1
|
Oda K, Komaguchi K, Matoba Y. Copper inactivates DcsB by oxidizing the metal ligand Cys86 to sulfinic acid. FEBS J 2024; 291:5486-5505. [PMID: 39563074 DOI: 10.1111/febs.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
Nω-hydroxy-l-arginine amidinohydrolase (EC:3.5.3.25), an enzyme in the d-cycloserine (d-CS) biosynthetic pathway of Streptomyces lavendulae, catalyzes the hydrolysis of an arginase inhibitor, Nω-hydroxy-l-arginine, to produce l-ornithine and hydroxyurea, despite being homologous to arginase. Like arginase, the enzyme (DcsB) possesses two manganese ions (MnA and MnB) essential for the enzymatic reaction at the bottom of the cavity formed within the molecule. However, one of the MnA ligands in DcsB is Cys86, whereas the corresponding residues in arginase are histidine. In this study, we determined the crystal structure of Mn-free DcsB to elucidate the installation mechanism of the manganese ions. The flipping of the His111 residue after the formation of the coordination bond to the second manganese ion may facilitate the installation of MnB and the closing of the cavity entrance to retain MnA and MnB at the active site. Copper ions, which are known to be a positive regulator of many secondary metabolites in Streptomyces species, were found to irreversibly inactivate the catalytic activity of DcsB. Mass spectrometric and crystallographic analyses of the Cu(II)-treated DcsB indicated that Cys86 is oxidized to sulfinic acid. The d-CS biosynthesis in the producing microorganism may be negatively regulated by the concentration of intracellular copper ions, which mediates the oxidative stress.
Collapse
Affiliation(s)
- Kosuke Oda
- Department of Virology, Institute of Biomedical and Health Sciences, Hiroshima University, Japan
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| | - Kenji Komaguchi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Japan
| | - Yasuyuki Matoba
- Faculty of Pharmacy, Yasuda Women's University, Hiroshima, Japan
| |
Collapse
|
2
|
Modulation of Multiple Gene Clusters’ Expression by the PAS-LuxR Transcriptional Regulator PteF. Antibiotics (Basel) 2022; 11:antibiotics11080994. [PMID: 35892384 PMCID: PMC9394381 DOI: 10.3390/antibiotics11080994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
PAS-LuxR transcriptional regulators are conserved proteins governing polyene antifungal biosynthesis. PteF is the regulator of filipin biosynthesis from Streptomyces avermitilis. Its mutation drastically abates filipin, but also oligomycin production, a macrolide ATP-synthase inhibitor, and delays sporulation; thus, it has been considered a transcriptional activator. Transcriptomic analyses were performed in S. avermitilis DpteF and its parental strain. Both strains were grown in a YEME medium without sucrose, and the samples were taken at exponential and stationary growth phases. A total of 257 genes showed an altered expression in the mutant, most of them at the exponential growth phase. Surprisingly, despite PteF being considered an activator, most of the genes affected showed overexpression, thereby suggesting a negative modulation. The affected genes were related to various metabolic processes, including genetic information processing; DNA, energy, carbohydrate, and lipid metabolism; morphological differentiation; and transcriptional regulation, among others, but were particularly related to secondary metabolite biosynthesis. Notably, 10 secondary metabolite gene clusters out of the 38 encoded by the genome showed altered expression profiles in the mutant, suggesting a regulatory role for PteF that is wider than expected. The transcriptomic results were validated by quantitative reverse-transcription polymerase chain reaction. These findings provide important clues to understanding the intertwined regulatory machinery that modulates antibiotic biosynthesis in Streptomyces.
Collapse
|
3
|
Donges J, Hofmann S, Brüggemann M, Frank A, Schollmeyer D, Nubbemeyer U. Synthesis of (+) and (‐)‐Streptomyces coelicolor Butanolide 5 (SCB‐5). European J Org Chem 2021. [DOI: 10.1002/ejoc.202100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jonas Donges
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Sandra Hofmann
- Konrad-Adenauer-Gymnasium Wörthstr. 16 56457 Westerburg Germany
| | - Moritz Brüggemann
- Shimadzu Deutschland GmbH Im Leuschnerpark 4 64347 Griesheim Germany
| | - Andrea Frank
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Dieter Schollmeyer
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Udo Nubbemeyer
- Organische Chemie Johannes Gutenberg-Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
4
|
Activation of paulomycin production by exogenous γ-butyrolactone signaling molecules in Streptomyces albidoflavus J1074. Appl Microbiol Biotechnol 2020; 104:1695-1705. [PMID: 31900559 DOI: 10.1007/s00253-019-10329-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Abstract
The interspecies communication roles of γ-butyrolactones (GBLs) have been described for a long time but are still poorly understood. Herein, we analyzed more than 1000 Streptomyces strains and noticed a big quantitative gap between the strains with GBL biosynthetic genes and the strains with GBL receptor genes, which implies the wide-spread of GBLs as interspecies signals in Streptomyces and their great potential in the activation of silent natural product gene clusters. Streptomyces albidoflavus J1074, which has one GBL receptor gene but no GBL biosynthetic gene, was chosen as a target to study the possible interspecies communication roles of GBLs. At first, the GBL biosynthetic genes from Streptomyces coelicolor M145 were expressed in S. albidoflavus J1074, which enabled the S. albidoflavus strains to synthesize Streptomyces coelicolor butanolides (SCBs) and activated the production of paulomycins. Further studies showed that this activation process requires the participation of the GBL receptor gene XNR_4681. The results suggest that the expression of exogenous GBL biosynthetic genes can modulate the metabolisms of GBL non-producing strains, and this regulation role might be meaningful for silent gene cluster activation in Streptomyces. At final, we synthesized racemic-SCB2 and tried to simplify the activation process by adding SCB2 directly to S. albidoflavus J1074, which unfortunately failed to induce paulomycin production.
Collapse
|
5
|
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep 2019; 35:575-604. [PMID: 29721572 DOI: 10.1039/c8np00012c] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2000 to 2018 The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.
Collapse
|
6
|
Martín JF, Liras P. Harnessing microbiota interactions to produce bioactive metabolites: communication signals and receptor proteins. Curr Opin Pharmacol 2019; 48:8-16. [PMID: 30933876 DOI: 10.1016/j.coph.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/23/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022]
Abstract
Numerous microbial communities live in soil, aquatic habitats, plants, and animal bodies. Microbial genome sequences have revealed that thousands of biosynthetic gene clusters (BGCs) are present in different bacteria and filamentous fungi. Many of these BGCs are not expressed in pure cultures in the laboratory. However, a large part of these silent clusters is expressed in nature when complex microbial populations are studied. The encoding specialized metabolites are frequently produced at very low concentrations but still they serve as communication signals that produce important biochemical and differentiation effects on other microorganisms of the consortium. Many specialized metabolites acting as communication signals have been identified, including autoinducers, intergeneric, and interkingdom cues. These signals trigger expression of silent BGCs in other microorganisms, thus providing new compounds with interesting biological and pharmacological activities. Examples of interactions between different bacteria or between bacteria and fungi are described here. Finally, the relevance of the human microbiota and the production in vivo of specialized metabolites of medical interest is discussed.
Collapse
Affiliation(s)
- Juan F Martín
- Department of Molecular Biology, Section Microbiology, University of León, 24071 León, Spain.
| | - Paloma Liras
- Department of Molecular Biology, Section Microbiology, University of León, 24071 León, Spain
| |
Collapse
|
7
|
Ma D, Wang C, Chen H, Wen J. Manipulating the expression of SARP family regulator BulZ and its target gene product to increase tacrolimus production. Appl Microbiol Biotechnol 2018; 102:4887-4900. [PMID: 29666890 DOI: 10.1007/s00253-018-8979-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/27/2018] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
Tacrolimus (FK506), an effective immunosuppressant, is widely used in the treatment of autoimmune diseases. In this study, we identified that BulZ, a Streptomyces antibiotic regulatory protein (SARP) family regulator, acted as a positive regulator for spore differentiation and tacrolimus production. A knockout of bulZ resulted in a 47.5% decrease of tacrolimus production and a delay of spore differentiation. Using quantitative real-time PCR (qRT-PCR) analysis and electrophoretic mobility shift assays (EMSAs), it was found that BulZ directly activated the transcriptions of bulZ and bulS2, a putative γ-butyrolactone (GBL) synthetase, and bulS2 was shown to play a positive role in tacrolimus biosynthesis. Meanwhile, BulZ was able to indirectly regulate the transcriptions of the cluster-linked activator genes tcs7 and fkbN, as well as the GBL receptor gene bulR1. STSU_RS22595, which encoded a WhiB family transcriptional regulator, was found to be a previously unknown potential target gene of BulZ based on a whole-genome search of the conserved sequence (5'-TSVAVVVNVNBTSRAGNN-3') of the SARP-binding motifs. Although overexpression of STSU_RS22595 did not result in an obvious enhancement of tacrolimus yield, STSU_RS22595 might have important effects on the spore differentiation process. Finally, co-overexpression of bulZ and its target gene bulS2 improved tacrolimus production by 36% compared to the control strain, reaching 324 mg/L. The insights obtained in this study will help further elucidate the regulatory mechanism of tacrolimus biosynthesis and provide new avenues for further improvement of tacrolimus production.
Collapse
Affiliation(s)
- Dongxu Ma
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Cheng Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
8
|
Sarkale AM, Kumar A, Appayee C. Organocatalytic Approach for Short Asymmetric Synthesis of (R)-Paraconyl Alcohol: Application to the Total Syntheses of IM-2, SCB2, and A-Factor γ-Butyrolactone Autoregulators. J Org Chem 2018; 83:4167-4172. [DOI: 10.1021/acs.joc.8b00122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abhijeet M. Sarkale
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat 382355, India
| | - Amit Kumar
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat 382355, India
| | - Chandrakumar Appayee
- Discipline of Chemistry, Indian Institute of Technology Gandhinagar,
Palaj, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
9
|
Thao NB, Kitani S, Nitta H, Tomioka T, Nihira T. Discovering potential Streptomyces hormone producers by using disruptants of essential biosynthetic genes as indicator strains. J Antibiot (Tokyo) 2017; 70:1004-1008. [PMID: 28951606 DOI: 10.1038/ja.2017.85] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
Abstract
Autoregulators are low-molecular-weight signaling compounds that control the production of many secondary metabolites in actinomycetes and have been referred to as 'Streptomyces hormones'. Here, potential producers of Streptomyces hormones were investigated in 40 Streptomyces and 11 endophytic actinomycetes. Production of γ-butyrolactone-type (IM-2, VB) and butenolide-type (avenolide) Streptomyces hormones was screened using Streptomyces lavendulae FRI-5 (ΔfarX), Streptomyces virginiae (ΔbarX) and Streptomyces avermitilis (Δaco), respectively. In these strains, essential biosynthetic genes for Streptomyces hormones were disrupted, enabling them to respond solely to the externally added hormones. The results showed that 20% of each of the investigated strains produced IM-2 and VB, confirming that γ-butyrolactone-type Streptomyces hormones are the most common in actinomycetes. Unlike the γ-butyrolactone type, butenolide-type Streptomyces hormones have been discovered in recent years, but their distribution has been unclear. Our finding that 24% of actinomycetes (12 of 51 strains) showed avenolide activity revealed for the first time that the butenolide-type Streptomyces hormone is also common in actinomycetes.
Collapse
Affiliation(s)
- Nguyen B Thao
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Hiroko Nitta
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Toshiya Tomioka
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, Osaka, Japan.,Faculty of Science, MU-OU Collaborative Research Center for Bioscience and Biotechnology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
10
|
Pait IGU, Kitani S, Kurniawan YN, Asa M, Iwai T, Ikeda H, Nihira T. Identification and characterization of lbpA, an indigoidine biosynthetic gene in the γ-butyrolactone signaling system of Streptomyces lavendulae FRI-5. J Biosci Bioeng 2017; 124:369-375. [PMID: 28533156 DOI: 10.1016/j.jbiosc.2017.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/17/2017] [Accepted: 04/28/2017] [Indexed: 11/18/2022]
Abstract
Streptomyces lavendulae FRI-5 produces the blue pigment indigoidine and other secondary metabolites (d-cycloserine and nucleoside antibiotics). The production of these useful compounds is controlled by a signaling cascade mediated by the γ-butyrolactone autoregulator IM-2. Previously we revealed that the far regulatory island includes the IM-2 receptor, the IM-2 biosynthetic enzyme, and several transcriptional regulators, and that it contributes to the regulation of indigoidine production in response to the signaling molecule. Here, we found that the vicinity of the far regulatory island includes the putative gene cluster for the biosynthesis of indigoidine and unidentified compounds, and demonstrated that the expression of the gene cluster is under the control of the IM-2 regulatory system. Heterologous expression of lbpA, encoding a plausible nonribosomal peptide synthetase, in the versatile model host Streptomyces avermitilis SUKA22 led to indigoidine production, which was enhanced dramatically by feeding of the indigoidine precursor l-glutamine. These results confirmed that LbpA is an indigoidine biosynthetic enzyme in the IM-2 signaling cascade.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohanes Novi Kurniawan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Maeda Asa
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Iwai
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|
11
|
Niu G, Chater KF, Tian Y, Zhang J, Tan H. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev 2016; 40:554-73. [PMID: 27288284 DOI: 10.1093/femsre/fuw012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Streptomyces bacteria are the major source of antibiotics and other secondary metabolites. Various environmental and physiological conditions affect the onset and level of production of each antibiotic by influencing concentrations of the ligands for conserved global regulatory proteins. In addition, as reviewed here, well-known autoregulators such as γ-butyrolactones, themselves products of secondary metabolism, accumulate late in growth to concentrations allowing their effective interaction with cognate binding proteins, in a necessary prelude to antibiotic biosynthesis. Most autoregulator binding proteins target the conserved global regulatory gene adpA, and/or regulatory genes for 'cluster-situated regulators' (CSRs) linked to antibiotic biosynthetic gene clusters. It now appears that some CSRs bind intermediates and end products of antibiotic biosynthesis, with regulatory effects interwoven with those of autoregulators. These ligands can exert cross-pathway effects within producers of more than one antibiotic, and when excreted into the extracellular environment may have population-wide effects on production, and mediate interactions with neighbouring microorganisms in natural communities, influencing speciation. Greater understanding of these autoregulatory and cross-regulatory activities may aid the discovery of new signalling molecules and their use in activating cryptic antibiotic biosynthetic pathways.
Collapse
Affiliation(s)
- Guoqing Niu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Yuqing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jihui Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huarong Tan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Kurniawan YN, Kitani S, Iida A, Maeda A, Lycklama a Nijeholt J, Lee YJ, Nihira T. Regulation of production of the blue pigment indigoidine by the pseudo γ-butyrolactone receptor FarR2 in Streptomyces lavendulae FRI-5. J Biosci Bioeng 2016; 121:372-9. [DOI: 10.1016/j.jbiosc.2015.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/30/2015] [Accepted: 08/23/2015] [Indexed: 02/05/2023]
|
13
|
A γ-butyrolactone autoregulator-receptor system involved in the regulation of auricin production in Streptomyces aureofaciens CCM 3239. Appl Microbiol Biotechnol 2014; 99:309-25. [DOI: 10.1007/s00253-014-6057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/15/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
|
14
|
Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H. A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol Microbiol 2014; 94:490-505. [PMID: 25116816 DOI: 10.1111/mmi.12752] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2014] [Indexed: 01/12/2023]
Abstract
Two regulatory genes, jadR2 and jadR3, in the jadomycin (jad) biosynthetic gene cluster of Streptomyces venezuelae encode homologues of γ-butyrolactone receptor. JadR2 was previously shown to be a pseudo γ-butyrolactone receptor. jadR3 is situated at the upstream of jadW123 encoding putative enzymes for γ-butyrolactone biosynthesis. Disruption of jadR3 resulted in markedly decreased production of jadomycin. Transcriptional analysis revealed that JadR3 represses jadW1, jadR2 and jadR3 but activates jadR1, the key activator gene for jadomycin biosynthesis. DNase I footprinting showed that JadR3 has four binding sites in the intergenic regions of jadR2-jadR1 and jadR3-jadW1. A JadR3 interactive molecule, SVB1, was purified from a large-scale fermentation and its structure found to be the same as SCB3, a γ-butyrolactone from Streptomyces coelicolor, and was absent from a jadW123 mutant lacking jadomycin production. Addition of SVB1 or extract from S. coelicolor to the mutant restored jadomycin production. Overall, our results revealed that the association of JadR3 and SVB1 plays an important role in controlling a regulatory mini-network governing jadomycin biosynthesis, providing new insights into the ways in which γ-butyrolactone/receptor systems modulate antibiotic biosynthesis in Streptomyces.
Collapse
Affiliation(s)
- Zhengzhong Zou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | | | | | | | | |
Collapse
|
15
|
Kurniawan YN, Kitani S, Maeda A, Nihira T. Differential contributions of two SARP family regulatory genes to indigoidine biosynthesis in Streptomyces lavendulae FRI-5. Appl Microbiol Biotechnol 2014; 98:9713-21. [PMID: 25125041 DOI: 10.1007/s00253-014-5988-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 11/25/2022]
Abstract
The Streptomyces antibiotic regulatory protein (SARP) family regulators have been shown to control the production of secondary metabolites in many Streptomyces species as the most downstream regulators in the regulatory cascade. Streptomyces lavendulae FRI-5 produces a blue pigment (indigoidine) together with two types of antibiotics: D-cycloserine and the nucleoside antibiotics. The production of these secondary metabolites is governed by a signaling system consisting of a γ-butyrolactone, IM-2 [(2R,3R,1'R)-2-1'-hydroxybutyl-3-hydroxymethyl-γ-butanolide], and its cognate receptor, FarA. Here, we characterized two regulatory genes of the SARP family, farR3 and farR4, which are tandemly located in the proximal region of farA. farR3 is transcribed both as a monocistronic RNA and as a bicistronic farR4-farR3 mRNA, and the expression profile is tightly controlled by the IM-2/FarA system. Loss of farR3 delayed and decreased the production of indigoidine without any changes in the transcriptional profile of other far regulatory genes, indicating that FarR3 positively controls the biosynthesis of indigoidine and is positioned in the downstream region of the IM-2/FarA signaling system. Meanwhile, loss of farR4 induced the early production of IM-2 by increasing transcription of an IM-2 biosynthetic gene, farX, indicating that FarR4 negatively controls the biosynthesis of IM-2. Thus, our results suggested differential contributions of the SARP family regulators to the regulation of secondary metabolism in S. lavendulae FRI-5. This is the first report to show that an SARP family regulator is involved in the biosynthesis of a signaling molecule functioning at the most upstream region of the regulatory cascade for Streptomyces secondary metabolism.
Collapse
Affiliation(s)
- Yohanes Novi Kurniawan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | |
Collapse
|
16
|
Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Appl Microbiol Biotechnol 2014; 98:4919-36. [PMID: 24562179 DOI: 10.1007/s00253-014-5595-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/31/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022]
Abstract
Streptomyces tsukubaensis is a well-established industrial tacrolimus producer strain, but its molecular genetics is very poorly known. This information shortage prevents the development of tailored mutants in the regulatory pathways. A region (named bul) contains several genes involved in the synthesis and control of the gamma-butyrolactone autoregulator molecules. This region contains ten genes (bulA, bulZ, bulY, bulR2, bulS2, bulR1, bulW, bluB, bulS1, bulC) including two γ-butyrolactone receptor homologues (bulR1, bulR2), two putative gamma-butyrolactone synthetase homologues (bulS1, bulS2) and two SARP regulatory genes (bulY, bulZ). Analysis of the autoregulatory element (ARE)-like sequences by electrophoretic mobility shift assays and footprinting using the purified BulR1 and BulR2 recombinant proteins revealed six ARE regulatory sequences distributed along the bul cluster. These sequences showed specific binding of both BulR1 (the gamma-butyrolactone receptor) and BulR2, a possible pseudo γ-butyrolactone receptor. The protected region in all cases covered a 28-nt sequence with a palindromic structure. Optimal docking area analysis of BulR1 proved that this protein can be presented as either monomer or dimer but not oligomers and that it binds to the conserved ARE sequence in both strands. The effect on tacrolimus production was analysed by deletion of the bulR1 gene, which resulted in a strong decrease of tacrolimus production. Meanwhile, the ΔbulR2 mutation did not affect the biosynthesis of this immunosuppressant.
Collapse
Affiliation(s)
- Zahra Salehi-Najafabadi
- Área de Microbiología, Departamento de Biología Molecular, Fac. CC. Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | | | | | | | | |
Collapse
|
17
|
Craney A, Ahmed S, Nodwell J. Towards a new science of secondary metabolism. J Antibiot (Tokyo) 2013; 66:387-400. [PMID: 23612726 DOI: 10.1038/ja.2013.25] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/12/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
Secondary metabolites are a reliable and very important source of medicinal compounds. While these molecules have been mined extensively, genome sequencing has suggested that there is a great deal of chemical diversity and bioactivity that remains to be discovered and characterized. A central challenge to the field is that many of the novel or poorly understood molecules are expressed at low levels in the laboratory-such molecules are often described as the 'cryptic' secondary metabolites. In this review, we will discuss evidence that research in this field has provided us with sufficient knowledge and tools to express and purify any secondary metabolite of interest. We will describe 'unselective' strategies that bring about global changes in secondary metabolite output as well as 'selective' strategies where a specific biosynthetic gene cluster of interest is manipulated to enhance the yield of a single product.
Collapse
Affiliation(s)
- Arryn Craney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Michael Degroote Institute for Infectious Diseases Research, Hamilton, Ontario, Canada
| | | | | |
Collapse
|
18
|
Pleiotropic control of secondary metabolism and morphological development by KsbC, a butyrolactone autoregulator receptor homologue in Kitasatospora setae. Appl Environ Microbiol 2012; 78:8015-24. [PMID: 22961899 DOI: 10.1128/aem.02355-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The γ-butyrolactone autoregulator signaling cascades have been shown to control secondary metabolism and/or morphological development among many Streptomyces species. However, the conservation and variation of the regulatory systems among actinomycetes remain to be clarified. The genome sequence of Kitasatospora setae, which also belongs to the family Streptomycetaceae containing the genus Streptomyces, has revealed the presence of three homologues of the autoregulator receptor: KsbA, which has previously been confirmed to be involved only in secondary metabolism; KsbB; and KsbC. We describe here the characterization of ksbC, whose regulatory cluster closely resembles the Streptomyces virginiae barA locus responsible for the autoregulator signaling cascade. Deletion of the gene ksbC resulted in lowered production of bafilomycin and a defect of aerial mycelium formation, together with the early and enhanced production of a novel β-carboline alkaloid named kitasetaline. A putative kitasetaline biosynthetic gene cluster was identified, and its expression in a heterologous host led to the production of kitasetaline together with JBIR-133, the production of which is also detected in the ksbC disruptant, and JBIR-134 as novel β-carboline alkaloids, indicating that these genes were biosynthetic genes for β-carboline alkaloid and thus are the first such genes to be discovered in bacteria.
Collapse
|
19
|
Gamma-butyrolactone regulatory system of Streptomyces chattanoogensis links nutrient utilization, metabolism, and development. Appl Environ Microbiol 2011; 77:8415-26. [PMID: 21948843 DOI: 10.1128/aem.05898-11] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma-butyrolactones (GBLs) produced by several Streptomyces species have been shown to serve as quorum-sensing signaling molecules for activating antibiotic production. The GBL system of Streptomyces chattanoogensis L10, a producer of antifungal agent natamycin, consists of three genes: scgA, scgX, and scgR. Both scgA and scgX contribute to GBL production, while scgR encodes a GBL receptor. ΔscgA and ΔscgX mutants of S. chattanoogensis behaved identically: they had a growth defect in submerged cultures and delayed or abolished the morphological differentiation and secondary metabolites production on solid medium. ScgR could bind to the promoter region of scgA and repress its transcription. Moreover, scgA seems also to be controlled by a GBL-mediated negative-feedback system. Hence, it is apparent that GBL biosynthesis is tightly controlled to ensure the correct timing for metabolic switch. An additional direct ScgR-target gene gbdA was identified by genomic SELEX and transcriptional analysis. Comparative proteomic analysis between L10 and its ΔscgA mutant revealed that the GBL system affects the expression of more than 50 proteins, including enzymes involved in carbon uptake system, primary metabolism, and stress response, we thus conclude that scgR-scgA-scgX constitute a novel GBL regulatory system involved in nutrient utilization, triggering adaptive responses, and finally dictating the switch from primary to secondary metabolism.
Collapse
|
20
|
Wang J, Wang W, Wang L, Zhang G, Fan K, Tan H, Yang K. A novel role of ‘pseudo’γ-butyrolactone receptors in controlling γ-butyrolactone biosynthesis in Streptomyces. Mol Microbiol 2011; 82:236-50. [DOI: 10.1111/j.1365-2958.2011.07811.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|