoplankton was observed. The accumulation of iHg and MMHg and the percentage of demethylated MMHg correlated positively with the relative abundance of diatoms and heterotrophic microorganisms in the pico-nanoplankton, the concentrations of TN, Mg2+, NO3-, NO2-, NH4+ and negatively with the concentrations of DOC, K+, Na+, Ca2+, SO42-. Taken together the results of the present field study confirm the role of pico-nanoplankton in Hg bioaccumulation and demethylation, however further research is needed to better understand the underlying mechanisms and interconnection between heterotrophic and autotrophic microorganisms.
Collapse
Affiliation(s)
- Thibaut Cossart
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Javier Garcia-Calleja
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Killian Kavanagh
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
12
|
Danouche M, El Ghachtouli N, El Arroussi H. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021; 7:e07609. [PMID: 34355100 PMCID: PMC8322293 DOI: 10.1016/j.heliyon.2021.e07609] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Heavy metal (HM) contamination of water bodies is a serious global environmental problem. Because they are not biodegradable, they can accumulate in food chains, causing various signs of toxicity to exposed organisms, including humans. Due to its effectiveness, low cost, and ecological aspect, phycoremediation, or the use of microalgae's ecological functions in the treatment of HMs contaminated wastewater, is one of the most recommended processes. This study aims to examine in depth the mechanisms involved in the phycoremediation of HMs by microalgae, it also provides an overview of the prospects for improving the productivity, selectivity, and cost-effectiveness of this bioprocess through physicochemical and genetic engineering applications. Firstly, this review proposes a detailed examination of the biosorption interactions between cell wall functional groups and HMs, and their complexation with extracellular polymeric substances released by microalgae in the extracellular environment under stress conditions. Subsequently, the metal transporters involved in the intracellular bioaccumulation of HMs as well as the main intracellular mechanisms including compartmentalization in cell organelles, enzymatic biotransformation, or photoreduction of HMs were also extensively reviewed. In the last section, future perspectives of physicochemical and genetic approaches that could be used to improve the phytoremediation process in terms of removal efficiency, selectivity for a targeted metal, or reduction of treatment time and cost are discussed, which paves the way for large-scale application of phytoremediation processes.
Collapse
Affiliation(s)
- Mohammed Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|
13
|
Leong YK, Chang JS. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. BIORESOURCE TECHNOLOGY 2020; 303:122886. [PMID: 32046940 DOI: 10.1016/j.biortech.2020.122886] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 05/22/2023]
Abstract
Five heavy metals namely, arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb) and mercury (Hg) are carcinogenic and show toxicity even at trace amounts, posing threats to environmental ecology and human health. There is an emerging trend of employing microalgae in phycoremediation of heavy metals, due to several benefits including abundant availability, inexpensive, excellent metal removal efficiency and eco-friendly nature. This review presents the recent advances and mechanisms involved in bioremediation and biosorption of these toxic heavy metals utilizing microalgae. Tolerance and response of different microalgae strains to heavy metals and their bioaccumulation capability with value-added by-products formation as well as utilization of non-living biomass as biosorbents are discussed. Furthermore, challenges and future prospects in bioremediation of heavy metals by microalgae are also explored. This review aims to provide useful insights to help future development of efficient and commercially viable technology for microalgae-based heavy metal bioremediation.
Collapse
Affiliation(s)
- Yoong Kit Leong
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Center for Nanotechnology, Tunghai University, Taichung, Taiwan.
| |
Collapse
|
14
|
Rossoni AW, Price DC, Seger M, Lyska D, Lammers P, Bhattacharya D, Weber APM. The genomes of polyextremophilic cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions. eLife 2019; 8:e45017. [PMID: 31149898 PMCID: PMC6629376 DOI: 10.7554/elife.45017] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023] Open
Abstract
The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which may explain the absence of a eukaryotic pan-genome. Therefore, the lack of a pan-genome and cumulative effects fail to provide substantive arguments against our hypothesis of recurring HGT followed by differential loss in eukaryotes. The maintenance of 1% HGTs, even under selection for genome reduction, underlines the importance of non-endosymbiosis related foreign gene acquisition.
Collapse
Affiliation(s)
- Alessandro W Rossoni
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Dana C Price
- Department of Plant BiologyRutgers UniversityNew BrunswickUnited States
| | - Mark Seger
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | - Dagmar Lyska
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| | - Peter Lammers
- Arizona Center for Algae Technology and InnovationArizona State UniversityMesaUnited States
| | | | - Andreas PM Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS)Heinrich Heine UniversityDüsseldorfGermany
| |
Collapse
|
15
|
Abstract
Mercury (Hg) is a global pollutant emitted primarily as gaseous Hg0 that is deposited in aquatic and terrestrial ecosystems following its oxidation to HgII. From that point, microbes play a key role in determining Hg’s fate in the environment by participating in sequestration, oxidation, reduction, and methylation reactions. A wide diversity of chemotrophic and phototrophic microbes occupying oxic and anoxic habitats are known to participate directly in Hg cycling. Over the last few years, new findings have come to light that have greatly improved our mechanistic understanding of microbe-mediated Hg cycling pathways in the environment. In this review, we summarize recent advances in microbially mediated Hg cycling and take the opportunity to compare the relatively well-studied chemotrophic pathways to poorly understood phototrophic pathways. We present how the use of genomic and analytical tools can be used to understand Hg transformations and the physiological context of recently discovered cometabolic Hg transformations supported in anaerobes and phototrophs. Finally, we propose a conceptual framework that emphasizes the role that phototrophs play in environmental Hg redox cycling and the importance of better characterizing such pathways in the face of the environmental changes currently underway.
Collapse
Affiliation(s)
- Daniel S. Grégoire
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Alexandre J. Poulain
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
16
|
Henderson L, Lilje E, Robinson K, Gleason FH, Lilje O. Chapter 30 Effects of Toxic Metals on Chytrids, Fungal-Like Organisms, and Higher Fungi. Mycology 2017. [DOI: 10.1201/9781315119496-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Torres EM, Hess D, McNeil BT, Guy T, Quinn JC. Impact of inorganic contaminants on microalgae productivity and bioremediation potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:367-376. [PMID: 28189778 DOI: 10.1016/j.ecoenv.2017.01.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 06/06/2023]
Abstract
As underdeveloped nations continue to industrialize and world population continues to increase, the need for energy, natural resources, and goods will lead to ever increasing inorganic contaminants, such as heavy metals, in various waste streams that can have damaging effects on plant life, wildlife, and human health. This work is focused on the evaluation of the potential of Nannochloropsis salina to be integrated with contaminated water sources for the concurrent production of a biofuel feedstock while providing an environmental service through bioremediation. Individual contaminants (As, Cd, Cr, Co, Cu, Pb, Ni, Hg, Se, and Zn) at various concentrations ranging from a low concentration (1X) to higher concentrations (10X, and 40X) found in contaminated systems (mine tailings, wastewater treatment plants, produced water) were introduced into growth media. Biological growth experimentation was performed in triplicate at the various contaminant concentrations and at 3 different light intensities. Results show that baseline concentrations of each contaminant slightly decreased biomass growth to between 89% and 99% of the control with the exception of Ni which dramatically reduced growth. Increased contaminant concentrations resulted in progressively lower growth rates for all contaminants tested. Lipid analysis shows most baseline contaminant concentrations slightly decrease or have minimal effects on lipid content at all light levels. Trace contaminant analysis on the biomass showed Cd, Co, Cu, Pb, and Zn were sorbed by the microalgae with minimal contaminants remaining in the growth media illustrating the effectiveness of microalgae to bioremediate these contaminants when levels are sufficiently low to not detrimentally impact productivity. The microalgae biomass was less efficient at sorption of As, Cr, Ni, and Se.
Collapse
Affiliation(s)
- Eric M Torres
- Mechanical & Aerospace Engineering, Utah State University, Logan, UT, USA
| | - Derek Hess
- Mechanical & Aerospace Engineering, Utah State University, Logan, UT, USA
| | - Brian T McNeil
- Mechanical & Aerospace Engineering, Utah State University, Logan, UT, USA
| | - Tessa Guy
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Jason C Quinn
- Mechanical Engineering, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
18
|
Mahbub KR, Bahar MM, Labbate M, Krishnan K, Andrews S, Naidu R, Megharaj M. Bioremediation of mercury: not properly exploited in contaminated soils! Appl Microbiol Biotechnol 2017; 101:963-976. [DOI: 10.1007/s00253-016-8079-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/18/2022]
|
19
|
Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M, Toyota K. Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chem Rev 2015; 115:3760-802. [DOI: 10.1021/cr500667e] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Marc Amyot
- Department
of Biological Sciences, Université de Montréal, 90
avenue Vincent-d’Indy, Montreal, Quebec, Canada, H3C 3J7
| | - Ashu Dastoor
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | | | | | | | - Alexandre Poulain
- Department
of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada, K1N 6N5
| | - Andrei Ryjkov
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | - Kirill Semeniuk
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | - M. Subir
- Department
of Chemistry, Ball State University, 2000 West University Avenue, Muncie, Indiana 47306, United States
| | - Kenjiro Toyota
- Air
Quality Research Division, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
| |
Collapse
|
20
|
|
21
|
|
22
|
Bravo AG, Le Faucheur S, Monperrus M, Amouroux D, Slaveykova VI. Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 192:212-215. [PMID: 24932531 DOI: 10.1016/j.envpol.2014.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/30/2014] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of (199)-isotopically enriched inorganic mercury ((199)IHg) and of (201)-isotopically enriched monomethylmercury ((201)CH3Hg) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to (199)IHg and (201)CH3Hg alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of (201)CH3Hg was observed at the highest exposure concentrations, whereas no methylation was detected.
Collapse
Affiliation(s)
- Andrea Garcia Bravo
- University of Geneva, Earth and Environment Sciences, Institute F.-A. Forel, 10 route de Suisse, CP 416, CH-1290 Versoix, Switzerland.
| | - Séverine Le Faucheur
- University of Geneva, Earth and Environment Sciences, Institute F.-A. Forel, 10 route de Suisse, CP 416, CH-1290 Versoix, Switzerland
| | - Mathilde Monperrus
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM UMR 5254 CNRS - Université de Pau et des Pays de l'Adour, Hélioparc, 2, Avenue Pierre Angot, 64053 Pau Cedex, France
| | - David Amouroux
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux, IPREM UMR 5254 CNRS - Université de Pau et des Pays de l'Adour, Hélioparc, 2, Avenue Pierre Angot, 64053 Pau Cedex, France
| | - Vera I Slaveykova
- University of Geneva, Earth and Environment Sciences, Institute F.-A. Forel, 10 route de Suisse, CP 416, CH-1290 Versoix, Switzerland.
| |
Collapse
|
23
|
Le Faucheur S, Campbell PGC, Fortin C, Slaveykova VI. Interactions between mercury and phytoplankton: speciation, bioavailability, and internal handling. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1211-1224. [PMID: 24127330 DOI: 10.1002/etc.2424] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 06/11/2013] [Accepted: 10/03/2013] [Indexed: 06/02/2023]
Abstract
The present review describes and discusses key interactions between mercury (Hg) and phytoplankton to highlight the role of phytoplankton in the biogeochemical cycle of Hg and to understand direct or indirect Hg effects on phytoplankton. Phytoplankton are exposed to various Hg species in surface waters. Through Hg uptake, phytoplankton affect the concentration, speciation, and fate of Hg in aquatic systems. The mechanisms by which phytoplankton take up Hg are still not well known, but several studies have suggested that both facilitated transport and passive diffusion could be involved. Once internalized, Hg will impact several physiological processes, including photosynthesis. To counteract these negative effects, phytoplankton have developed several detoxification strategies, such as the reduction of Hg to elemental Hg or its sequestration by intracellular ligands. Based on the toxicological studies performed so far in the laboratory, Hg is unlikely to be toxic to phytoplankton when they are exposed to environmentally relevant Hg concentrations. However, this statement should be taken with caution because questions remain as to which Hg species control Hg bioavailability and about Hg uptake mechanisms. Finally, phytoplankton are primary producers, and accumulated Hg will be transferred to higher consumers. Phytoplankton are a key component in aquatic systems, and their interactions with Hg need to be further studied to fully comprehend the biogeochemical cycle of Hg and the impact of this ubiquitous metal on ecosystems.
Collapse
Affiliation(s)
- Séverine Le Faucheur
- Institute F.-A. Forel, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Versoix, Switzerland
| | | | | | | |
Collapse
|
24
|
Wu Y, Wang WX. Intracellular speciation and transformation of inorganic mercury in marine phytoplankton. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 148:122-129. [PMID: 24473163 DOI: 10.1016/j.aquatox.2014.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/02/2014] [Accepted: 01/06/2014] [Indexed: 06/03/2023]
Abstract
Metal speciation is closely related to toxicity in aquatic organisms, but quantitative study of mercury transformation has rarely been reported. In this study, the ability of three marine phytoplankton species, including a green alga Chlorella autotrophica, a flagellate Isochrysis galbana and a diatom Thalassiosira weissflogii, to convert inorganic mercury were examined. We found that all algae tested were able to transform Hg(II) into dissolved gaseous mercury (DGM), phytochelatin (PC) complexes and metacinnabar (β-HgS). The most tolerant species, T. weissflogii, generally produced the highest level of PCs and β-HgS. Attributed to the highest DGM production ability, C. autotrophica accumulated the least Hg, but was the most sensitive due to low PC induction and β-HgS formation. Of the added Hg(II), less than 5% was reduced to DGM per day in all species. Of the intracellular Hg, <20% and 20-90% were chelated by PCs and transformed into β-HgS, respectively. These results suggest that intracellular biotransformation might be more important than bioavailability regulation in Hg(II) detoxification in marine phytoplankton.
Collapse
Affiliation(s)
- Yun Wu
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
25
|
Pant D, Singh P. Pollution due to hazardous glass waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2414-36. [PMID: 24281678 DOI: 10.1007/s11356-013-2337-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/04/2013] [Indexed: 05/16/2023]
Abstract
Pollution resulting from hazardous glass (HG) is widespread across the globe, both in terms of quantity and associated health risks. In waste cathode ray tube (CRT) and fluorescent lamp glass, mercury and lead are present as the major pollutants. The current review discusses the issues related to quantity and associated risk from the pollutant present in HG and proposes the chemical, biological, thermal, hybrid, and nanotechniques for its management. The hybrid is one of the upcoming research models involving the compatible combination of two or more techniques for better and efficient remediation. Thermal mercury desorption starts at 100 °C but for efficient removal, the temperature should be >460 °C. Involvement of solar energy for this purpose makes the research more viable and ecofriendly. Nanoparticles such as Fe, Se, Cu, Ni, Zn, Ag, and WS2 alone or with its formulation can immobilize heavy metals present in HG by involving a redox mechanism. Straight-line equation from year-wise sale can provide future sale data in comparison with lifespan which gives future pollutant approximation. Waste compact fluorescent lamps units projected for the year 2015 is 9,300,000,000 units and can emit nearly 9,300 kg of mercury. On the other hand, CRT monitors have been continuously replaced by more improved versions like liquid crystal display and plasma display panel resulting in the production of more waste. Worldwide CRT production was 83,300,000 units in 2002 and can approximately release 83,000 metric tons of lead.
Collapse
Affiliation(s)
- Deepak Pant
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, Himachal Pradesh, 176215, India,
| | | |
Collapse
|
26
|
Grégoire DS, Poulain AJ. A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 2014; 6:396-407. [DOI: 10.1039/c3mt00312d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Skorupa DJ, Castenholz RW, Mazurie A, Carey C, Rosenzweig F, McDermott TR. In situ gene expression profiling of the thermoacidophilic alga Cyanidioschyzon in relation to visible and ultraviolet irradiance. Environ Microbiol 2013; 16:1627-41. [PMID: 24274381 DOI: 10.1111/1462-2920.12317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 10/20/2013] [Indexed: 02/04/2023]
Abstract
Ultraviolet and high-intensity visible radiation generate reactive intermediates that damage phototrophic microorganisms. In Yellowstone National Park, the thermoacidophilic alga Cyanidioschyzon exhibits an annual seasonal biomass fluctuation referred to as 'mat decline', where algal viability decreases as ultraviolet and visible irradiances increase during summer. We examined the role irradiance might play in mat decline using irradiance filters that uncouple ultraviolet and visible effects along with custom microarrays to study gene expression in situ. Of the 6507 genes, 88% showed no response to ultraviolet or visible, implying that at the biomolecular level, these algae inhabit a chemostat-like environment and is consistent with the near constant aqueous chemistry measured. The remaining genes exhibited expression changes linked to ultraviolet exposure, to increased visible radiation, or to the apparent combined effects of ultraviolet and visible. Expression of DNA repetitive elements was synchronized, being repressed by visible but also influenced by ultraviolet. At highest irradiance levels, these algae reduced transcription of genes encoding functions involved with DNA replication, photosynthesis and cell cycle progression but exhibited an uptick in activities related to repairing DNA damage. This corroborates known physiological responses to ultraviolet and visible radiation, and leads us to provisionally conclude that mat decline is linked to photoinhibition.
Collapse
Affiliation(s)
- Dana J Skorupa
- Department of Microbiology, Montana State University, Bozeman, MT, 59717, USA
| | | | | | | | | | | |
Collapse
|
28
|
Wu Y, Wang WX. Differential acclimation of a marine diatom to inorganic mercury and methylmercury exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 138-139:52-59. [PMID: 23707793 DOI: 10.1016/j.aquatox.2013.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/21/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
Aquatic organisms originating from metal polluted water may exhibit differences in their sensitivity to metals, but the underlying physiological mechanisms resulting in such responses have not been well reported. In the present study, a marine diatom Thalassiosira weissflogii was chronically exposed to different inorganic mercury (Hg(II), 0.5 and 5 μg Hg/L) or methylmercury (MeHg, 0.02 and 0.4 μg Hg/L) concentrations for over 18 generations. We then quantified the changes in the Hg(II) or MeHg sensitivity, Hg accumulation, subcellular distribution, as well as thiol compound induction in the diatoms. We found an unchanged tolerance to Hg(II) but an enhanced tolerance to MeHg in the preconditioned T. weissflogii. The underlying mechanisms may be related to the changes in cellular mercury accumulation and the detoxification ability of the cells. Specifically, exposure to high-Hg(II) led to increased metal distribution in cellular debris fraction, as well as the induction of a variety of non-protein thiol compounds, but the uptake kinetics was not significantly modified by Hg(II) exposure. Instead, exposure to high-MeHg decreased the mercury uptake rate along with the synthesis of glutathione (GSH) and (γ-EC)₂-Gly (PC₂). All these responses contributed to the different tolerance developments between Hg(II) and MeHg. This study suggests that moderation of Hg bioavailability was probably more important than internal detoxification in the development of Hg acclimation in marine diatoms.
Collapse
Affiliation(s)
- Yun Wu
- Division of Life Science, The Hong Kong University of Science and Technology-HKUST, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
29
|
Edwards CD, Beatty JC, Loiselle JBR, Vlassov KA, Lefebvre DD. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms. BMC Microbiol 2013; 13:161. [PMID: 23855952 PMCID: PMC3750252 DOI: 10.1186/1471-2180-13-161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022] Open
Abstract
Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus indicating that algae and cyanobacteria can produce CdS in a manner similar to that of HgS. Significant increases in sulfate assimilation as measured by SAT-OASTL activity were not detected. However, the enhanced activity of cysteine desulfhydrase indicates that it is instrumental in the provision of H2S for aerobic CdS biosynthesis.
Collapse
Affiliation(s)
- Chad D Edwards
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
30
|
Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms. Appl Microbiol Biotechnol 2013; 97:3613-23. [DOI: 10.1007/s00253-012-4636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
31
|
Wu Y, Wang WX. Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure. JOURNAL OF HAZARDOUS MATERIALS 2012; 217-218:271-8. [PMID: 22476094 DOI: 10.1016/j.jhazmat.2012.03.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/07/2012] [Accepted: 03/09/2012] [Indexed: 05/20/2023]
Abstract
We investigated the kinetics of Hg(II) and MeHg accumulation and the synthesis of phytochelatins (PCs), cysteine (Cys), glutathione (GSH), and γ-glutamylcysteine (γ-EC) in a marine diatom Thalassiosira weissflogii during a 3-h (short-term) and a 96-h (long-term) exposure period, and during a subsequent 96-h recovery period. MeHg induced the synthesis of a significant level of GSH, but it was Hg(II) that gave rise to significant levels of other non-protein thiol compounds. The thiol compounds Cys, γ-EC, and PC(2-3) were induced in T. weissflogii within the first 30 min of exposure, followed by PC(4), but the concentrations of all six compounds returned to the control levels after the 96-h recovery period. The kinetics of these non-protein thiol compounds pointed to a rapid cellular response to environmental mercury pollution. After a first decrease, the molar ratio of PC-SH (sulfhydryl in PCs) to intracellular Hg increased slightly which demonstrated the role of PCs in Hg(II) detoxification. However, PC-SH was bound with Hg(II) at a stoichiometric ratio of 0.1-0.3, indicating the involvement of other detoxification mechanisms. Elucidating the effects of mercury on intracellular non-protein thiol pools may help us better understand the metal detoxification in phytoplankton.
Collapse
Affiliation(s)
- Yun Wu
- Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
32
|
Morelli E, Ferrara R, Bellini B, Dini F, Di Giuseppe G, Fantozzi L. Changes in the non-protein thiol pool and production of dissolved gaseous mercury in the marine diatom Thalassiosira weissflogii under mercury exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 408:286-293. [PMID: 19846208 DOI: 10.1016/j.scitotenv.2009.09.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 09/16/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
Two detoxification mechanisms working in the marine diatom Thalassiosira weissflogii to cope with mercury toxicity were investigated. Initially, the effect of mercury on the intracellular pool of non-protein thiols was studied in exponentially growing cultures exposed to sub-toxic HgCl(2) concentrations. T. weissflogii cells responded by synthesizing metal-binding peptides, named phytochelatins (PCs), besides increasing the intracellular pool of glutathione and gamma-glutamylcysteine (gamma-EC). Intracellular Hg and PC concentrations increased with the Hg concentration in the culture medium, exhibiting a distinct dose-response relationship. However, considerations of the PCs-SH:Hg molar ratio suggest that glutathione could also be involved in the intracellular mercury sequestration. The time course of the non-protein thiol pool and Hg intracellular concentration shows that PCs, glutathione and gamma-EC represent a rapid cellular response to mercury, although their role in Hg detoxification seems to lose importance at longer incubation times. The occurrence of a process of reduction of Hg(II) to Hg degrees and subsequent production of dissolved gaseous mercury (DGM) was also investigated at lower Hg concentrations, at which the PC synthesis doesn't seem to be involved. The significant (P<0.01) correlation between the cellular density in solution and the production of DGM suggests that this diatom is capable of directly producing DGM, both in light and dark conditions. This finding has been confirmed by the absence of DGM production in the culture media containing formaldehyde-killed cells. Finally, the relationship between these two different pathways of Hg detoxification is discussed.
Collapse
Affiliation(s)
- Elisabetta Morelli
- Istituto di Biofisica (CNR), Area della Ricerca di Pisa, Via Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
The biotransformation of Hg(II) by cyanobacteria was investigated under aerobic and pH-controlled culture conditions. Mercury was supplied as HgCl(2) in amounts emulating those found under heavily impacted environmental conditions where bioremediation would be appropriate. The analytical procedures used to measure mercury within the culture solution, including that in the cyanobacterial cells, used reduction under both acid and alkaline conditions in the presence of SnCl(2). Acid reduction detected free Hg(II) ions and its complexes, whereas alkaline reduction revealed that meta-cinnabar (beta-HgS) constituted the major biotransformed and cellularly associated mercury pool. This was true for all investigated species of cyanobacteria: Limnothrix planctonica (Lemm.), Synechococcus leopoldiensis (Racib.) Komarek, and Phormidium limnetica (Lemm.). From the outset of mercury exposure, there was rapid synthesis of beta-HgS and Hg(0); however, the production rate for the latter decreased quickly. Inhibitory studies using dimethylfumarate and iodoacetamide to modify intra- and extracellular thiols, respectively, revealed that the former thiol pool was required for the conversion of Hg(II) into beta-HgS. In addition, increasing the temperature enhanced the amount of beta-HgS produced, with a concomitant decrease in Hg(0) volatilization. These findings suggest that in the environment, cyanobacteria at the air-water interface could act to convert substantial amounts of Hg(II) into beta-HgS. Furthermore, the efficiency of conversion into beta-HgS by cyanobacteria may lead to the development of applications in the bioremediation of mercury.
Collapse
Affiliation(s)
- Daniel D Lefebvre
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | | | | |
Collapse
|