1
|
Kharkhota М, Kharchuk М, Kharchuk А, Grabova G, Noskov Y, Linnik R, Makeiev А, Avdieieva L. Physico-chemical properties of Priestia endophytica UCM B-5715 fluorescent pigments. Biochem Biophys Res Commun 2024; 741:151040. [PMID: 39580957 DOI: 10.1016/j.bbrc.2024.151040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
The endophytic bacterium Priestia endophytica (Bacillus endophyticus) UCM B-5715 (= DSM 13796) has been found to produce a distinctive pink pigment exhibiting vibrant yellow fluorescence. Investigation of the pigment extract revealed the presence of 2 non-polar fluorescent-colored compounds, with molecular masses of 376 (14.12 %) and 410 (82.02 %) a.m.u. FTIR spectroscopy indicated the characteristic signatures of heliomycin and chlorxanthomycin IR spectra, respectively. The chlorxathomycin nature of the main compound was confirmed by H1 NMR spectroscopy. Light, luminescence, transmission electron microscopy, and IR and H1 NMR spectroscopy established a high probability of a close association between the colored fluorescent compounds and poly-β-hydroxybutyrate granules. Bioinformatics analysis utilizing the antiSMASH 6.0 tool unveiled key gene sequences encoding the type II polyketide synthase complex and halogenase, involved in the biosynthesis of heliomycin and chlorxanthomycin.
Collapse
Affiliation(s)
- М Kharkhota
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - М Kharchuk
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - А Kharchuk
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine.
| | - G Grabova
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| | - Yu Noskov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry (IBOPC) of the NASU, Kyiv, Ukraine
| | - R Linnik
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - А Makeiev
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - L Avdieieva
- D.K. Zabolotny Institute of Microbiology and Virology of the NASU, Kyiv, Ukraine
| |
Collapse
|
2
|
Vieira EG, de Paiva REF, Miguel RB, de Oliveira APA, Franco de Melo Bagatelli F, Oliveira CC, Tuna F, da Costa Ferreira AM. An engineered POSS drug delivery system for copper(II) anticancer metallodrugs in a selective application toward melanoma cells. Dalton Trans 2024; 53:12567-12581. [PMID: 39005067 DOI: 10.1039/d4dt00535j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In this work, a polyhedral silsesquioxane (POSS) was used as an engineered drug delivery system for two oxindolimine-copper(II) anticancer complexes, [Cu(isaepy)]+ and [Cu(isapn)]+. The interest in hybrid POSS comes from the necessity of developing materials that can act as adjuvants to improve the cytotoxicity of non-soluble metallodrugs. Functionalization of POSS with a triazole ligand (POSS-atzac) permitted the anchorage of such copper complexes, producing hybrid materials with efficient cytotoxic effects. Structural and morphological characterizations of these copper-POSS systems were performed by using different techniques (IR, NMR, thermogravimetric analysis). A combination of continuous-wave (CW) and pulsed EPR (HYSCORE) spectroscopies conducted at the X-band have enabled the complete characterization of the coordination environment of the copper ion in the POSS-atzac matrix. Additionally, the cytotoxic effects of the loaded materials, [Cu(isapn)]@POSS-atzac and [Cu(isaepy)]@POSS-atzac, were assessed toward melanomas (SK-MEL), in comparison to non-tumorigenic cells (fibroblast P4). Evaluation of their nuclease activity or ability to facilitate cleavage of DNA indicated concentrations as low as 0.6 μg mL-1, while complete DNA fragmentation was observed at 25 μg mL-1. By using adequate scavengers, investigations on active intermediates responsible for their cytotoxicity were performed, both in the absence and in the presence of ascorbate as a reducing agent. Based on the observed selective cytotoxicity of these materials toward melanomas, investigations on the reactivity of these complexes and corresponding POSS-materials with melanin, a molecule that contributes to melanoma resistance to chemotherapy, were carried out. Results indicated the main role of the binuclear copper species, formed at the surface of the silica matrix, in the observed reactivity and selectivity of these copper-POSS systems.
Collapse
Affiliation(s)
- Eduardo Guimarães Vieira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Raphael Enoque Ferraz de Paiva
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Rodrigo Bernardi Miguel
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Ana Paula Araujo de Oliveira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| | - Felipe Franco de Melo Bagatelli
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Carla Columbano Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil
| | - Floriana Tuna
- EPSRC National EPR Facility, Department of Chemistry and Photon Science Institute, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Xin C, Zhang Y, Bao M, Yu C, Hou K, Wang Z. Novel carrier-free, charge-reversal and DNA-affinity nanodrugs for synergistic cascade cancer chemo-chemodynamic therapy. J Colloid Interface Sci 2022; 606:1488-1508. [PMID: 34500153 DOI: 10.1016/j.jcis.2021.08.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
The combination of chemotherapy (CT) and chemodynamic therapy (CDT) is an emerging therapeutic strategy for tumors; however, its therapeutic efficacy is usually impaired by the shortage of high-efficiency intracellular catalysts for CDT and the poor tumor selectivity of CT. To address this concern, novel carrier-free nanodrugs (CMC-DD2) self-assembled from the natural melanin complex (CMC) with a superior CDT performance, and dehydroabietic acid hexamer (DD2) displaying a potent antitumor activity were proposed for the synergistic combination of CT and CDT. CMC-DD2 preferred to enter tumor cells and localize in the nucleus after lysosome escape due to its pH-dependent charge-reversal properties. Nanodrugs internalized by the nucleus directly bound the DNA and altered its conformation. Then, the dissociation of CMC-DD2 was efficiently triggered by intracellular hydrogen peroxide (H2O2) with the release of DNA damaging agents, including nitrate anions, hydroxyl radicals (●OH) and DD2. Finally, severe DNA damage induced mitochondrial apoptosis in HepG2 cells. An in vivo assessment further demonstrated the superior tumor selectivity and suppressor capacity and no/low toxicity of the nanodrugs. Overall, novel carrier-free, charge-reversal, nucleus-targeting, biodegradable, and DNA-affinity nanodrugs represent safe and effective platforms for the combination of CT and CDT.
Collapse
Affiliation(s)
- Chao Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Yandong Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Meili Bao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chong Yu
- School of pharmacy, Harbin Medical University, Harbin 150090, China
| | - Kexin Hou
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Zhenyu Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
A novel melanin complex displayed the affinity to HepG2 cell membrane and nucleus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111923. [PMID: 33641916 DOI: 10.1016/j.msec.2021.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/30/2020] [Accepted: 01/24/2021] [Indexed: 01/07/2023]
Abstract
Chitosan-melanin complex from Catharsius molossus L. has proven to possess superior pharmaceutical excipient performance and may be the new source of water-soluble protein-free natural melanin. Herein, it was enzymatically hydrolyzed into the chitooligosaccharide-melanin complex (CMC) whose main chemical units were composed of eumelanin and chitooligosaccharides and showed three-layer structures. Additionally, this biomacromolecule could self-assemble into 40 nm nanoparticles (CMC Nps) in a weakly acidic aqueous solution. Interestingly, CMC displayed strong affinity for cell membrane by binding the phosphatidylserine, glycoprotein, glycolipids and glycosaminoglycans accumulated on the surface of tumor cells, notably, CMC Nps could enter cells and mainly target the nucleus by interacting with DNA and/or RNA substrates located around the nucleus to disrupt the proliferation and apoptosis processes. The findings suggest CMC may be the novel material for subcellular organelle targeting of cancer cells.
Collapse
|
5
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
6
|
Melanin-loaded CpG DNA hydrogel for modulation of tumor immune microenvironment. J Control Release 2020; 330:540-553. [PMID: 33373649 DOI: 10.1016/j.jconrel.2020.12.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 12/04/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Photothermal immunotherapy has emerged as one of the most potent approaches for cancer treatment, but this strategy has suffered from the lack of biodegradability of the photoresponsive materials. In this study, we aimed to develop biodegradable materials for photothermal immunotherapy. To this end, we designed a DNA CpG hydrogel (DH, generated by rolling-circle amplification), loaded it with bis-(3'-5')-cyclic dimeric guanosine monophosphate (G/DH), and coated the formulation with melanin (Mel/G/DH). Mel/G/DH exhibited a temperature increase upon near infrared (NIR) illumination. In vitro, Mel/G/DH plus NIR (808 nm) irradiation, induced the exposure of calreticulin on CT26 cancer cells, and significantly activated the maturation of dendritic cells (DC). In vivo, local administration of Mel/G/DH (+NIR) exerted photothermal killing of primary tumors and induced maturation of DC in lymph nodes. Treatment of primary tumors with Mel/G/DH(+NIR) prevented the growth of rechallenged tumors at a distant site. Survival was 100% in mice treated with Mel/G/DH(+NIR), 5-fold higher than the group treated with Mel/G(+NIR). Mel/G/DH(+NIR) treatment remodeled the immune microenvironment of distant tumors, increasing cytotoxic T cells and decreasing Treg cells. Taken together, the results of this study suggest the potential of Mel/G/DH as a platform for modulating tumor immune microenvironment aimed at preventing the recurrence of distant tumors.
Collapse
|
7
|
Li X, Yang HW, Jiang Y, Oh JY, Jeon YJ, Ryu B. Ishophloroglucin A Isolated from Ishige okamurae Suppresses Melanogenesis Induced by α-MSH: In Vitro and In Vivo. Mar Drugs 2020; 18:E470. [PMID: 32957728 PMCID: PMC7551695 DOI: 10.3390/md18090470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 12/13/2022] Open
Abstract
Diphlorethohydroxycarmalol (DPHC) isolated from Ishige okamurae (IO) showed potential whitening effects against UV-B radiation. However, the components of IO as well as their molecular mechanism against α-melanocyte-stimulating hormone (α-MSH) have not yet been investigated. Thus, this study aimed to investigate the inhibitory effects of Ishophloroglucin A (IPA), a phlorotannin isolated from brown algae IO, and its crude extract (IOE), in melanogenesis in vivo in an α-MSH-induced zebrafish model and in B16F10 melanoma cells in vitro. Molecular docking studies of the phlorotannins were carried out to determine their inhibitory effects and to elucidate their mode of interaction with tyrosinase, a glycoprotein related to melanogenesis. In addition, morphological changes and melanin content decreased in the α-MSH-induced zebrafish model after IPA and IOE treatment. Furthermore, Western blotting results revealed that IPA upregulated the extracellular related protein expression in α-MSH-stimulated B16F10 cells. Hence, these results suggest that IPA isolated from IOE has a potential for use in the pharmaceutical and cosmetic industries.
Collapse
Affiliation(s)
- Xining Li
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - Hye-Won Yang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - Yunfei Jiang
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - Jae-Young Oh
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| | - Bomi Ryu
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Korea; (X.L.); (H.-W.Y.); (Y.J.); (J.-Y.O.)
| |
Collapse
|
8
|
Ramsay E, Raviña M, Sarkhel S, Hehir S, Cameron NR, Ilmarinen T, Skottman H, Kjems J, Urtti A, Ruponen M, Subrizi A. Avoiding the Pitfalls of siRNA Delivery to the Retinal Pigment Epithelium with Physiologically Relevant Cell Models. Pharmaceutics 2020; 12:pharmaceutics12070667. [PMID: 32708811 PMCID: PMC7407886 DOI: 10.3390/pharmaceutics12070667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/03/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Inflammation is involved in the pathogenesis of several age-related ocular diseases, such as macular degeneration (AMD), diabetic retinopathy, and glaucoma. The delivery of anti-inflammatory siRNA to the retinal pigment epithelium (RPE) may become a promising therapeutic option for the treatment of inflammation, if the efficient delivery of siRNA to target cells is accomplished. Unfortunately, so far, the siRNA delivery system selection performed in dividing RPE cells in vitro has been a poor predictor of the in vivo efficacy. Our study evaluates the silencing efficiency of polyplexes, lipoplexes, and lipidoid-siRNA complexes in dividing RPE cells as well as in physiologically relevant RPE cell models. We find that RPE cell differentiation alters their endocytic activity and causes a decrease in the uptake of siRNA complexes. In addition, we determine that melanosomal sequestration is another significant and previously unexplored barrier to gene silencing in pigmented cells. In summary, this study highlights the importance of choosing a physiologically relevant RPE cell model for the selection of siRNA delivery systems. Such cell models are expected to enable the identification of carriers with a high probability of success in vivo, and thus propel the development of siRNA therapeutics for ocular disease.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
| | - Manuela Raviña
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
| | - Sanjay Sarkhel
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
| | - Sarah Hehir
- Department of Life Sciences, Institute of Technology Sligo, F91 YW50 Sligo, Ireland;
| | - Neil R. Cameron
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tanja Ilmarinen
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, 33014 Tampere, Finland; (T.I.); (H.S.)
| | - Heli Skottman
- Faculty of Medicine and Health Technology, BioMediTech, Tampere University, 33014 Tampere, Finland; (T.I.); (H.S.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;
| | - Arto Urtti
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; (E.R.); (M.R.); (S.S.); (A.U.)
- Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, 198504 Peterhoff, Russia
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Marika Ruponen
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Astrid Subrizi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark;
- School of Pharmacy, University of Eastern Finland, 70210 Kuopio, Finland;
- Correspondence: ; Tel.: +358-40-016-3407
| |
Collapse
|
9
|
Bioproduction, structure elucidation and in vitro antiproliferative effect of eumelanin pigment from Streptomyces parvus BSB49. Arch Microbiol 2020; 202:2401-2409. [PMID: 32591909 DOI: 10.1007/s00203-020-01956-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/10/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
In this study, the structure of the purified extracellular eumelanin pigment isolated from Streptomyces spp. was elucidated by detailed analysis via two different spectroscopic techniques (FT-IR and NMR). In vitro antiproliferative effects of eumelanin were evaluated on HeLa cell line. These experiments were carried out with the evaluation of the parameters including cell viability, cell index, and mitotic index. With the cell viability and cell index, IC50 concentration of eumelanin was determined as 10 μM. This result showed that the IC50 concentration of eumelanin decreased the values of cell viability, cell index and mitotic index. These changes are statistically significant (p < 0.01). The ability of the dissolved eumelanin (250 μg mL-1) to scavenge free radicals was determined via DPPH and ABTS and was shown to be about 87.73% and 75.2%, respectively, compared with standard antioxidants. It was observed that dry weights of eumelanin yield among the selected strains ranged from 160 to 240 mg L-1. The strain with the highest production potential was selected for 16S rDNA sequence analysis and, accordingly, the selected strain BSB49 was identified as Streptomyces parvus and the sequence analysis results were deposited in NCBI under accession number MK894155.
Collapse
|
10
|
Premi S, Han L, Mehta S, Knight J, Zhao D, Palmatier MA, Kornacker K, Brash DE. Genomic sites hypersensitive to ultraviolet radiation. Proc Natl Acad Sci U S A 2019; 116:24196-24205. [PMID: 31723047 PMCID: PMC6883822 DOI: 10.1073/pnas.1907860116] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
If the genome contains outlier sequences extraordinarily sensitive to environmental agents, these would be sentinels for monitoring personal carcinogen exposure and might drive direct changes in cell physiology rather than acting through rare mutations. New methods, adductSeq and freqSeq, provided statistical resolution to quantify rare lesions at single-base resolution across the genome. Primary human melanocytes, but not fibroblasts, carried spontaneous apurinic sites and TG sequence lesions more frequent than ultraviolet (UV)-induced cyclobutane pyrimidine dimers (CPDs). UV exposure revealed hyperhotspots acquiring CPDs up to 170-fold more frequently than the genomic average; these sites were more prevalent in melanocytes. Hyperhotspots were disproportionately located near genes, particularly for RNA-binding proteins, with the most-recurrent hyperhotspots at a fixed position within 2 motifs. One motif occurs at ETS family transcription factor binding sites, known to be UV targets and now shown to be among the most sensitive in the genome, and at sites of mTOR/5' terminal oligopyrimidine-tract translation regulation. The second occurs at A2-15TTCTY, which developed "dark CPDs" long after UV exposure, repaired CPDs slowly, and had accumulated CPDs prior to the experiment. Motif locations active as hyperhotspots differed between cell types. Melanocyte CPD hyperhotspots aligned precisely with recurrent UV signature mutations in individual gene promoters of melanomas and with known cancer drivers. At sunburn levels of UV exposure, every cell would have a hyperhotspot CPD in each of the ∼20 targeted cell pathways, letting hyperhotspots act as epigenetic marks that create phenome instability; high prevalence favors cooccurring mutations, which would allow tumor evolution to use weak drivers.
Collapse
Affiliation(s)
- Sanjay Premi
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Lynn Han
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Sameet Mehta
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - James Knight
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06520-8005
| | - Meg A Palmatier
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040
| | - Karl Kornacker
- Karl Kornacker & Associates, LLC, Worthington, OH 43085;
| | - Douglas E Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040;
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520-8059
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
11
|
Kassouf N, Kay CWM, Volkov A, Chiang SC, Birch-Machin MA, El-Khamisy SF, Haywood RM. UVA-induced carbon-centred radicals in lightly pigmented cells detected using ESR spectroscopy. Free Radic Biol Med 2018; 126:153-165. [PMID: 30055236 DOI: 10.1016/j.freeradbiomed.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 12/20/2022]
Abstract
Ultraviolet-A and melanin are implicated in melanoma, but whether melanin in vivo screens or acts as a UVA photosensitiser is debated. Here, we investigate the effect of UVA-irradiation on non-pigmented, lightly and darkly pigmented melanocytes and melanoma cells using electron spin resonance (ESR) spectroscopy. Using the spin trap 5,5 Dimethyl-1-pyrroline N-oxide (DMPO), carbon adducts were detected in all cells. However, higher levels of carbon adducts were detected in lightly pigmented cells than in non-pigmented or darkly pigmented cells. Nevertheless, when melanin levels were artificially increased in lightly pigmented cells by incubation with L-Tyrosine, the levels of carbon adducts decreased significantly. Carbon adducts were also detected in UVA-irradiated melanin-free cell nuclei, DNA-melanin systems, and the nucleoside 2'-deoxyguanosine combined with melanin, whereas they were only weakly detected in irradiated synthetic melanin and not at all in irradiated 2'-deoxyguanosine. The similarity of these carbon adducts suggests they may be derived from nucleic acid- guanine - radicals. These observations suggest that melanin is not consistently a UVA screen against free-radical formation in pigmented cells, but may also act as a photosensitizer for the formation of nucleic acid radicals in addition to superoxide. The findings are important for our understanding of the mechanism of damage caused by the UVA component of sunlight in non-melanoma and melanoma cells, and hence the causes of skin cancer.
Collapse
Affiliation(s)
- Nick Kassouf
- RAFT Institute, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, UK
| | - Christopher W M Kay
- Institute of Structural & Molecular Biology and London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Department of Chemistry, University of Saarland, Saarbrücken 66123, Germany
| | - Arsen Volkov
- RAFT Institute, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, UK
| | - Shih-Chieh Chiang
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Mark A Birch-Machin
- Dermatological Sciences, Institute of Cellular Medicine, The Medical School, Newcastle University, NE2 4HH, UK
| | - Sherif F El-Khamisy
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Rachel M Haywood
- RAFT Institute, Mount Vernon Hospital, Northwood, Middlesex HA6 2RN, UK.
| |
Collapse
|
12
|
Lian DS, Zhao SJ. Capillary electrophoresis based on nucleic acid detection for diagnosing human infectious disease. Clin Chem Lab Med 2017; 54:707-38. [PMID: 26352354 DOI: 10.1515/cclm-2015-0096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/17/2015] [Indexed: 01/22/2023]
Abstract
Rapid transmission, high morbidity, and mortality are the features of human infectious diseases caused by microorganisms, such as bacteria, fungi, and viruses. These diseases may lead within a short period of time to great personal and property losses, especially in regions where sanitation is poor. Thus, rapid diagnoses are vital for the prevention and therapeutic intervention of human infectious diseases. Several conventional methods are often used to diagnose infectious diseases, e.g. methods based on cultures or morphology, or biochemical tests based on metabonomics. Although traditional methods are considered gold standards and are used most frequently, they are laborious, time consuming, and tedious and cannot meet the demand for rapid diagnoses. Disease diagnosis using capillary electrophoresis methods has the advantages of high efficiency, high throughput, and high speed, and coupled with the different nucleic acid detection strategies overcomes the drawbacks of traditional identification methods, precluding many types of false positive and negative results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic detection to the diagnosis of human infectious diseases, and offers an introduction to the limitations, advantages, and future developments of this approach.
Collapse
|
13
|
Lindgren J, Moyer A, Schweitzer MH, Sjövall P, Uvdal P, Nilsson DE, Heimdal J, Engdahl A, Gren JA, Schultz BP, Kear BP. Interpreting melanin-based coloration through deep time: a critical review. Proc Biol Sci 2016; 282:20150614. [PMID: 26290071 DOI: 10.1098/rspb.2015.0614] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Colour, derived primarily from melanin and/or carotenoid pigments, is integral to many aspects of behaviour in living vertebrates, including social signalling, sexual display and crypsis. Thus, identifying biochromes in extinct animals can shed light on the acquisition and evolution of these biological traits. Both eumelanin and melanin-containing cellular organelles (melanosomes) are preserved in fossils, but recognizing traces of ancient melanin-based coloration is fraught with interpretative ambiguity, especially when observations are based on morphological evidence alone. Assigning microbodies (or, more often reported, their 'mouldic impressions') as melanosome traces without adequately excluding a bacterial origin is also problematic because microbes are pervasive and intimately involved in organismal degradation. Additionally, some forms synthesize melanin. In this review, we survey both vertebrate and microbial melanization, and explore the conflicts influencing assessment of microbodies preserved in association with ancient animal soft tissues. We discuss the types of data used to interpret fossil melanosomes and evaluate whether these are sufficient for definitive diagnosis. Finally, we outline an integrated morphological and geochemical approach for detecting endogenous pigment remains and associated microstructures in multimillion-year-old fossils.
Collapse
Affiliation(s)
- Johan Lindgren
- Department of Geology, Lund University, 223 62 Lund, Sweden
| | - Alison Moyer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Mary H Schweitzer
- Department of Geology, Lund University, 223 62 Lund, Sweden Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA
| | - Peter Sjövall
- SP Technical Research Institute of Sweden, Chemistry, Materials and Surfaces, 501 15 Borås, Sweden
| | - Per Uvdal
- MAX-IV laboratory, Lund University, 221 00 Lund, Sweden Chemical Physics, Department of Chemistry, Lund University, 221 00 Lund, Sweden
| | - Dan E Nilsson
- Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Jimmy Heimdal
- MAX-IV laboratory, Lund University, 221 00 Lund, Sweden
| | | | - Johan A Gren
- Department of Geology, Lund University, 223 62 Lund, Sweden
| | | | - Benjamin P Kear
- Museum of Evolution, Uppsala University, 752 36 Uppsala, Sweden Palaeobiology Programme, Department of Earth Sciences, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
14
|
Ullah S, Son S, Yun HY, Kim DH, Chun P, Moon HR. Tyrosinase inhibitors: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:347-62. [DOI: 10.1517/13543776.2016.1146253] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Yuan X, Gu W, Xiao M, Xie W, Wei S, Zhou L, Zhou J, Shen J. Interactions of CT DNA with hexagonal NaYF4 co-doped with Yb(3+)/Tm(3+) upconversion particles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:995-1003. [PMID: 25305602 DOI: 10.1016/j.saa.2014.08.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/30/2014] [Accepted: 08/24/2014] [Indexed: 06/04/2023]
Abstract
The interaction of UCPs with CT DNA are studied in detail by zeta potential, Energy dispersive spectrometer (EDS) spectroscopy, Thermogravimetric (TGA) analysis, DNA melting determination and various spectroscopic techniques including Ultraviolet-Visible (UV-Vis) absorption, fluorescence, circular dichroism (CD), Fourier transform infrared (FTIR) and Raman spectroscopy. The results indicate that CT DNA can assemble on the surface of UCPs mainly by relative stronger hydrophobic force and electrostatic binding, and the predominant interaction site is the deoxyribosyl phosphate backbone of CT DNA. Moreover, after interacting with UCPs, the double helix structure of DNA is undamaged.
Collapse
Affiliation(s)
- Xiuxue Yuan
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China
| | - Wenchao Gu
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China
| | - Mengsi Xiao
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China
| | - Wenli Xie
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China
| | - Shaohua Wei
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China
| | - Lin Zhou
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China.
| | - Jiahong Zhou
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China.
| | - Jian Shen
- College of Chemistry and Materials Science, Analysis and Testing Centre, Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, China
| |
Collapse
|
16
|
El-Maklizi MA, Ouf A, Ferreira A, Hedar S, Cruz-Rivera E. A localized PCR inhibitor in a porcelain crab suggests a protective role. PeerJ 2014; 2:e689. [PMID: 25493214 PMCID: PMC4260131 DOI: 10.7717/peerj.689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022] Open
Abstract
A number of polymerase chain reaction (PCR) inhibitors have been identified from biological and environmental samples. By and large, such substances are treated as random nuisances and contaminants with alternate functions; their inhibitory effects on DNA replication being a coincidental property of their molecular structure. Here, we demonstrate the presence of a localized PCR inhibitor in the foregut of the porcelain crab Petrolisthes rufescens (Anomura: Porcellanidae) from the Red Sea. The inhibitor precluded amplification of 28s, 16s and 18s gene sequences effectively but lost activity at 10(-2) dilutions from initial concentration. Heat treatment was ineffective in arresting inhibition and spectrophotometric techniques suggested that the inhibitor was not a melanin-type compound. The compound was not detected from midgut, hindgut, or gills of the crab. Activity of the inhibitor was precluded when samples were treated with suspensions from the midgut, suggesting that enzymatic degradation of the inhibitor likely happens at that part of the gut. As many microbial pathogens invade their hosts via ingestion, we suggest the presence of the localized inhibitor could carry a defensive or immunological role for P. rufescens. The identity of the inhibitory molecule remains unknown.
Collapse
Affiliation(s)
| | - Amged Ouf
- Biology Department, The American University in Cairo , New Cairo , Egypt ; Biotechnology Program, The American University in Cairo , New Cairo , Egypt
| | - Ari Ferreira
- Biotechnology Program, The American University in Cairo , New Cairo , Egypt
| | - Shahyn Hedar
- Biology Department, The American University in Cairo , New Cairo , Egypt
| | - Edwin Cruz-Rivera
- Biological Sciences Program, Asian University for Women , Chittagong , Bangladesh
| |
Collapse
|
17
|
Thompson RE, Duncan G, McCord BR. An Investigation of PCR Inhibition Using Plexor®-Based Quantitative PCR and Short Tandem Repeat Amplification. J Forensic Sci 2014; 59:1517-29. [DOI: 10.1111/1556-4029.12556] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 09/08/2013] [Accepted: 10/18/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Robyn E. Thompson
- Department of Chemistry and Biochemistry; Florida International University; 11200 SW 8th Street Miami FL 33199
| | - George Duncan
- Department of Chemistry and Biochemistry; Florida International University; 11200 SW 8th Street Miami FL 33199
| | - Bruce R. McCord
- Department of Chemistry and Biochemistry; Florida International University; 11200 SW 8th Street Miami FL 33199
| |
Collapse
|
18
|
Sandhya B, Seetharamappa J. Probing the site-selective binding of an antiretroviral drug, Stavudine to calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2014; 32:660-9. [PMID: 24328563 DOI: 10.1080/15257770.2013.851392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The interaction of an anti-HIV drug, stavudine (STV) with calf thymus deoxyribonucleic acid (DNA) was investigated employing acridine orange (AO) as a fluorescence probe. Spectroscopic investigations revealed the intercalative mode of binding of STV to DNA. The analysis of fluorescence data indicated the presence of static quenching mechanism between STV and DNA. Thermodynamic parameters indicated the presence of van der Waals forces in addition to intercalative mode of binding. CD data revealed the partial B → A conformational transition of DNA upon intercalative mode of binding with STV.
Collapse
Affiliation(s)
- B Sandhya
- a Department of Chemistry , Karnatak University , Dharwad , Karnataka , India
| | | |
Collapse
|
19
|
Haq IU, Graupner K, Nazir R, van Elsas JD. The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol Evol 2014; 6:1652-68. [PMID: 24923325 PMCID: PMC4122924 DOI: 10.1093/gbe/evu126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Burkholderia terrae strain BS001, obtained as an inhabitant of the mycosphere of Laccaria proxima (a close relative of Lyophyllum sp. strain Karsten), actively interacts with Lyophyllum sp. strain Karsten. We here summarize the remarkable ecological behavior of B. terrae BS001 in the mycosphere and add key data to this. Moreover, we extensively analyze the approximately 11.5-Mb five-replicon genome of B. terrae BS001 and highlight its remarkable features. Seventy-nine regions of genomic plasticity (RGP), that is, 16.48% of the total genome size, were found. One 70.42-kb RGP, RGP76, revealed a typical conjugal element structure, including a full type 4 secretion system. Comparative analyses across 24 related Burkholderia genomes revealed that 95.66% of the total BS001 genome belongs to the variable part, whereas the remaining 4.34% constitutes the core genome. Genes for biofilm formation and several secretion systems, under which a type 3 secretion system (T3SS), were found, which is consistent with the hypothesis that T3SSs play a role in the interaction with Lyophyllum sp. strain Karsten. The high number of predicted metabolic pathways and membrane transporters suggested that strain BS001 can take up and utilize a range of sugars, amino acids and organic acids. In particular, a unique glycerol uptake system was found. The BS001 genome further contains genetic systems for the degradation of complex organic compounds. Moreover, gene clusters encoding nonribosomal peptide synthetases (NRPS) and hybrid polyketide synthases/NRPS were found, highlighting the potential role of secondary metabolites in the ecology of strain BS001. The patchwork of genetic features observed in the genome is consistent with the notion that 1) horizontal gene transfer is a main driver of B. terrae BS001 adaptation and 2) the organism is very flexible in its ecological behavior in soil.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, The Netherlands
| | - Katharina Graupner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, The Netherlands
| |
Collapse
|
20
|
Kiran GS, Dhasayan A, Lipton AN, Selvin J, Arasu MV, Al-Dhabi NA. Melanin-templated rapid synthesis of silver nanostructures. J Nanobiotechnology 2014; 12:18. [PMID: 24885756 PMCID: PMC4038705 DOI: 10.1186/1477-3155-12-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/26/2013] [Indexed: 11/21/2022] Open
Abstract
Background As a potent antimicrobial agent, silver nanostructures have been used in nanosensors and nanomaterial-based assays for the detection of food relevant analytes such as organic molecules, aroma, chemical contaminants, gases and food borne pathogens. In addition silver based nanocomposites act as an antimicrobial for food packaging materials. In this prospective, the food grade melanin pigment extracted from sponge associated actinobacterium Nocardiopsis alba MSA10 and melanin mediated synthesis of silver nanostructures were studied. Based on the present findings, antimicrobial nanostructures can be developed against food pathogens for food industrial applications. Results Briefly, the sponge associated actinobacterium N. alba MSA10 was screened and fermentation conditions were optimized for the production of melanin pigment. The Plackett-Burman design followed by a Box-Behnken design was developed to optimize the concentration of most significant factors for improved melanin yield. The antioxidant potential, reductive capabilities and physiochemical properties of Nocardiopsis melanin was characterized. The optimum production of melanin was attained with pH 7.5, temperature 35°C, salinity 2.5%, sucrose 25 g/L and tyrosine 12.5 g/L under submerged fermentation conditions. A highest melanin production of 3.4 mg/ml was reached with the optimization using Box-Behnken design. The purified melanin showed rapid reduction and stabilization of silver nanostructures. The melanin mediated process produced uniform and stable silver nanostructures with broad spectrum antimicrobial activity against food pathogens. Conclusions The melanin pigment produced by N. alba MSA10 can be used for environmentally benign synthesis of silver nanostructures and can be useful for food packaging materials. The characteristics of broad spectrum of activity against food pathogens of silver nanostructures gives an insight for their potential applicability in incorporation of food packaging materials and antimicrobials for stored fruits and foods.
Collapse
Affiliation(s)
| | | | | | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India.
| | | | | |
Collapse
|
21
|
Banerjee A, Supakar S, Banerjee R. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization. PLoS One 2014; 9:e84574. [PMID: 24416247 PMCID: PMC3887007 DOI: 10.1371/journal.pone.0084574] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/24/2013] [Indexed: 11/24/2022] Open
Abstract
Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state 13C NMR), we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.
Collapse
Affiliation(s)
- Aulie Banerjee
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, W.B., India
| | - Subhrangshu Supakar
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, W.B., India
| | - Raja Banerjee
- Department of Bioinformatics, West Bengal University of Technology, Salt Lake, Kolkata, W.B., India
- * E-mail:
| |
Collapse
|
22
|
Ma F, Ge X, Huang H, Yang C, Han L, Zhou J, Yang X. Interactions of CT-DNA with Hypocrellin A and its Al(3+)-Hypocrellin A complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 109:158-163. [PMID: 23523758 DOI: 10.1016/j.saa.2013.02.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/03/2013] [Accepted: 02/18/2013] [Indexed: 06/02/2023]
Abstract
In this study, the chelation of Hypocrellin A (HA) with Al(3+) in water solution has been synthesized, and the interactions of HA and Al(3+)-HA complex with calf thymus DNA are in detail compared by UV-vis and fluorescence spectroscopic techniques, circular dichroism spectroscopy and viscosity measurement. The experiment results suggest that HA and Al(3+)-HA complex both could bind to CT DNA by intercalation mode, and double helix of DNA was damaged. Moreover, Al(3+)-HA complex not only displays higher absorption at therapeutic window but also displays stronger binding affinity to CT DNA than HA.
Collapse
Affiliation(s)
- Fei Ma
- Analysis and Testing Center, School of Geograph Science, Jiangsu Key Laboratory of Biofunctional Materials, Nanjing Normal University, Nanjing 210046, PR China
| | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Zhang G, Hu X, Fu P. Spectroscopic studies on the interaction between carbaryl and calf thymus DNA with the use of ethidium bromide as a fluorescence probe. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 108:53-61. [DOI: 10.1016/j.jphotobiol.2011.12.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
25
|
Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N2 with common bean (Phaseolus vulgaris L.). Appl Microbiol Biotechnol 2011; 93:2035-49. [DOI: 10.1007/s00253-011-3708-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/22/2011] [Accepted: 11/04/2011] [Indexed: 10/14/2022]
|
26
|
Abstract
Non-invasive drug delivery to the posterior segment of the eye represents an important unmet medical need, and trans-scleral delivery could be an interesting solution. This review analyses the possibility of trans-scleral drug delivery for high molecular weight compounds, such as proteins and genetic material, which currently represent the most innovative and efficacious molecules for the treatment of many diseases of the posterior segment of the eye. The paper reviews all the barriers, both static and dynamic, involved in trans-scleral administration of drugs, trying to elucidate the role of each of them in the specific case of macromolecules. Delivery systems to sustain drug release and enhancing strategies to improve trans-scleral penetration are also described. Finally, the review approaches the use of computational models as a screening tool to evaluate the feasibility of trans-scleral administration for macromolecules.
Collapse
|