1
|
Wu M, Xu Y, Zhao C, Huang H, Liu C, Duan X, Zhang X, Zhao G, Chen Y. Efficient nitrate and Cr(VI) removal by denitrifier: The mechanism of S. oneidensis MR-1 promoting electron production, transportation and consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133675. [PMID: 38508109 DOI: 10.1016/j.jhazmat.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
2
|
Tan X, Yang J, Shaaban M, Cai Y, Wang B, Peng QA. Cr(VI) removal from wastewater using nano zero-valent iron and chromium-reducing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113323-113334. [PMID: 37848784 DOI: 10.1007/s11356-023-30292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Significant global efforts are currently underway to alleviate the presence of toxic metals in water bodies, aiming to encourage a sustainable environment. Nevertheless, the scientific community has yet to methodically inspect the performance and mechanisms underlying the interaction between nanomaterials and microorganisms in this context. Therefore, this study seeks to address this knowledge gap by developing a novel system that integrates nano zero-valent iron (nZVI) with chromium-reducing bacteria (CrRB) to efficiently remove Cr(VI) from water sources. The combined use of RBC600 and CrRB resulted in a Cr(VI) removal rate of 77.73%, displaying a substantial improvement of 17.61% compared to the use of CrRB alone. The efficacy of Cr(VI) elimination was observed to be affected by several factors within the system, such as the pH value, the quantity of nZVI added, the degree of CrRB inoculation, and the initial concentration of Cr(VI) at the onset of the experiment. When the pH was adjusted to 5, the complete removal of 200 mg/L Cr(VI) was achieved within 36 h. Increasing the dosage of nZVI to above 2 g/L resulted in the complete elimination of Cr(VI) from the solution within 72 h. This can be attributed to the availability of more reaction sites for the reduction of Cr(VI), facilitated by the higher nZVI dose. Additionally, the increased dose of nZVI allowed for the dissolution of more reactive Fe(II) ions. The characterization analysis, high-throughput sequencing, and fluorescence quantitative PCR results have established that CrRB and its extracellular polymer effectively reduce and complex Cr(VI). This process facilitated the dissolution of the passivated layer on the surface of nZVI, thus significantly enhancing the efficiency of nZVI in responding to Cr(VI). Additionally, the presence of nZVI created a favorable living environment for CrRB, resulting in increased richness and diversity within the CrRB community. These findings provide valuable preliminary insights into the mechanism underlying Cr(VI) elimination by the synergistic interaction between nZVI and CrRB. Therefore, this study establishes a solid theoretical foundations for the application of nano-bio synergy in the remediation of Cr(VI).
Collapse
Affiliation(s)
- Xiangpeng Tan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Jianwei Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yajun Cai
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Buyun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Qi-An Peng
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, People's Republic of China.
| |
Collapse
|
3
|
Wu SC, Hsiao WC, Zhao YC, Wu LF. Hexavalent chromate bioreduction by a magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1 and the effect of magnetosome synthesis. CHEMOSPHERE 2023; 330:138739. [PMID: 37088211 DOI: 10.1016/j.chemosphere.2023.138739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Magnetotactic bacteria (MTB) are receiving attention for heavy metal biotreatment due to their potential for biosorption with heavy metals and the capability of the magnetic recovery. In this study, we investigated the characteristics of Cr(VI) bioreduction and biosorption by an MTB isolate, Magnetospirillum gryphiswaldense MSR-1, which has a higher growth rate and wider reflexivity in culture conditions. Our results demonstrated that the MSR-1 strain could remove Cr(VI) up to the concentration of 40 mg L-1 and with an optimal activity at neutral pH conditions. The magnetosome synthesis existed regulatory mechanisms between Cr(VI) reduction and cell division. The addition of 10 mg L-1 Cr(VI) significantly inhibited cell growth, but the magnetosome-deficient strain, B17316, showed an average specific growth rate of 0.062 h-1 at the same dosage. Cr(VI) reduction examined by the heat-inactivated and resting cells demonstrated that the main mechanism for MSR-1 strain to reduce Cr(VI) was chromate reductase and adsorption, and magnetosome synthesis would enhance the chromate reductase activity. Finally, our results elucidated that the chromate reductase distributes diversely in multiple subcellular components of the MSR-1 cells, including extracellular, membrane-associated, and intracellular cytoplasmic activity; and expression of the membrane-associated chromate reductase was increased after the cells were pre-exposed by Cr(VI).
Collapse
Affiliation(s)
- Siang Chen Wu
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan.
| | - Wei-Che Hsiao
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Ya-Chun Zhao
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| | - Li-Fen Wu
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung, 40227, Taiwan
| |
Collapse
|
4
|
Sedláček V, Kryl M, Kučera I. The ArsH Protein Product of the Paracoccus denitrificans ars Operon Has an Activity of Organoarsenic Reductase and Is Regulated by a Redox-Responsive Repressor. Antioxidants (Basel) 2022; 11:antiox11050902. [PMID: 35624766 PMCID: PMC9137774 DOI: 10.3390/antiox11050902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023] Open
Abstract
Paracoccus denitrificans ArsH is encoded by two identical genes located in two distinct putative arsenic resistance (ars) operons. Escherichia coli-produced recombinant N-His6-ArsH was characterized both structurally and kinetically. The X-ray structure of ArsH revealed a flavodoxin-like domain and motifs for the binding of flavin mononucleotide (FMN) and reduced nicotinamide adenine dinucleotide phosphate (NADPH). The protein catalyzed FMN reduction by NADPH via ternary complex mechanism. At a fixed saturating FMN concentration, it acted as an NADPH-dependent organoarsenic reductase displaying ping-pong kinetics. A 1:1 enzymatic reaction of phenylarsonic acid with the reduced form of FMN (FMNH2) and formation of phenylarsonous acid were observed. Growth experiments with P. denitrificans and E. coli revealed increased toxicity of phenylarsonic acid to cells expressing arsH, which may be related to in vivo conversion of pentavalent As to more toxic trivalent form. ArsH expression was upregulated not only by arsenite, but also by redox-active agents paraquat, tert-butyl hydroperoxide and diamide. A crucial role is played by the homodimeric transcriptional repressor ArsR, which was shown in in vitro experiments to monomerize and release from the DNA-target site. Collectively, our results establish ArsH as responsible for enhancement of organo-As(V) toxicity and demonstrate redox control of ars operon.
Collapse
|
5
|
NfoR: Chromate Reductase or Flavin Mononucleotide Reductase? Appl Environ Microbiol 2020; 86:AEM.01758-20. [PMID: 32887719 PMCID: PMC7642083 DOI: 10.1128/aem.01758-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 01/07/2023] Open
Abstract
Soil bacteria can detoxify Cr(VI) ions by reduction. Within the last 2 decades, numerous reports of chromate reductase enzymes have been published. These reports describe catalytic reduction of chromate ions by specific enzymes. These enzymes each have sequence similarity to known redox-active flavoproteins. We investigated the enzyme NfoR from Staphylococcus aureus, which was reported to be upregulated in chromate-rich soils and to have chromate reductase activity (H. Han, Z. Ling, T. Zhou, R. Xu, et al., Sci Rep 7:15481, 2017, https://doi.org/10.1038/s41598-017-15588-y). We show that NfoR has structural similarity to known flavin mononucleotide (FMN) reductases and reduces FMN as a substrate. NfoR binds FMN with a dissociation constant of 0.4 μM. The enzyme then binds NADPH with a dissociation constant of 140 μM and reduces the flavin at a rate of 1,350 s-1 Turnover of the enzyme is apparently limited by the rate of product release that occurs, with a net rate constant of 0.45 s-1 The rate of product release limits the rate of observed chromate reduction, so the net rate of chromate reduction by NfoR is orders of magnitude lower than when this process occurs in solution. We propose that NfoR is an FMN reductase and that the criterion required to define chromate reduction as enzymatic has not been met. That NfoR expression is increased in the presence of chromate suggests that the survival adaption was to increase the net rate of chromate reduction by facile, adventitious redox processes.IMPORTANCE Chromate is a toxic by-product of multiple industrial processes. Chromate reduction is an important biological activity that ameliorates Cr(VI) toxicity. Numerous researchers have identified chromate reductase activity by observing chromate reduction. However, all identified chromate reductase enzymes have flavin as a cofactor or use a flavin as a substrate. We show here that NfoR, an enzyme claimed to be a chromate reductase, is in fact an FMN reductase. In addition, we show that reduction of a flavin is a viable way to transfer electrons to chromate but that it is unlikely to be the native function of enzymes. We propose that upregulation of a redox-active flavoprotein is a viable means to detoxify chromate that relies on adventitious reduction that is not catalyzed.
Collapse
|
6
|
Sedláček V, Kučera I. Functional and mechanistic characterization of an atypical flavin reductase encoded by the pden_5119 gene in Paracoccus denitrificans. Mol Microbiol 2019; 112:166-183. [PMID: 30977245 DOI: 10.1111/mmi.14260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2019] [Indexed: 01/25/2023]
Abstract
Pden_5119, annotated as an NADPH-dependent FMN reductase, shows homology to proteins assisting in utilization of alkanesulfonates in other bacteria. Here, we report that inactivation of the pden_5119 gene increased susceptibility to oxidative stress, decreased growth rate and increased growth yield; growth on lower alkanesulfonates as sulfur sources was not specifically influenced. Pden_5119 transcript rose in response to oxidative stressors, respiratory chain inhibitors and terminal oxidase downregulation. Kinetic analysis of a fusion protein suggested a sequential mechanism in which FMN binds first, followed by NADH. The affinity of flavin toward the protein decreased only slightly upon reduction. The observed strong viscosity dependence of kcat demonstrated that reduced FMN formed tends to remain bound to the enzyme where it can be re-oxidized by oxygen or, less efficiently, by various artificial electron acceptors. Stopped flow data were consistent with the enzyme-FMN complex being a functional oxidase that conducts the reduction of oxygen by NADH. Hydrogen peroxide was identified as the main product. As shown by isotope effects, hydride transfer occurs from the pro-S C4 position of the nicotinamide ring and partially limits the overall turnover rate. Collectively, our results point to a role for the Pden_5119 protein in maintaining the cellular redox state.
Collapse
Affiliation(s)
- Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
7
|
Sedláček V, Kučera I. Arginine-95 is important for recruiting superoxide to the active site of the FerB flavoenzyme of Paracoccus denitrificans. FEBS Lett 2019; 593:697-702. [PMID: 30883730 DOI: 10.1002/1873-3468.13359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
Ferric reductase B (FerB) is a flavin mononucleotide (FMN)-containing NAD(P)H:acceptor oxidoreductase structurally close to the Gluconacetobacter hansenii chromate reductase (ChrR). The crystal structure of ChrR was previously determined with a chloride bound proximal to FMN in the vicinity of Arg101, and the authors suggested that the anionic electron acceptors, chromate and uranyl tricarbonate, bind similarly. Here, we identify the corresponding arginine residue in FerB (Arg95) as being important for the reaction of FerB with superoxide. Four mutants at position 95 were prepared and found kinetically to have impaired capacity for superoxide binding. Stopped-flow data for the flavin cofactor showed that the oxidative step is rate limiting for catalytic turnover. The findings are consistent with a role for FerB as a superoxide scavenging contributor.
Collapse
Affiliation(s)
- Vojtěch Sedláček
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Igor Kučera
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Zhou C, Ontiveros-Valencia A, Nerenberg R, Tang Y, Friese D, Krajmalnik-Brown R, Rittmann BE. Hydrogenotrophic Microbial Reduction of Oxyanions With the Membrane Biofilm Reactor. Front Microbiol 2019; 9:3268. [PMID: 30687262 PMCID: PMC6335333 DOI: 10.3389/fmicb.2018.03268] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Oxyanions, such as nitrate, perchlorate, selenate, and chromate are commonly occurring contaminants in groundwater, as well as municipal, industrial, and mining wastewaters. Microorganism-mediated reduction is an effective means to remove oxyanions from water by transforming oxyanions into harmless and/or immobilized forms. To carry out microbial reduction, bacteria require a source of electrons, called the electron-donor substrate. Compared to organic electron donors, H2 is not toxic, generates minimal secondary contamination, and can be readily obtained in a variety of ways at reasonable cost. However, the application of H2 through conventional delivery methods, such as bubbling, is untenable due to H2's low water solubility and combustibility. In this review, we describe the membrane biofilm reactor (MBfR), which is a technological breakthrough that makes H2 delivery to microorganisms efficient, reliable, and safe. The MBfR features non-porous gas-transfer membranes through which bubbleless H2 is delivered on-demand to a microbial biofilm that develops naturally on the outer surface of the membranes. The membranes serve as an active substratum for a microbial biofilm able to biologically reduce oxyanions in the water. We review the development of the MBfR technology from bench, to pilot, and to commercial scales, and we elucidate the mechanisms that control MBfR performance, particularly including methods for managing the biofilm's structure and function. We also give examples of MBfR performance for cases of treating single and co-occurring oxyanions in different types of contaminated water. In summary, the MBfR is an effective and reliable technology for removing oxyanion contaminants by accurately providing a biofilm with bubbleless H2 on demand. Controlling the H2 supply in accordance to oxyanion surface loading and managing the accumulation and activity of biofilm are the keys for process success.
Collapse
Affiliation(s)
- Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| | | | - Robert Nerenberg
- Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States
| | | | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
9
|
Analysis of the Genome and Chromium Metabolism-Related Genes of Serratia sp. S2. Appl Biochem Biotechnol 2017; 185:140-152. [DOI: 10.1007/s12010-017-2639-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/17/2017] [Indexed: 10/18/2022]
|
10
|
Hexavalent chromium bioreduction and chemical precipitation of sulphate as a treatment of site-specific fly ash leachates. World J Microbiol Biotechnol 2017; 33:88. [PMID: 28390012 DOI: 10.1007/s11274-017-2243-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 03/11/2017] [Indexed: 10/19/2022]
Abstract
Most of the power generation globally is by coal-fired power plants resulting in large stockpiles of fly ash. The trace elements associated with the ash particles are subjected to the leaching effects of precipitation which may lead to the subsequent contamination of surface and groundwater systems. In this study, we successfully demonstrate an efficient and sustainable dual treatment remediation strategy for the removal of high levels of Cr6+ and SO42- introduced by fly ash leachate generated by a power station situation in Mpumalanga, South Africa. The treatment consisted of a primary fixed-bed bioreactor kept at a reduction potential for Cr6+ reduction. Metagenome sequencing clearly indicated a diverse bacterial community containing various bacteria, predominantly of the phylum Proteobacteria which includes numerous species known for their ability to detoxify metals such as Cr6+. This was followed by a secondary BaCO3/dispersed alkaline substrate column for SO42- removal. The combination of these two systems resulted in the removal of 99% Cr6+ and 90% SO42-. This is the first effective demonstration of an integrated system combining a biological and chemical strategy for the remediation of multi-contaminants present in fly ash leachate in South Africa.
Collapse
|
11
|
Kučera I, Sedláček V. An Enzymatic Method for Methanol Quantification in Methanol/Ethanol Mixtures with a Microtiter Plate Fluorometer. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0692-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
12
|
Li N, Pan Y, Zhang N, Wang X, Zhou W. The bio-reduction of chromate with periplasmic reductase using a novel isolated strain Pseudoalteromonas sp. CF10-13. RSC Adv 2016. [DOI: 10.1039/c6ra16320c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel isolated bacteriumPseudoalteromonassp. CF10-13 could reduce Cr(vi) to Cr(iii) by periplasic reductase with Cr(iii) bound to functional groups in extracellular polymeric substance (EPS) or leached to media as soulbe organic-Cr(iii).
Collapse
Affiliation(s)
- Na Li
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Yanzhuo Pan
- Jinan Licheng No. 2 High School
- Jinan 250104
- China
| | - Na Zhang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Xueyan Wang
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| | - Weizhi Zhou
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- China
| |
Collapse
|
13
|
Thatoi H, Das S, Mishra J, Rath BP, Das N. Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 146:383-399. [PMID: 25199606 DOI: 10.1016/j.jenvman.2014.07.014] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/03/2014] [Accepted: 07/10/2014] [Indexed: 05/14/2023]
Abstract
Hexavalent chromium is mobile, highly toxic and considered as a priority environmental pollutant. Chromate reductases, found in chromium resistant bacteria are known to catalyse the reduction of Cr(VI) to Cr(III) and have recently received particular attention for their potential use in bioremediation process. Different chromate reductases such as ChrR, YieF, NemA and LpDH, have been identified from bacterial sources which are located either in soluble fractions (cytoplasm) or bound to the membrane of the bacterial cell. The reducing conditions under which these enzymes are functional can either be aerobic or anaerobic or sometimes both. Enzymatic reduction of Cr(VI) to Cr(III) involves transfer of electrons from electron donors like NAD(P)H to Cr(VI) and simultaneous generation of reactive oxygen species (ROS). Based on the steps involved in electron transfer to Cr(VI) and the subsequent amount of ROS generated, two reaction mechanisms, namely, Class I "tight" and Class II "semi tight" have been proposed. The present review discusses on the types of chromate reductases found in different bacteria, their mode of action and potential applications in bioremediation of hexavalent chromium both under free and immobilize conditions. Besides, techniques used in characterization of the Cr (VI) reduced products were also discussed.
Collapse
Affiliation(s)
- Hrudayanath Thatoi
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India.
| | - Sasmita Das
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Jigni Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Bhagwat Prasad Rath
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Techno-Campus, Ghatikia, Bhubaneswar 751003, Odisha, India
| | - Nigamananda Das
- Department of Chemistry, North Orissa University, Takatpur, Baripada 757003, Odisha, India
| |
Collapse
|
14
|
Sedláček V, Ptáčková N, Rejmontová P, Kučera I. The flavoprotein FerB ofParacoccus denitrificansbinds to membranes, reduces ubiquinone and superoxide, and acts as anin vivoantioxidant. FEBS J 2014; 282:283-96. [DOI: 10.1111/febs.13126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Vojtĕch Sedláček
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Nikola Ptáčková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Petra Rejmontová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Igor Kučera
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| |
Collapse
|
15
|
Identification of Multiple Soluble Fe(III) Reductases in Gram-Positive Thermophilic Bacterium Thermoanaerobacter indiensis BSB-33. Int J Genomics 2014; 2014:850607. [PMID: 25180173 PMCID: PMC4142287 DOI: 10.1155/2014/850607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 11/18/2022] Open
Abstract
Thermoanaerobacter indiensis BSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared from T. indiensis cells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help of T. indiensis proteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of the T. indiensis Fe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase from Thermus scotoductus and thioredoxin disulfide reductase from Desulfovibrio desulfuricans. It appears that in addition to their iron reducing activity T. indiensis LPDs and Tdr are possibly involved in Cr(VI) reduction as well.
Collapse
|
16
|
The structural and functional basis of catalysis mediated by NAD(P)H:acceptor Oxidoreductase (FerB) of Paracoccus denitrificans. PLoS One 2014; 9:e96262. [PMID: 24817153 PMCID: PMC4015959 DOI: 10.1371/journal.pone.0096262] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 04/05/2014] [Indexed: 12/14/2022] Open
Abstract
FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.
Collapse
|
17
|
Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol (Praha) 2014; 59:321-32. [PMID: 24470188 DOI: 10.1007/s12223-014-0304-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/12/2014] [Indexed: 01/16/2023]
Abstract
Chromium pollution is increasing incessantly due to continuing industrialization. Of various oxidation states, Cr(6+) is very toxic due to its carcinogenic and mutagenic nature. It also has deleterious effects on different microorganisms as well as on plants. Many species of bacteria thriving in the Cr(6+)-contaminated environments have evolved novel strategies to cope with Cr(6+) toxicity. Generally, decreased uptake or exclusion of Cr(6+) compounds through the membranes, biosorption, and the upregulation of genes associated with oxidative stress response are some of the resistance mechanisms in bacterial cells to overcome the Cr(6+) stress. In addition, bacterial Cr(6+) reduction into Cr(3+) is also a mechanism of specific significance as it transforms toxic and mobile chromium derivatives into reduced species which are innocuous and immobile. Ecologically, the bacterial trait of reductive immobilization of Cr(6+) derivatives is of great advantage in bioremediation. The present review is an effort to underline the bacterial resistance and reducing mechanisms to Cr(6+) compounds with recent development in order to garner a broad perspective.
Collapse
|
18
|
Robins KJ, Hooks DO, Rehm BHA, Ackerley DF. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium. PLoS One 2013; 8:e59200. [PMID: 23527133 PMCID: PMC3596305 DOI: 10.1371/journal.pone.0059200] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
Abstract
Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI) to insoluble and relatively non-toxic Cr(III), bacterial bioremediation of Cr(VI) pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI) remediation. To identify novel Cr(VI) reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI) indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI) reductase (kcat/KM = 1.1×105 M−1s−1 with NADH as cofactor). Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI) remediation.
Collapse
Affiliation(s)
- Katherine J. Robins
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - David O. Hooks
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - Bernd H. A. Rehm
- Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
- * E-mail:
| |
Collapse
|
19
|
Genomic and physiological characterization of the chromate-reducing, aquifer-derived Firmicute Pelosinus sp. strain HCF1. Appl Environ Microbiol 2012; 79:63-73. [PMID: 23064329 DOI: 10.1128/aem.02496-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pelosinus spp. are fermentative firmicutes that were recently reported to be prominent members of microbial communities at contaminated subsurface sites in multiple locations. Here we report metabolic characteristics and their putative genetic basis in Pelosinus sp. strain HCF1, an isolate that predominated anaerobic, Cr(VI)-reducing columns constructed with aquifer sediment. Strain HCF1 ferments lactate to propionate and acetate (the methylmalonyl-coenzyme A [CoA] pathway was identified in the genome), and its genome encodes two [NiFe]- and four [FeFe]-hydrogenases for H(2) cycling. The reduction of Cr(VI) and Fe(III) may be catalyzed by a flavoprotein with 42 to 51% sequence identity to both ChrR and FerB. This bacterium has unexpected capabilities and gene content associated with reduction of nitrogen oxides, including dissimilatory reduction of nitrate to ammonium (two copies of NrfH and NrfA were identified along with NarGHI) and a nitric oxide reductase (NorCB). In this strain, either H(2) or lactate can act as a sole electron donor for nitrate, Cr(VI), and Fe(III) reduction. Transcriptional studies demonstrated differential expression of hydrogenases and nitrate and nitrite reductases. Overall, the unexpected metabolic capabilities and gene content reported here broaden our perspective on what biogeochemical and ecological roles this species might play as a prominent member of microbial communities in subsurface environments.
Collapse
|
20
|
Kavita B, Keharia H. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech 2012; 2:79-87. [PMID: 22582159 PMCID: PMC3339614 DOI: 10.1007/s13205-011-0038-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 11/13/2011] [Indexed: 11/29/2022] Open
Abstract
Hexavalent chromium-resistant Ochrobactrum intermedium BCR400 was isolated from chromium contaminated soil collected from Vadodara, Gujarat. It reduced 100 mg Cr(VI)/L completely in 52 h with initial Cr(VI) reduction rate of 1.98 mg/L/h. The Cr(VI) reduction rate decreased with increase in Cr(VI) concentration from 100 to 500 mg/L. The addition of anthraquinone-2-sulphonic acid (AQS) to culture O. intermedium BCR400 significantly enhanced its chromium reduction rate. The activation energy of AQS-mediated Cr(VI) reduction (120.69 KJ/mol) was 1.1-fold lower than non-mediated Cr(VI) reduction. An increase in the activities of quinone reductase and chromate reductase in cells grown in presence of AQS/AQS + Cr(VI) suggests their role in reduction of Cr(VI) by O. intermedium. Both chromate reductase and quinone reductase activities were FAD independent, required NADH as reductant, displayed maximum activity at pH (7.0) and temperature (30 °C). Thus Cr(VI) bioremediation potential of O. intermedium can be enhanced by augmentation of system with AQS as redox mediator.
Collapse
Affiliation(s)
- B. Kavita
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Vallabh Vidyanagar, 388120 Gujarat India
| | - Haresh Keharia
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Vallabh Vidyanagar, 388120 Gujarat India
| |
Collapse
|