1
|
Bhat AA, Shakeel A, Waqar S, Handoo ZA, Khan AA. Microbes vs. Nematodes: Insights into Biocontrol through Antagonistic Organisms to Control Root-Knot Nematodes. PLANTS (BASEL, SWITZERLAND) 2023; 12:451. [PMID: 36771535 PMCID: PMC9919851 DOI: 10.3390/plants12030451] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are sedentary endoparasites that cause severe economic losses to agricultural crops globally. Due to the regulations of the European Union on the application of nematicides, it is crucial now to discover eco-friendly control strategies for nematode management. Biocontrol is one such safe and reliable method for managing these polyphagous nematodes. Biocontrol agents not only control these parasitic nematodes but also improve plant growth and induce systemic resistance in plants against a variety of biotic stresses. A wide range of organisms such as bacteria, fungi, viruses, and protozoans live in their natural mode as nematode antagonists. Various review articles have discussed the role of biocontrol in nematode management in general, but a specific review on biocontrol of root-knot nematodes is not available in detail. This review, therefore, focuses on the biocontrol of root-knot nematodes by discussing their important known antagonists, modes of action, and interactions.
Collapse
Affiliation(s)
- Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Adnan Shakeel
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Zafar Ahmad Handoo
- Mycology and Nematology Genetic Diversity and Biology Laboratory, USDA, ARS, Northeast Area, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Abrar Ahmed Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
2
|
Vicente CSL, Soares M, Faria JMS, Ramos AP, Inácio ML. Insights into the Role of Fungi in Pine Wilt Disease. J Fungi (Basel) 2021; 7:jof7090780. [PMID: 34575818 PMCID: PMC8469835 DOI: 10.3390/jof7090780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD) is a complex disease that severely affects the biodiversity and economy of Eurasian coniferous forests. Three factors are described as the main elements of the disease: the pinewood nematode (PWN) Bursaphelenchus xylophilus, the insect-vector Monochamus spp., and the host tree, mainly Pinus spp. Nonetheless, other microbial interactors have also been considered. The study of mycoflora in PWD dates back the late seventies. Culturomic studies have revealed diverse fungal communities associated with all PWD key players, composed frequently of saprophytic fungi (i.e., Aspergillus, Fusarium, Trichoderma) but also of necrotrophic pathogens associated with bark beetles, such as ophiostomatoid or blue-stain fungi. In particular, the ophiostomatoid fungi often recovered from wilted pine trees or insect pupal chambers/tunnels, are considered crucial for nematode multiplication and distribution in the host tree. Naturally occurring mycoflora, reported as possible biocontrol agents of the nematode, are also discussed in this review. This review discloses the contrasting effects of fungal communities in PWD and highlights promising fungal species as sources of PWD biocontrol in the framework of sustainable pest management actions.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| | - Miguel Soares
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
| | - Jorge M. S. Faria
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, 7006-554 Évora, Portugal;
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
| | - Ana P. Ramos
- Laboratório de Patologia Vegetal “Veríssimo de Almeida” (LPVVA), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal; (M.S.); (A.P.R.)
- Linking Environment Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), University of Lisbon, 1349-017 Lisboa, Portugal
| | - Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), 2780-159 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
- Correspondence: (C.S.L.V.); (M.L.I.)
| |
Collapse
|
3
|
Zhang Y, Li S, Li H, Wang R, Zhang KQ, Xu J. Fungi-Nematode Interactions: Diversity, Ecology, and Biocontrol Prospects in Agriculture. J Fungi (Basel) 2020; 6:E206. [PMID: 33020457 PMCID: PMC7711821 DOI: 10.3390/jof6040206] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/27/2023] Open
Abstract
Fungi and nematodes are among the most abundant organisms in soil habitats. They provide essential ecosystem services and play crucial roles for maintaining the stability of food-webs and for facilitating nutrient cycling. As two of the very abundant groups of organisms, fungi and nematodes interact with each other in multiple ways. Here in this review, we provide a broad framework of interactions between fungi and nematodes with an emphasis on those that impact crops and agriculture ecosystems. We describe the diversity and evolution of fungi that closely interact with nematodes, including food fungi for nematodes as well as fungi that feed on nematodes. Among the nematophagous fungi, those that produce specialized nematode-trapping devices are especially interesting, and a great deal is known about their diversity, evolution, and molecular mechanisms of interactions with nematodes. Some of the fungi and nematodes are significant pathogens and pests to crops. We summarize the ecological and molecular mechanisms identified so far that impact, either directly or indirectly, the interactions among phytopathogenic fungi, phytopathogenic nematodes, and crop plants. The potential applications of our understanding to controlling phytophagous nematodes and soilborne fungal pathogens in agricultural fields are discussed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Shuoshuo Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Haixia Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ruirui Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- School of Life Science, Yunnan University, Kunming 650032, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
| | - Jianping Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming 650032, China; (Y.Z.); (S.L.); (H.L.); (R.W.)
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
4
|
Kumar KK. Fungi: A Bio-resource for the Control of Plant Parasitic Nematodes. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Granzow S, Kaiser K, Wemheuer B, Pfeiffer B, Daniel R, Vidal S, Wemheuer F. The Effects of Cropping Regimes on Fungal and Bacterial Communities of Wheat and Faba Bean in a Greenhouse Pot Experiment Differ between Plant Species and Compartment. Front Microbiol 2017; 8:902. [PMID: 28611735 PMCID: PMC5447230 DOI: 10.3389/fmicb.2017.00902] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 05/03/2017] [Indexed: 11/24/2022] Open
Abstract
Many bacteria and fungi in the plant rhizosphere and endosphere are beneficial to plant nutrient acquisition, health, and growth. Although playing essential roles in ecosystem functioning, our knowledge about the effects of multiple cropping regimes on the plant microbiome and their interactions is still limited. Here, we designed a pot experiment simulating different cropping regimes. For this purpose, wheat and faba bean plants were grown under controlled greenhouse conditions in monocultures and in two intercropping regimes: row and mixed intercropping. Bacterial and fungal communities in bulk and rhizosphere soils as well as in the roots and aerial plant parts were analyzed using large-scale metabarcoding. We detected differences in microbial richness and diversity between the cropping regimes. Generally, observed effects were attributed to differences between mixed and row intercropping or mixed intercropping and monoculture. Bacterial and fungal diversity were significantly higher in bulk soil samples of wheat and faba bean grown in mixed compared to row intercropping. Moreover, microbial communities varied between crop species and plant compartments resulting in different responses of these communities toward cropping regimes. Leaf endophytes were not affected by cropping regime but bacterial and fungal community structures in bulk and rhizosphere soil as well as fungal community structures in roots. We further recorded highly complex changes in microbial interactions. The number of negative inter-domain correlations between fungi and bacteria decreased in bulk and rhizosphere soil in intercropping regimes compared to monocultures due to beneficial effects. In addition, we observed plant species-dependent differences indicating that intra- and interspecific competition between plants had different effects on the plant species and thus on their associated microbial communities. To our knowledge, this is the first study investigating microbial communities in different plant compartments with respect to multiple cropping regimes using large-scale metabarcoding. Although a simple design simulating different cropping regimes was used, obtained results contribute to the understanding how cropping regimes affect bacterial and fungal communities and their interactions in different plant compartments. Nonetheless, we need field experiments to properly quantify observed effects in natural ecosystems.
Collapse
Affiliation(s)
- Sandra Granzow
- Section of Agricultural Entomology, Department of Crop Sciences, University of GöttingenGöttingen, Germany
| | - Kristin Kaiser
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of GöttingenGöttingen, Germany
| | - Bernd Wemheuer
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of GöttingenGöttingen, Germany
| | - Birgit Pfeiffer
- Plant Nutrition and Crop Physiology, Department of Crop Sciences, University of GöttingenGöttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, University of GöttingenGöttingen, Germany
| | - Stefan Vidal
- Section of Agricultural Entomology, Department of Crop Sciences, University of GöttingenGöttingen, Germany
| | - Franziska Wemheuer
- Section of Agricultural Entomology, Department of Crop Sciences, University of GöttingenGöttingen, Germany
| |
Collapse
|
6
|
RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi. World J Microbiol Biotechnol 2017; 33:65. [DOI: 10.1007/s11274-017-2232-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/17/2017] [Indexed: 12/22/2022]
|
7
|
Khan S, Nadir S, Wang X, Khan A, Xu J, Li M, Tao L, Khan S, Karunarathna SC. Using in silico techniques: Isolation and characterization of an insect cuticle-degrading-protease gene from Beauveria bassiana. Microb Pathog 2016; 97:189-97. [PMID: 27287496 DOI: 10.1016/j.micpath.2016.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/05/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
Abstract
Cuticle-degrading-proteases (CDPs) secreted by Beauveria spp. are pivotal biocontrol substances, possessing commercial potential for developing bio-pesticides. Therefore, a thoughtful and contemplative understanding and assessment of the structural and functional features of these proteases would markedly assist the development of biogenic pesticides. Computational molecular biology is a new facile alternative approach to the tedious experimental molecular biology; therefore, by using bioinformatics tools, we isolated and characterized an insect CDP gene from Beauveria bassiana 70 s.l. genomic DNA. The CDP gene (1240 bp with GeneBank accession no. KT804651.1) consisted of three introns and four CDS exons, and shared 74-100% sequence identity to the reference CDP genes. Its phylogenetic tree results showed a unique evolution pattern, and the predicted amino acid peptide (PAAP) consisted of 344 amino acid residues with pI, molecular weight, instability index, grand average hydropathicity value and aliphatic index of 7.2, 35.4 kDa, 24.45, -0.149, and 76.63, respectively. The gene possessed 74-89% amino acid sequence similarity to the 12 reference strains. Three motifs (Peptidase_S8 subtilase family) were detected in the PAAP, and the computed 3D structure possessed 79.09% structural identity to alkaline serine proteases. The PAAP had four (three serine proteases and one Pyridoxal-dependent decarboxylase) conserved domains, a disulfide bridge, two calcium binding sites, MY domain, and three predicted active sites in the serine family domains. These results will set the groundwork for further exploitation of proteases and understanding the mechanism of disease caused by cuticle-degrading-serine-proteases from entomopathogenic fungi.
Collapse
Affiliation(s)
- Sehroon Khan
- World Agroforestry Centre, East and Central Asia Office, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China.
| | - Sadia Nadir
- Department of Chemistry, Faculty of Sciences, University of Science and Technology Bannu, 28100 Bannu, Khyber Pakhtunkhwa, Pakistan; Rice Research Institute, Yunnan Agriculture University, Heilongtan, Kunming 650201, Yunnan, China
| | - Xuewen Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.
| | - Afsar Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Jianchu Xu
- World Agroforestry Centre, East and Central Asia Office, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China; Centre for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Meng Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Lihong Tao
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Siraj Khan
- School of Software, Beijing Institute of Technology, Beijing, China
| | - Samantha C Karunarathna
- World Agroforestry Centre, East and Central Asia Office, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Rd, Heilongtan, Kunming 650201, Yunnan, China
| |
Collapse
|
8
|
Tzean Y, Chou TH, Hsiao CC, Shu PY, Walton JD, Tzean SS. Cloning and characterization of cuticle-degrading serine protease from nematode-trapping fungus Arthrobotrys musiformis. MYCOSCIENCE 2016. [DOI: 10.1016/j.myc.2015.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Ramesh P, Reena P, Amitbikram M, Chaitanya J, Anju K. Insight into the transcriptome of Arthrobotrys conoides using high throughput sequencing. J Basic Microbiol 2015; 55:1394-405. [PMID: 26301953 DOI: 10.1002/jobm.201500237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/20/2015] [Indexed: 11/09/2022]
Abstract
Arthrobotrys conoides is a nematode-trapping fungus belonging to Orbiliales, Ascomycota group, and traps prey nematodes by means of adhesive network. Fungus has a potential to be used as a biocontrol agent against plant parasitic nematodes. In the present study, we characterized the transcriptome of A. conoides using high-throughput sequencing technology and characterized its virulence unigenes. Total 7,255 cDNA contigs with an average length of 425 bp were generated and 6184 (61.81%) transcripts were functionally annotated and characterized. Majority of unigenes were found analogous to the genes of plant pathogenic fungi. A total of 1749 transcripts were found to be orthologous with eukaryotic proteins of KOG database. Several carbohydrate active enzymes and peptidases were identified. We also analyzed classically and nonclassically secreted proteins and confirmed by BLASTP against fungal secretome database. A total of 916 contigs were analogous to 556 unique proteins of Pathogen Host Interaction (PHI) database. Further, we identified 91 unigenes homologous to the database of fungal virulence factor (DFVF). A total of 104 putative protein kinases coding transcripts were identified by BLASTP against KinBase database, which are major players in signaling pathways. This study provides a comprehensive look at the transcriptome of A. conoides and the identified unigenes might have a role in catching and killing prey nematodes by A. conoides.
Collapse
Affiliation(s)
- Pandit Ramesh
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New V.V. Nagar, Anand, Gujarat, India.,Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand, Gujarat, India
| | - Patel Reena
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New V.V. Nagar, Anand, Gujarat, India
| | - Mohapatra Amitbikram
- Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand, Gujarat, India
| | - Joshi Chaitanya
- Department of Animal Biotechnology, College of Veterinary Science and A.H., Anand Agricultural University, Anand, Gujarat, India
| | - Kunjadia Anju
- Ashok and Rita Patel Institute of Integrated Study and Research in Biotechnology and Allied Sciences, New V.V. Nagar, Anand, Gujarat, India
| |
Collapse
|
10
|
Destructin-1 is a collagen-degrading endopeptidase secreted by Pseudogymnoascus destructans, the causative agent of white-nose syndrome. Proc Natl Acad Sci U S A 2015; 112:7478-83. [PMID: 25944934 DOI: 10.1073/pnas.1507082112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pseudogymnoascus destructans is the causative agent of white-nose syndrome, a disease that has caused the deaths of millions of bats in North America. This psychrophilic fungus proliferates at low temperatures and targets hibernating bats, resulting in their premature arousal from stupor with catastrophic consequences. Despite the impact of white-nose syndrome, little is known about the fungus itself or how it infects its mammalian host. P. destructans is not amenable to genetic manipulation, and therefore understanding the proteins involved in infection requires alternative approaches. Here, we identify hydrolytic enzymes secreted by P. destructans, and use a novel and unbiased substrate profiling technique to define active peptidases. These experiments revealed that endopeptidases are the major proteolytic activities secreted by P. destructans, and that collagen, the major structural protein in mammals, is actively degraded by the secretome. A serine endopeptidase, hereby-named Destructin-1, was subsequently identified, and a recombinant form overexpressed and purified. Biochemical analysis of Destructin-1 showed that it mediated collagen degradation, and a potent inhibitor of peptidase activity was identified. Treatment of P. destructans-conditioned media with this antagonist blocked collagen degradation and facilitated the detection of additional secreted proteolytic activities, including aminopeptidases and carboxypeptidases. These results provide molecular insights into the secretome of P. destructans, and identify serine endopeptidases that have the clear potential to facilitate tissue invasion and pathogenesis in the mammalian host.
Collapse
|
11
|
Nematicidal enzymes from microorganisms and their applications. Appl Microbiol Biotechnol 2013; 97:7081-95. [DOI: 10.1007/s00253-013-5045-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 01/07/2023]
|
12
|
Campos LB, Pucca MB, Roncolato EC, Netto JC, Barbosa JE. Analysis of phospholipase A2, L-amino acid oxidase, and proteinase enzymatic activities of the Lachesis muta rhombeata venom. J Biochem Mol Toxicol 2012; 26:308-14. [PMID: 22730029 DOI: 10.1002/jbt.21422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 01/03/2023]
Abstract
The study of venom components is an important step toward understanding the mechanism of action of such venoms and is indispensable for the development of new therapies. This work aimed to investigate the venom of Lachesis muta rhombeata and evaluate enzymes related to its toxicity. Phospholipase A2 (PLA(2)), L-amino acid oxidase (LAAO), and proteinase activities were measured, and the molecular weights were estimated. We found the venom to contain one PLA(2) (17 kDa), one LAAO (132 kDa), and three serine proteinases (40, 31, and 20 kDa). Although only serine proteinases were observed in the zymogram, metalloproteinases were found to contribute more to the total proteolytic activity than did serine proteinases. The work confirmed the presence of highly active enzymes; and, moreover, we proposed a novel method for confirming the presence of LAAOs by zymography. We also suggested a simple step to increase the sensitivity of proteinase assays.
Collapse
Affiliation(s)
- Lucas Benício Campos
- Department of Biochemistry and Immunology, University of São Paulo at Ribeirão Preto School of Medicine 14049-900, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
13
|
Niu XM, Zhang KQ. Arthrobotrys oligospora: a model organism for understanding the interaction between fungi and nematodes. Mycology 2011. [DOI: 10.1080/21501203.2011.562559] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Xue-Mei Niu
- a Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education , Yunnan University , Kunming, 650091, China
| | - Ke-Qin Zhang
- a Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education , Yunnan University , Kunming, 650091, China
| |
Collapse
|
14
|
Li AN, Li DC. Cloning, expression and characterization of the serine protease gene from Chaetomium thermophilum. J Appl Microbiol 2010; 106:369-80. [PMID: 19200305 DOI: 10.1111/j.1365-2672.2008.04042.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Microbial proteases play an essential role in scientific research and commercial applications. This study is to clone, sequence, and express a thermostable protease gene from the thermophilic fungi Chaetomium thermophilum and to generate yeast strains expressing C. thermophilum protease suitable for industrial applications. METHODS AND RESULTS Degenerate primers were designed based on the conserved domain of other identified serine proteases and cDNA fragment of C. thermophilum gene pro was obtained through reverse transcriptase-polymerase chain reaction (RT-PCR). The full-length cDNA of 2007 bp was generated using RACE amplification. The cDNA contains an open reading frame of 1596 bp encoding 532 amino acids. Sequence analysis of the deduced amino acid sequence revealed high homology with the catalytic domains of the subtilisin serine proteases. The C. thermophilum gene pro was expressed in Escherichia coli BL21 (DE3) and Pichia pastoris, respectively and soluble protein was obtained in P. pastoris. The expressed protease was secreted into the culture medium by the yeast in a functional active form and the purified recombinant protease exhibits optimum catalytic activity at pH 8.0 and 60 degrees C. The enzyme is stable at 60 degrees C. The integration of gene pro into P. pastoris genome is stable after 10 generations and the yeast transformants showed a consistent protease expression. CONCLUSIONS Gene pro encoding a serine protease from C. thermophilum was cloned, sequenced, and overexpressed successfully in P. pastoris. The expressed protease was purified and the properties of the recombinant protease are characterized. SIGNIFICANCE AND IMPACT OF THE STUDY Chaetomium thermophilum is a soil-borne thermophilic fungus and the protease cloned from it is stable in a high temperature and a wide rage of pH. The overexpression of the enzyme in a mesophilic micro-organism offers a potential value for scientific research and commercial applications.
Collapse
Affiliation(s)
- A-N Li
- Department of Environmental Biology, Shandong Agricultural University, Taian, Shandong, China
| | | |
Collapse
|
15
|
Li J, Yu L, Yang J, Dong L, Tian B, Yu Z, Liang L, Zhang Y, Wang X, Zhang K. New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evol Biol 2010; 10:68. [PMID: 20211028 PMCID: PMC2848655 DOI: 10.1186/1471-2148-10-68] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 03/09/2010] [Indexed: 11/28/2022] Open
Abstract
Background Subtilisin-like serine proteases play an important role in pathogenic fungi during the penetration and colonization of their hosts. In this study, we perform an evolutionary analysis of the subtilisin-like serine protease genes of subphylum Pezizomycotina to find if there are similar pathogenic mechanisms among the pathogenic fungi with different life styles, which utilize subtilisin-like serine proteases as virulence factors. Within Pezizomycotina, nematode-trapping fungi are unique because they capture soil nematodes using specialized trapping devices. Increasing evidence suggests subtilisin-like serine proteases from nematode-trapping fungi are involved in the penetration and digestion of nematode cuticles. Here we also conduct positive selection analysis on the subtilisin-like serine protease genes from nematode-trapping fungi. Results Phylogenetic analysis of 189 subtilisin-like serine protease genes from Pezizomycotina suggests five strongly-supported monophyletic clades. The subtilisin-like serine protease genes previously identified or presumed as endocellular proteases were clustered into one clade and diverged the earliest in the phylogeny. In addition, the cuticle-degrading protease genes from entomopathogenic and nematode-parasitic fungi were clustered together, indicating that they might have overlapping pathogenic mechanisms against insects and nematodes. Our experimental bioassays supported this conclusion. Interestingly, although they both function as cuticle-degrading proteases, the subtilisin-like serine protease genes from nematode-trapping fungi and nematode-parasitic fungi were not grouped together in the phylogenetic tree. Our evolutionary analysis revealed evidence for positive selection on the subtilisin-like serine protease genes of the nematode-trapping fungi. Conclusions Our study provides new insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. Pezizomycotina subtilisins most likely evolved from endocellular to extracellular proteases. The entomopathogenic and nematode-parasitic fungi likely share similar properties in parasitism. In addition, our data provided better understanding about the duplications and subsequent functional divergence of subtilisin-like serine protease genes in Pezizomycotina. The evidence of positive selection detected in the subtilisin-like serine protease genes of nematode-trapping fungi in the present study suggests that the subtilisin-like serine proteases may have played important roles during the evolution of pathogenicity of nematode-trapping fungi against nematodes.
Collapse
Affiliation(s)
- Juan Li
- Laboratory for Conservation and Utilization of Bio-resources, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, 650091, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang X, Liu J, Ding J, He Q, Xiong R, Zhang K. The investigation of nematocidal activity in Stenotrophomonas maltophilia G2 and characterization of a novel virulence serine protease. Can J Microbiol 2009; 55:934-42. [DOI: 10.1139/w09-045] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Gram-negative bacterium Stenotrophomonas maltophilia G2 was isolated from a soil sample and was found to have high nematotoxic activity against a free-living nematode, Panagrellus redivivus, and a plant-parasitic nematode, Bursaphelenchus xylophilus . The analysis of virulence factors revealed that although the small molecular metabolites participated in nematode killing, the crude extracellular protein extract from the bacterial culture supernatant contributed significantly to its nematocidal activity. An extracellular protease was purified by chromatography, and its effects on degrading purified nematode cuticle and killing living nematodes were confirmed experimentally. Characterization of this purified protease revealed that the application of phenylmethylsulphonyl fluoride, an inhibitor of serine proteases, could completely abolish its proteolytic activity. The results from N-terminal amino acid sequencing showed no similarity with any known serine protease in S. maltophilia, suggesting a novel virulence serine protease was obtained. Our study is the first to show the nematocidal activity of S. maltophilia, and we identified a novel serine protease as an important pathogenicity factor.
Collapse
Affiliation(s)
- Xiaowei Huang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junwei Liu
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Junmei Ding
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qiusheng He
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rui Xiong
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Keqin Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, 650091, PR China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Characterization of serine proteinase expression in Agaricus bisporus and Coprinopsis cinerea by using green fluorescent protein and the A. bisporus SPR1 promoter. Appl Environ Microbiol 2008; 75:792-801. [PMID: 19047386 DOI: 10.1128/aem.01897-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Agaricus bisporus serine proteinase 1 (SPR1) appears to be significant in both mycelial nutrition and senescence of the fruiting body. We report on the construction of an SPR promoter::green fluorescent protein (GFP) fusion cassette, pGreen_hph1_SPR_GFP, for the investigation of temporal and developmental expression of SPR1 in homobasidiomycetes and to determine how expression is linked to physiological and environmental stimuli. Monitoring of A. bisporus pGreen_hph1_SPR_GFP transformants on media rich in ammonia or containing different nitrogen sources demonstrated that SPR1 is produced in response to available nitrogen. In A. bisporus fruiting bodies, GFP activity was localized to the stipe of postharvest senescing sporophores. pGreen_hph1_SPR_GFP was also transformed into the model basidiomycete Coprinopsis cinerea. Endogenous C. cinerea proteinase activity was profiled during liquid culture and fruiting body development. Maximum activity was observed in the mature cap, while activity dropped during autolysis. Analysis of the C. cinerea genome revealed seven genes showing significant homology to the A. bisporus SPR1 and SPR2 genes. These genes contain the aspartic acid, histidine, and serine residues common to serine proteinases. Analysis of the promoter regions revealed at least one CreA and several AreA regulatory motifs in all sequences. Fruiting was induced in C. cinerea dikaryons, and fluorescence was determined in different developmental stages. GFP expression was observed throughout the life cycle, demonstrating that serine proteinase can be active in all stages of C. cinerea fruiting body development. Serine proteinase expression (GFP fluorescence) was most concentrated during development of young tissue, which may be indicative of high protein turnover during cell differentiation.
Collapse
|