1
|
Liu HS, Chen HR, Huang SS, Li ZH, Wang CY, Zhang H. Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023. Mar Drugs 2025; 23:25. [PMID: 39852527 PMCID: PMC11766693 DOI: 10.3390/md23010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Angucyclines/angucyclinones, a class of polyketides with diverse chemical structures, display various bioactivities including antibacterial or antifungal, anticancer, anti-neuroinflammatory, and anti-α-glucosidase activities. Marine and terrestrial microorganisms have made significant contributions to the discovery of bioactive angucyclines/angucyclinones. This review covers 283 bioactive angucyclines/angucyclinones discovered from 1965 to 2023, and the emphasis is on the biological origins, chemical structures, and biological activities of these interesting natural products.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China; (H.-S.L.); (H.-R.C.); (S.-S.H.); (Z.-H.L.); (C.-Y.W.)
| |
Collapse
|
2
|
Hernández Delgado JG, Acedos MG, de la Calle F, Rodríguez P, García JL, Galán B. Regulation of Safracin Biosynthesis and Transport in Pseudomonas poae PMA22. Mar Drugs 2024; 22:418. [PMID: 39330299 PMCID: PMC11432991 DOI: 10.3390/md22090418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Pseudomonas poae PMA22 produces safracins, a family of compounds with potent broad-spectrum anti-bacterial and anti-tumor activities. The safracins' biosynthetic gene cluster (BGC sac) consists of 11 ORFs organized in two divergent operons (sacABCDEFGHK and sacIJ) that are controlled by Pa and Pi promoters. Contiguous to the BGC sac, we have located a gene that encodes a putative global regulator of the LysR family annotated as MexT that was originally described as a transcriptional activator of the MexEF-OprN multidrug efflux pump in Pseudomonas. Through both in vitro and in vivo experiments, we have demonstrated the involvement of the dual regulatory system MexT-MexS on the BGC sac expression acting as an activator and a repressor, respectively. The MexEF-OprN transport system of PMA22, also controlled by MexT, was shown to play a fundamental role in the metabolism of safracin. The overexpression of mexEF-oprN in PMA22 resulted in fourfold higher production levels of safracin. These results illustrate how a pleiotropic regulatory system can be critical to optimizing the production of tailored secondary metabolites, not only through direct interaction with the BGC promoters, but also by controlling their transport.
Collapse
Affiliation(s)
- J Gerardo Hernández Delgado
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Miguel G Acedos
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | | | - Pilar Rodríguez
- Research and Development Department, PharmaMar S.A., 28770 Madrid, Spain
| | - José Luis García
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Beatriz Galán
- Department of Biothecnology, Centro de Investigaciones Biológicas Margarita Salas, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Severi E, Thomas GH. Antibiotic export: transporters involved in the final step of natural product production. Microbiology (Reading) 2019; 165:805-818. [DOI: 10.1099/mic.0.000794] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emmanuele Severi
- Department of Biology, University of York, Wentworth Way, York, UK
| | - Gavin H. Thomas
- Department of Biology, University of York, Wentworth Way, York, UK
| |
Collapse
|
4
|
Yushchuk O, Kharel M, Ostash I, Ostash B. Landomycin biosynthesis and its regulation in Streptomyces. Appl Microbiol Biotechnol 2019; 103:1659-1665. [PMID: 30635689 DOI: 10.1007/s00253-018-09601-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/16/2022]
Abstract
This mini-review is centered on genetic aspects of biosynthesis of landomycins (La), a family of angucycline polyketides. From the very discovery in the 1990s, La were noted for unusual structure and potent anticancer properties. La are produced by a few actinobacteria that belong to genus Streptomyces. Biochemical logic behind the production of La aglycon and glycoside halves and effects of La on mammalian cells have been thoroughly reviewed in 2009-2012. Yet, the genetic diversity of La biosynthetic gene clusters (BGCs) and regulation of their production were not properly reviewed since discovery of La. Here, we aim to fill this gap by focusing on three interrelated topics. First, organization of known La BGCs is compared. Second, up-to-date scheme of biosynthetic pathway to landomycin A (LaA), the biggest (by molar weight) member of La family, is succinctly outlined. Third, we describe genetic and nutritional factors that influence La production and export. A summary of the practical utility of the gained knowledge and future directions to study La biosynthesis conclude this mini-review.
Collapse
Affiliation(s)
- Oleksandr Yushchuk
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho St. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Madan Kharel
- Department of Pharmaceutical Sciences, University of Maryland Eastern Shore, Somerset Hall 214, Princess Anne, MD, 21853, USA
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho St. 4, Rm. 102, Lviv, 79005, Ukraine
| | - Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, Hrushevskoho St. 4, Rm. 102, Lviv, 79005, Ukraine.
| |
Collapse
|
5
|
Xie Y, Ma J, Qin X, Li Q, Ju J. Identification and utilization of two important transporters: SgvT1 and SgvT2, for griseoviridin and viridogrisein biosynthesis in Streptomyces griseoviridis. Microb Cell Fact 2017; 16:177. [PMID: 29065880 PMCID: PMC5655939 DOI: 10.1186/s12934-017-0792-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/14/2017] [Indexed: 01/08/2023] Open
Abstract
Background Griseoviridin (GV) and viridogrisein (VG, also referred as etamycin), both biosynthesized by a distinct 105 kb biosynthetic gene cluster (BGC) in Streptomyces griseoviridis NRRL 2427, are a pair of synergistic streptogramin antibiotics and very important in treating infections of many multi-drug resistant microorganisms. Three transporter genes, sgvT1–T3 have been discovered within the 105 kb GV/VG BGC, but the function of these efflux transporters have not been identified. Results In the present study, we have identified the different roles of these three transporters, SgvT1, SgvT2 and SgvT3. SgvT1 is a major facilitator superfamily (MFS) transporter whereas SgvT2 appears to serve as the sole ATP-binding cassette (ABC) transporter within the GV/VG BGC. Both proteins are necessary for efficient GV/VG biosynthesis although SgvT1 plays an especially critical role by averting undesired intracellular GV/VG accumulation during biosynthesis. SgvT3 is an alternative MFS-based transporter that appears to serve as a compensatory transporter in GV/VG biosynthesis. We also have identified the γ-butyrolactone (GBL) signaling pathway as a central regulator of sgvT1–T3 expression. Above all, overexpression of sgvT1 and sgvT2 enhances transmembrane transport leading to steady production of GV/VG in titers ≈ 3-fold greater than seen for the wild-type producer and without any notable disturbances to GV/VG biosynthetic gene expression or antibiotic control. Conclusions Our results shows that SgvT1–T2 are essential and useful in GV/VG biosynthesis and our effort highlight a new and effective strategy by which to better exploit streptogramin-based natural products of which GV and VG are prime examples with clinical potential. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0792-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junying Ma
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Research Network for Applied Microbiology Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. .,College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China.
| |
Collapse
|
6
|
Yang J, Xiong ZQ, Song SJ, Wang JF, Lv HJ, Wang Y. Improving heterologous polyketide production in Escherichia coli by transporter engineering. Appl Microbiol Biotechnol 2015; 99:8691-700. [DOI: 10.1007/s00253-015-6718-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/27/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
7
|
Enhancing isoprenoid production through systematically assembling and modulating efflux pumps in Escherichia coli. Appl Microbiol Biotechnol 2013; 97:8057-67. [DOI: 10.1007/s00253-013-5062-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/31/2013] [Accepted: 06/14/2013] [Indexed: 02/01/2023]
|
8
|
Tsypik O, Ostash B, Rebets’ Y, Fedorenko V. Characterization of the Streptomyces globisporus 1912 lnd-cluster region containing the lndY, lndYR, lndW2, and lndW genes. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713010106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ostash B, Doud E, Walker S. ABC transporter genes from Streptomyces ghanaensis moenomycin biosynthetic gene cluster: roles in antibiotic production and export. Arch Microbiol 2012; 194:915-22. [PMID: 22717951 PMCID: PMC3658470 DOI: 10.1007/s00203-012-0827-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/29/2012] [Accepted: 06/10/2012] [Indexed: 12/31/2022]
Abstract
Streptomyces ghanaensis ATCC14672 produces antibiotic moenomycin A (MmA), which possesses strong antibacterial activity. The genetic control of MmA biosynthesis has been recently elucidated; nevertheless, little is known about the roles of two pairs of genes, moeX5moeP5 and moeD5moeJ5, coding for ATP-dependent transporter systems. Here we report that both gene pairs form transcriptional units actively expressed during MmA production phase. Streptomyces ghanaensis mutants deficient in either (one) or both transporter systems are characterized by a decreased ability to produce moenomycins, and the ΔmoeP5moeX5 mutant exported less moenomycins. However, even the quadruple S. ghanaensis mutant (ΔmoeD5moeJ5 + ΔmoeX5moeP5) remains able to extrude significant amounts of moenomycin. Similar results were observed under conditions of heterologous expression of moe cluster. Transporter genes other than those located in moe cluster are likely to participate in moenomycin efflux.
Collapse
Affiliation(s)
- Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho St., Lviv 79005, Ukraine.
| | | | | |
Collapse
|
10
|
Kharel MK, Rohr J. Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Curr Opin Chem Biol 2012; 16:150-61. [PMID: 22465094 DOI: 10.1016/j.cbpa.2012.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/30/2022]
Abstract
The exact sequence of events in biosyntheses of natural products is essential not only to understand and learn from nature's strategies and tricks to assemble complex natural products, but also for yield optimization of desired natural products, and for pathway engineering and muta-synthetic preparation of analogues of bioactive natural products. Biosyntheses of natural products were classically studied applying in vivo experiments, usually by combining incorporation experiments with stable-isotope labeled precursors with cross-feeding experiments of putative intermediates. Later genetic studies were dominant, which consist of gene cluster determination and analysis of gene inactivation experiments. From such studies various biosynthetic pathways were proposed, to a large extent just through in silico analyses of the biosynthetic gene clusters after DNA sequencing. Investigations of the complex biosyntheses of the angucycline group anticancer drugs landomycin, jadomycin and gilvocarcin revealed that in vivo and in silico studies were insufficient to delineate the true biosynthetic sequence of events. Neither was it possible to unambiguously assign enzyme activities, especially where multiple functional enzymes were involved. However, many of the intriguing ambiguities could be solved after in vitro reconstitution of major segments of these pathways, and subsequent systematic variations of the used enzyme mixtures. This method has been recently termed 'combinatorial biosynthetic enzymology'.
Collapse
Affiliation(s)
- Madan K Kharel
- Midway College School of Pharmacy, 120 Scott Perry Drive, Paintsville, KY 42240, USA
| | | |
Collapse
|
11
|
Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, Shaaban KA, Rohr J. Angucyclines: Biosynthesis, mode-of-action, new natural products, and synthesis. Nat Prod Rep 2012; 29:264-325. [PMID: 22186970 PMCID: PMC11412254 DOI: 10.1039/c1np00068c] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1997 to 2010. The angucycline group is the largest group of type II PKS-engineered natural products, rich in biological activities and chemical scaffolds. This stimulated synthetic creativity and biosynthetic inquisitiveness. The synthetic studies used five different strategies, involving Diels-Alder reactions, nucleophilic additions, electrophilic additions, transition-metal mediated cross-couplings and intramolecular cyclizations to generate the angucycline frames. Biosynthetic studies were particularly intriguing when unusual framework rearrangements by post-PKS tailoring oxidoreductases occurred, or when unusual glycosylation reactions were involved in decorating the benz[a]anthracene-derived cores. This review follows our previous reviews, which were published in 1992 and 1997, and covers new angucycline group antibiotics published between 1997 and 2010. However, in contrast to the previous reviews, the main focus of this article is on new synthetic approaches and biosynthetic investigations, most of which were published between 1997 and 2010, but go beyond, e.g. for some biosyntheses all the way back to the 1980s, to provide the necessary context of information.
Collapse
Affiliation(s)
- Madan K Kharel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 S. Limestone Street, Lexington, Kentucky 40536-0596, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Amnuaykanjanasin A, Panchanawaporn S, Chutrakul C, Tanticharoen M. Genes differentially expressed under naphthoquinone-producing conditions in the entomopathogenic fungus Ophiocordyceps unilateralis. Can J Microbiol 2011; 57:680-92. [DOI: 10.1139/w11-043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ant-pathogenic fungus Ophiocordyceps unilateralis BCC1869 produces six naphthoquinone (NQ) derivatives. These NQs can be found in fungal-infected ants or produced in culture. Also, the NQs have antibacterial, anticancer, and antimalarial activities and are red pigments with potential for use as natural colorants. Suppressive subtractive hybridization identified genes that were expressed under NQ–producing conditions but not under nonproducing conditions. On potato dextrose agar, the mycelia produced red pigments and secreted them into the medium and as droplets on top of the colony. High-performance liquid chromatography analysis indicated that the red pigment was predominantly erythrostominone with small amounts of its derivatives. For suppressive subtractive hybridization, the cDNA from O. unilateralis cultures on complete medium agar cultures (lacking NQs) were subtracted from those on potato dextrose agar (which produce and secrete NQs). Sixty-six unique expressed sequence tags (ESTs) were identified and include five transporter genes, two transcriptional regulator genes, and several genes in secondary metabolism and biodegradation. The transporter genes include an ATP-binding cassette transporter gene OuAtr1 and a major facilitator superfamily transporter gene OuMfs1. Expression of selected ESTs was further validated using quantitative reverse transcription PCR. Gene expression result indicates that OuAtr1 and OuMfs1 were dramatically upregulated (136- and 29-fold increase, respectively) during the NQ–producing stage compared with the NQ–nonproducing stage. Upregulation of other genes was also detected. This EST collection represents the first group of genes identified from this potential biocontrol agent and includes candidate genes for production and secretion of the red NQs. Roles of these genes could be further determined using a functional analysis.
Collapse
Affiliation(s)
- Alongkorn Amnuaykanjanasin
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Sarocha Panchanawaporn
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Chanikul Chutrakul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| | - Morakot Tanticharoen
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
13
|
Qiu J, Zhuo Y, Zhu D, Zhou X, Zhang L, Bai L, Deng Z. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis. Appl Microbiol Biotechnol 2011; 92:337-45. [DOI: 10.1007/s00253-011-3439-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 04/09/2011] [Accepted: 06/11/2011] [Indexed: 11/24/2022]
|
14
|
Ostash B, Rebets Y, Myronovskyy M, Tsypik O, Ostash I, Kulachkovskyy O, Datsyuk Y, Nakamura T, Walker S, Fedorenko V. Identification and characterization of the Streptomyces globisporus 1912 regulatory gene lndYR that affects sporulation and antibiotic production. MICROBIOLOGY-SGM 2011; 157:1240-1249. [PMID: 21292750 DOI: 10.1099/mic.0.045088-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Here, we report the identification and functional characterization of the Streptomyces globisporus 1912 gene lndYR, which encodes a GntR-like regulator of the YtrA subfamily. Disruption of lndYR arrested sporulation and antibiotic production in S. globisporus. The results of in vivo and in vitro studies revealed that the ABC transporter genes lndW-lndW2 are targets of LndYR repressive action. In Streptomyces coelicolor M145, lndYR overexpression caused a significant increase in the amount of extracellular actinorhodin. We suggest that lndYR controls the transcription of transport system genes in response to an as-yet-unidentified signal. Features that distinguish lndYR-based regulation from other known regulators are discussed.
Collapse
Affiliation(s)
- Bohdan Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Yuriy Rebets
- Department of Microbiology, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, 956-8603 Niigata, Japan.,Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.,Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Maksym Myronovskyy
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Olga Tsypik
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Iryna Ostash
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Oleksandr Kulachkovskyy
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Yuriy Datsyuk
- Department of Physics of the Earth, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| | - Tatsunosuke Nakamura
- Department of Microbiology, Niigata University of Pharmacy and Applied Life Sciences, Higashijima 265-1, 956-8603 Niigata, Japan
| | - Suzanne Walker
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Victor Fedorenko
- Department of Genetics and Biotechnology, Ivan Franko National University of L'viv, Grushevskogo St 4, L'viv 79005, Ukraine
| |
Collapse
|
15
|
The final step of hygromycin A biosynthesis, oxidation of C-5''-dihydrohygromycin A, is linked to a putative proton gradient-dependent efflux. Antimicrob Agents Chemother 2009; 53:5163-72. [PMID: 19770276 DOI: 10.1128/aac.01069-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hygromycin A (HA) is an aminocyclitol antibiotic produced and excreted by Streptomyces hygroscopicus. Deletion of hyg26 from the hygromycin A biosynthetic gene cluster has previously been shown to result in a mutant that produces 5''-dihydrohygromycin A (DHHA). We report herein on the purification and characterization of Hyg26 expressed in Escherichia coli. The enzyme catalyzes an NAD(H)-dependent reversible interconversion of HA and DHHA, supporting the role of the reduced HA as the penultimate biosynthetic pathway intermediate and not a shunt product. The equilibrium for the Hyg26-catalyzed reaction heavily favors the DHHA intermediate. The high-titer production of the HA product by S. hygroscopicus must be dependent upon a subsequent energetically favorable enzyme-catalyzed process, such as the selective and efficient export of HA. hyg19 encodes a putative proton gradient-dependent transporter, and a mutant lacking this gene was observed to produce less HA and to produce the DHHA intermediate. The DHHA produced by either the Deltahyg19 or the Deltahyg26 mutant had slightly reduced activity against E. coli and reduced protein synthesis-inhibitory activity in vitro. The data indicate that Hyg26 and Hyg19 have evolved to produce and export the final potent HA product in a coordinated fashion.
Collapse
|