1
|
Jiang Q, Hu R, Liu F, Huang F, Zhang L, Zhang H. Characterization of a Novel Oxidative Stress Responsive Transcription Regulator in Mycobacterium bovis. Biomedicines 2024; 12:1872. [PMID: 39200336 PMCID: PMC11351531 DOI: 10.3390/biomedicines12081872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The antioxidant defense is critical for the survival of intracellular pathogens such as Mycobacterium tuberculosis complex (MTBC) species, including Mycobacterium bovis, which are often exposed to an oxidative environment caused by reactive oxygen species (ROS) in hosts. However, the signaling pathway in mycobacteria for sensing and responding to oxidative stress remains largely unclear. In this study, we characterize a TetR-type transcription regulator BCG_3893c, designated AotM, as a novel redox sensor in Mycobacterium bovis that increases mycobacterial tolerance to oxidative stress. AotM is required for the growth of M. bovis in the presence of 1 mM hydrogen peroxide. Loss of the aotM gene leads to altered transcriptional profiles with 352 genes significantly up-regulated and 25 genes significantly down-regulated. AotM recognizes a 14-bp palindrome sequence motif and negatively regulates the expression of a FAD-dependent oxidoreductase encoded by bcg_3892c. Overexpression of BCG_3892c increases intracellular ROS production and reduces the growth of M. bovis. In summary, we propose that AotM enhances the mycobacterial resistance against oxidative stress probably by inhibiting intracellular ROS production. Our findings reveal a novel underlying regulatory mechanism behind mycobacterial oxidative stress adaptation.
Collapse
Affiliation(s)
- Qiang Jiang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Rong Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Liu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Feng Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| | - Lei Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Q.J.)
| |
Collapse
|
2
|
Naz S, Singh Y, Nandicoori VK. Deletion of serine/threonine-protein kinase pknL from Mycobacterium tuberculosis reduces the efficacy of isoniazid and ethambutol. Tuberculosis (Edinb) 2021; 128:102066. [PMID: 33690080 DOI: 10.1016/j.tube.2021.102066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Serine/threonine-protein kinases in Mycobacterium tuberculosis (Mtb) form a preeminent regulatory system required to establish and maintain the infection in the host. Herein, we sought to decipher the biological role of PknL with the help of a gene replacement mutant RvΔpknL. Deletion of pknL results in the compromised growth under redox stress. The mutant showed significant survival defects in peritoneal macrophages, a significant decrease in the ability to establish infections and disseminate to the spleen in the murine model of infection. While the absence of pknL has no impact on either MIC or CFUs of ciprofloxacin and rifampicin treated bacilli, it increases the survival ~1.5-2.5 log fold upon isoniazid or ethambutol treatment. Collectively, data suggests that PknL aids in combating stress conditions in vitro, ex vivo, and in vivo and reduces the efficacy of isoniazid and ethambutol.
Collapse
Affiliation(s)
- Saba Naz
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | | |
Collapse
|
3
|
Cestero JJ, Castanheira S, Pucciarelli MG, García-Del Portillo F. A Novel Salmonella Periplasmic Protein Controlling Cell Wall Homeostasis and Virulence. Front Microbiol 2021; 12:633701. [PMID: 33679664 PMCID: PMC7933661 DOI: 10.3389/fmicb.2021.633701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Horizontal gene transfer has shaped the evolution of Salmonella enterica as pathogen. Some functions acquired by this mechanism include enzymes involved in peptidoglycan (PG) synthesis and remodeling. Here, we report a novel serovar Typhimurium protein that is absent in non-pathogenic bacteria and bears a LprI functional domain, first reported in a Mycobacterium tuberculosis lipoprotein conferring lysozyme resistance. Based on the presence of such domain, we hypothesized a role of this S. Typhimurium protein in PG metabolism. This protein, which we named ScwA for Salmonellacell wall-related regulator-A, controls positively the levels of the murein lytic transglycosylase MltD. In addition, the levels of other enzymes that cleave bonds in the PG lattice were affected in a mutant lacking ScwA, including a soluble lytic tranglycosylase (Slt), the amidase AmiC, and a few endo- and carboxypeptidases (NlpC, PBP4, and AmpH). The scwA gene has lower G+C content than the genomic average (43.1 vs. 52.2%), supporting acquisition by horizontal transfer. ScwA is located in the periplasm, stabilized by two disulfide bridges, produced preferentially in stationary phase and down-regulated following entry of the pathogen into eukaryotic cells. ScwA deficiency, however, results in a hypervirulent phenotype in the murine typhoid model. Based on these findings, we conclude that ScwA may be exploited by S. Typhimurium to ensure cell envelope homeostasis along the infection and to prevent host overt damage. This role could be accomplished by controlling the production or stability of a reduced number of peptidoglycan hydrolases whose activities result in the release of PG fragments.
Collapse
Affiliation(s)
- Juan J Cestero
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - Sónia Castanheira
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
| | - M Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.,Department of Molecular Biology, Autonomous University of Madrid, Madrid, Spain.,Center for Molecular Biology "Severo Ochoa" (CBMSO)-CSIC, Madrid, Spain
| | | |
Collapse
|
4
|
Patel HV, Li M, Seeliger JC. Opportunities and Challenges in Activity-Based Protein Profiling of Mycobacteria. Curr Top Microbiol Immunol 2019; 420:49-72. [PMID: 30178262 DOI: 10.1007/82_2018_125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Mycobacteria, from saprophytic to pathogenic species, encounter diverse environments that demand metabolic versatility and rapid adaptation from these bacteria for their survival. The human pathogen Mycobacterium tuberculosis, for example, can enter a reversible state of dormancy in which it is metabolically active, but does not increase in number, and which is believed to enable its survival in the human host for years, with attendant risk for reactivation to active tuberculosis. Driven by the need to combat mycobacterial diseases like tuberculosis, efforts to understand such adaptations have benefitted in recent years from application of activity-based probes. These studies have been inspired by the potential of these chemical tools to uncover protein function for previously unannotated proteins, track shifts in protein activity as a function of environment, and provide a streamlined method for screening and developing inhibitors. Here we seek to contextualize progress thus far with achieving these goals and highlight the unique challenges and opportunities for activity-based probes to further our understanding of protein function and regulation, bacterial physiology, and antibiotic development.
Collapse
Affiliation(s)
- Hiren V Patel
- Department of Molecular Genetics and Microbiology, Stony Brook University, 11794, Stony Brook, NY, USA
| | - Michael Li
- Department of Pharmacological Sciences, Stony Brook University, 11794, Stony Brook, NY, USA
| | - Jessica C Seeliger
- Department of Pharmacological Sciences, Stony Brook University, 11794, Stony Brook, NY, USA.
| |
Collapse
|
5
|
Mori M, Sammartino JC, Costantino L, Gelain A, Meneghetti F, Villa S, Chiarelli LR. An Overview on the Potential Antimycobacterial Agents Targeting Serine/Threonine Protein Kinases from Mycobacterium tuberculosis. Curr Top Med Chem 2019; 19:646-661. [PMID: 30827246 DOI: 10.2174/1568026619666190227182701] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/27/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), still remains an urgent global health issue, mainly due to the emergence of multi-drug resistant strains. Therefore, there is a pressing need to develop novel and more efficient drugs to control the disease. In this context, targeting the pathogen virulence factors, and particularly signal mechanisms, seems to be a promising approach. An important transmembrane signaling system in Mtb is represented by receptor-type Serine/ Threonine protein kinases (STPKs). Mtb has 11 different STPKs, two of them, PknA and PknB, are essential. By contrast PknG and PknH are involved in Mtb virulence and adaptation, and are fundamental for the pathogen growth in infection models. Therefore, STPKs represent a very interesting group of pharmacological targets in M. tuberculosis. In this work, the principal inhibitors of the mycobacterial STPKs will be presented and discussed. In particular, medicinal chemistry efforts have been focused on discovering new antimycobacterial compounds, targeting three of these kinases, namely PknA, PknB and PknG. Generally, the inhibitory effect on these enzymes do not correlate with a significant antimycobacterial action in whole-cell assays. However, compounds with activity in the low micromolar range have been obtained, demonstrating that targeting Mtb STPKs could be a new promising strategy for the development of drugs to treat TB infections.
Collapse
Affiliation(s)
- Matteo Mori
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - José Camilla Sammartino
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| | - Luca Costantino
- Dipartimento Scienze della Vita, Universita degli Studi di Modena e Reggio Emilia, via Campi 103, 41121 Modena, Italy
| | - Arianna Gelain
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Stefania Villa
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
| | - Laurent Roberto Chiarelli
- Dipartimento di Biologia e Biotecnologie "Lazzaro Spallanzani", Università degli Studi di Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
6
|
Shur KV, Bekker OB, Zaichikova MV, Maslov DA, Akimova NI, Zakharevich NV, Chekalina MS, Danilenko VN. Genetic Aspects of Drug Resistance and Virulence in Mycobacterium tuberculosis. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418120141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Liu J, Dong Y, Wang N, Li S, Yang Y, Wang Y, Awan F, Lu C, Liu Y. Tetrahymena thermophila Predation Enhances Environmental Adaptation of the Carp Pathogenic Strain Aeromonas hydrophila NJ-35. Front Cell Infect Microbiol 2018; 8:76. [PMID: 29594069 PMCID: PMC5861188 DOI: 10.3389/fcimb.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 01/21/2023] Open
Abstract
Persistence of Aeromonas hydrophila in aquatic environments is the principle cause of fish hemorrhagic septicemia. Protistan predation has been considered to be a strong driving force for the evolution of bacterial defense strategies. In this study, we investigated the adaptive traits of A. hydrophila NJ-35, a carp pathogenic strain, in response to Tetrahymena thermophila predation. After subculturing with Tetrahymena, over 70% of A. hydrophila colonies were small colony variants (SCVs). The SCVs displayed enhanced biofilm formation, adhesion, fitness, and resistance to bacteriophage infection and oxidative stress as compared to the non-Tetrahymena-exposed strains. In contrast, the SCVs exhibited decreased intracellular bacterial number in RAW264.7 macrophages and were highly attenuated for virulence in zebrafish. Considering the outer membrane proteins (OMPs) are directly involved in bacterial interaction with the external surroundings, we investigated the roles of OMPs in the antipredator fitness behaviors of A. hydrophila. A total of 38 differentially expressed proteins were identified in the SCVs by quantitative proteomics. Among them, three lipoproteins including SurA, Slp, and LpoB, and a serine/threonine protein kinase (Stpk) were evidenced to be associated with environmental adaptation of the SCVs. Also, the three lipoproteins were involved in attenuated virulence of SCVs through the proinflammatory immune response mediated by TLR2. This study provides an important contribution to the understanding of the defensive traits of A. hydrophila against protistan predators.
Collapse
Affiliation(s)
- Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nannan Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shougang Li
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Yang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Kriel NL, Gallant J, van Wyk N, van Helden P, Sampson SL, Warren RM, Williams MJ. Mycobacterial nucleoid associated proteins: An added dimension in gene regulation. Tuberculosis (Edinb) 2018. [DOI: 10.1016/j.tube.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Habib Z, Xu W, Jamal M, Rehman K, Dai J, Fu ZF, Chen X, Cao G. Adaptive gene profiling of Mycobacterium tuberculosis during sub-lethal kanamycin exposure. Microb Pathog 2017; 112:243-253. [PMID: 28966063 DOI: 10.1016/j.micpath.2017.09.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022]
Abstract
Resistance to anti-tuberculosis drugs is a formidable obstacle to effective tuberculosis (TB) treatment and prevention globally. New forms of multidrug, extensive drug and total drug resistance Mycobacterium tuberculosis (Mtb) causing a serious threat to human as well as animal's population. Mtb shows diverse adaptability under stress conditions especially antibiotic treatment, however underlying physiological mechanism remained elusive. In present study, we investigated Mtb's response and adaptation with reference to gene expression during sub-lethal kanamycin exposure. Mtb were cultured under sub-lethal drug and control conditions, where half were sub-cultured every 3-days to observe serial adaptation under same conditions and the remaining were subjected to RNA-seq. We identified 98 up-regulated and 198 down-regulated responsive genes compared to control through differential analysis, of which Ra1750 and Ra3160 were the most responsive genes. In adaptive analysis, we found Ra1750, Ra3160, Ra3161, Ra3893 and Ra2492 up-regulation at early stage and gradually showed low expression levels at the later stages of drug exposure. The adaptive expression of Ra1750, Ra3160 and Ra3161 were further confirmed by real time qPCR. These results suggested that these genes contributed in Mtb's physiological adaptation during sub-lethal kanamycin exposure. Our findings may aid to edify these potential targets for drug development against drug resistance tuberculosis.
Collapse
Affiliation(s)
- Zeshan Habib
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Weize Xu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Muhammad Jamal
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Khaista Rehman
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Jinxia Dai
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zhen Fang Fu
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| | - Xi Chen
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Gang Cao
- State Key Laboratory of Agriculture Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Bio-Medcial Center, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
10
|
Richard-Greenblatt M, Av-Gay Y. Epigenetic Phosphorylation Control of Mycobacterium tuberculosis Infection and Persistence. Microbiol Spectr 2017; 5:10.1128/microbiolspec.tbtb2-0005-2015. [PMID: 28281439 PMCID: PMC11687473 DOI: 10.1128/microbiolspec.tbtb2-0005-2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 01/20/2023] Open
Abstract
Reversible protein phosphorylation is the most common type of epigenetic posttranslational modification in living cells used as a major regulation mechanism of biological processes. The Mycobacterium tuberculosis genome encodes for 11 serine/threonine protein kinases that are responsible for sensing environmental signals to coordinate a cellular response to ensure the pathogen's infectivity, survival, and growth. To overcome killing mechanisms generated within the host during infection, M. tuberculosis enters a state of nonreplicating persistence that is characterized by arrested growth, limited metabolic activity, and phenotypic resistance to antimycobacterial drugs. In this article we focus our attention on the role of M. tuberculosis serine/threonine protein kinases in sensing the host environment to coordinate the bacilli's physiology, including growth, cell wall components, and central metabolism, to establish a persistent infection.
Collapse
Affiliation(s)
- Melissa Richard-Greenblatt
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| | - Yossef Av-Gay
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
11
|
Liu X, Luo Y, Li Z, Wei G. Functional analysis of PrkA - a putative serine protein kinase from Mesorhizobium alhagi CCNWXJ12-2 - in stress resistance. BMC Microbiol 2016; 16:227. [PMID: 27686068 PMCID: PMC5041497 DOI: 10.1186/s12866-016-0849-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/24/2016] [Indexed: 01/12/2023] Open
Abstract
Background Serine/threonine protein kinases are highly conserved kinases with a wide distribution in microbes and with multiple functions. Mesorhizobium alhagi CCNWXJ12-2, a α-proteobacterium which could be able to form symbiosis with Alhagi sparsifolia in northwest of China, contains a putative PrkA-family serine protein kinase, PrkA. In our previous study, the expression of prkA was found to be downregulated in high-salt conditions. To elucidate the function of M. alhagi PrkA, a prkA deletion mutant was constructed and the phenotypes of the mutant were analyzed. Results The salt and alkaline tolerance and antioxidant capacity of the wild-type strain and the prkA deletion mutant was measured. Our results showed that the deletion mutant had higher salt and alkaline tolerance than the wild-type strain. The total cellular Na+ content was measured and showed no significant difference between the wild-type strain and the mutant. The prkA deletion mutant also showed a higher H2O2 tolerance than the wild-type strain. Therefore the activities of antioxidant enzymes were measured. Catalase activity was similar in the wild-type and the deletion mutant, while the superoxide dismutase activity in the mutant was higher than that in the wild-type. Conclusions We firstly analyze the function of a serine protein kinase, PrkA, in M. alhagi. Our data indicate that PrkA could reduce the survival of M. alhagi under environmental stress and deletion of prkA dramatically improved the salt and alkaline tolerance and antioxidant capacity of M. alhagi.
Collapse
Affiliation(s)
- Xiaodong Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yantao Luo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhefei Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Identification of a Transcription Factor That Regulates Host Cell Exit and Virulence of Mycobacterium tuberculosis. PLoS Pathog 2016; 12:e1005652. [PMID: 27191591 PMCID: PMC4871555 DOI: 10.1371/journal.ppat.1005652] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/01/2016] [Indexed: 02/04/2023] Open
Abstract
The interaction of Mycobacterium tuberculosis (Mtb) with host cell death signaling pathways is characterized by an initial anti-apoptotic phase followed by a pro-necrotic phase to allow for host cell exit of the bacteria. The bacterial modulators regulating necrosis induction are poorly understood. Here we describe the identification of a transcriptional repressor, Rv3167c responsible for regulating the escape of Mtb from the phagosome. Increased cytosolic localization of MtbΔRv3167c was accompanied by elevated levels of mitochondrial reactive oxygen species and reduced activation of the protein kinase Akt, and these events were critical for the induction of host cell necrosis and macroautophagy. The increase in necrosis led to an increase in bacterial virulence as reflected in higher bacterial burden and reduced survival of mice infected with MtbΔRv3167c. The regulon of Rv3167c thus contains the bacterial mediators involved in escape from the phagosome and host cell necrosis induction, both of which are crucial steps in the intracellular lifecycle and virulence of Mtb. Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is a highly successful human pathogen. Following entry into host phagocytic cells, Mtb resides within a modified phagosomal compartment and inhibits apoptotic host cell death. Recent studies have demonstrated that Mtb eventually translocates from the phagosomal compartment to the cytosol. This event is followed by the induction of necrotic host cell death allowing the bacteria to exit the host cell and infect naive cell populations. Our study adds to this relatively unexplored aspect of Mtb pathogenesis by revealing that the transcriptional repressor Rv3167c of Mtb negatively regulates phagosomal escape and host cell necrosis. We furthermore demonstrate that the increased necrosis induction by the Mtb mutant strain deficient in Rv3167c required elevated reactive oxygen species levels within host cell mitochondria and reduced activation of the protein kinase Akt. In addition, the increased virulence of the Mtb mutant strain observed after aerosol infection of mice strengthens the link between the ability of the bacteria to induce host cell necrosis and virulence. The Mtb genes negatively regulated by Rv3167c are thus potential virulence factors that can be targeted for drug and vaccine development.
Collapse
|
13
|
Alekseeva MG, Mavletova DA, Kolchina NV, Nezametdinova VZ, Danilenko VN. Isolation and purification of recombinant serine/threonine protein kinases of the strain Bifidobacterium longum B379M and investigation of their activity. BIOCHEMISTRY (MOSCOW) 2015; 80:1303-11. [DOI: 10.1134/s0006297915100119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Environmental Sensing in Actinobacteria: a Comprehensive Survey on the Signaling Capacity of This Phylum. J Bacteriol 2015; 197:2517-35. [PMID: 25986905 DOI: 10.1128/jb.00176-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Signal transduction is an essential process that allows bacteria to sense their complex and ever-changing environment and adapt accordingly. Three distinct major types of signal-transducing proteins (STPs) can be distinguished: one-component systems (1CSs), two-component systems (2CSs), and extracytoplasmic-function σ factors (ECFs). Since Actinobacteria are particularly rich in STPs, we comprehensively investigated the abundance and diversity of STPs encoded in 119 actinobacterial genomes, based on the data stored in the Microbial Signal Transduction (MiST) database. Overall, we observed an approximately linear correlation between the genome size and the total number of encoded STPs. About half of all membrane-anchored 1CSs are protein kinases. For both 1CSs and 2CSs, a detailed analysis of the domain architectures identified novel proteins that are found only in actinobacterial genomes. Many actinobacterial genomes are particularly enriched for ECFs. As a result of this study, almost 500 previously unclassified ECFs could be classified into 18 new ECF groups. This comprehensive survey demonstrates that actinobacterial genomes encode previously unknown STPs, which may represent new mechanisms of signal transduction and regulation. This information not only expands our knowledge of the diversity of bacterial signal transduction but also provides clear and testable hypotheses about their mechanisms, which can serve as starting points for experimental studies. IMPORTANCE In the wake of the genomic era, with its enormous increase in the amount of available sequence information, the challenge has now shifted toward making sense and use of this treasure chest. Such analyses are a prerequisite to provide meaningful information that can help guide subsequent experimental efforts, such as mechanistic studies on novel signaling strategies. This work provides a comprehensive analysis of signal transduction proteins from 119 actinobacterial genomes. We identify, classify, and describe numerous novel and conserved signaling devices. Hence, our work serves as an important resource for any researcher interested in signal transduction of this important bacterial phylum, which contains organisms of ecological, biotechnological, and medical relevance.
Collapse
|
15
|
Uhía I, Williams KJ, Shahrezaei V, Robertson BD. Mycobacterial Growth. Cold Spring Harb Perspect Med 2015; 5:cshperspect.a021097. [PMID: 25957314 DOI: 10.1101/cshperspect.a021097] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this work, we review progress made in understanding the molecular underpinnings of growth and division in mycobacteria, concentrating on work published since the last comprehensive review ( Hett and Rubin 2008). We have focused on exciting work making use of new time-lapse imaging technologies coupled with reporter-gene fusions and antimicrobial treatment to generate insights into how mycobacteria grow and divide in a heterogeneous manner. We try to reconcile the different observations reported, providing a model of how they might fit together. We also review the topic of mycobacterial spores, which has generated considerable discussion during the last few years. Resuscitation promoting factors, and regulation of growth and division, have also been actively researched, and we summarize progress in these areas.
Collapse
Affiliation(s)
- Iria Uhía
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kerstin J Williams
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Brian D Robertson
- Department of Medicine, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
Parandhaman DK, Sharma P, Bisht D, Narayanan S. Proteome and phosphoproteome analysis of the serine/threonine protein kinase E mutant of Mycobacterium tuberculosis. Life Sci 2014; 109:116-26. [PMID: 24972353 DOI: 10.1016/j.lfs.2014.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 06/09/2014] [Indexed: 01/04/2023]
Abstract
AIMS Serine/threonine protein kinases (STPKs) have prominent roles in the survival mechanisms of Mycobacterium tuberculosis (M. tuberculosis). Previous studies from our laboratory underscored the role of PknE, an STPK in virulence, adaptation and the suppression of host cell apoptosis. In this study, two-dimensional gel electrophoresis was used to study the proteome and phosphoproteome profiles of wild type M. tuberculosis and its isogenic pknE deletion mutant (ΔpknE) during growth in Middlebrook 7H9 and nitric oxide stress. MAIN METHODS Wild-type M. tuberculosis and its isogenic pknE deletion mutant strain were grown in Middlebrook 7H9 as well as subjected to nitric oxide stress using sodium nitroprusside. Whole cell lysates were prepared and analyzed by 2D-gel electrophoresis. Phosphoproteomes were analyzed using phospho serine and phospho threonine antibodies after subjecting the 2D-gels to western blotting. Proteins of interest were identified using mass spectrometry. KEY FINDINGS Our analysis provides insights into the targets that impose pro-apoptotic as well as altered cellular phenotypes on ΔpknE, revealing novel substrates and functions for PknE. SIGNIFICANCE For the first time, our proteome and phosphoproteome data decipher the function of PknE in cell division, virulence, dormancy, suppression of sigma factor B and its regulated genes, suppression of two-component systems and in the metabolic activity of M. tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India; Department of Immunology, International Centre for Genetic Engineering and Biotechnology, Aruna Asif Ali Marg, New Delhi, 110067,India
| | - Prashant Sharma
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Deepa Bisht
- Department of Biochemistry, National JALMA Institute for Leprosy and other Mycobacterial Diseases, Tajganj, Agra,India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis, Chennai,India.
| |
Collapse
|
17
|
Homology modelling, docking, pharmacophore and site directed mutagenesis analysis to identify the critical amino acid residue of PknI from Mycobacterium tuberculosis. J Mol Graph Model 2014; 52:11-9. [PMID: 24955490 DOI: 10.1016/j.jmgm.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/22/2022]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen. PknI is one of the 11 functional Serine/Threonine Protein Kinases which is predicted to regulate the cell division of M. tuberculosis. In order to find newer drugs and vaccine we need to understand the pathogenesis of the disease. We have used the bioinformatics approach to identify the functionally active residues of PknI and to confirm the same with wet lab experiments. In the current study, we have created homology model for PknI and have done comparative structural analysis of PknI with other kinases. Molecular docking studies were done with a library of kinase inhibitors and T95 was found as the potent inhibitor for PknI. Based on structure based pharmacophore analysis of kinase substrate complexes, Lys 41 along with Asp90, Val92 and Asp96 were identified as functionally important residues. Further, we used site directed mutagenesis technique to mutate Lys 41 to Met resulting in defective cell division of Mycobacterium smegmatis mc(2). Overall, the proposed model together with its binding features gained from pharmacophore docking studies helped in identifying ligand inhibitor specific to PknI which was confirmed by laboratory experiments.
Collapse
|
18
|
Parandhaman DK, Narayanan S. Cell death paradigms in the pathogenesis of Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2014; 4:31. [PMID: 24634891 PMCID: PMC3943388 DOI: 10.3389/fcimb.2014.00031] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/17/2014] [Indexed: 01/24/2023] Open
Abstract
Cell death or senescence is a fundamental event that helps maintain cellular homeostasis, shapes the growth of organism, and provides protective immunity against invading pathogens. Decreased or increased cell death is detrimental both in infectious and non-infectious diseases. Cell death is executed both by regulated enzymic reactions and non-enzymic sudden collapse. In this brief review we have tried to summarize various cell death modalities and their impact on the pathogenesis of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Dinesh Kumar Parandhaman
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India ; Department of Immunology, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Sujatha Narayanan
- Department of Immunology, National Institute for Research in Tuberculosis Chennai, India
| |
Collapse
|
19
|
Nezametdinova VZ, Zakharevich NV, Alekseeva MG, Averina OV, Mavletova DA, Danilenko VN. Identification and characterization of the serine/threonine protein kinases in Bifidobacterium. Arch Microbiol 2014; 196:125-36. [PMID: 24395073 DOI: 10.1007/s00203-013-0949-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/09/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
Six genes encoding the bifidobacterial Hanks-type (eukaryote-like) serine/threonine protein kinases (STPK) were identified and classified. The genome of each bifidobacterial strain contains four conserved genes and one species-specific gene. Bifidobacterium longum and Bifidobacterium bifidum possess the unique gene found only in these species. The STPK genes of Russian industrial probiotic strain B. longum B379M were cloned and sequenced. The expression of these genes in Escherichia coli and bifidobacteria was observed. Autophosphorylation of the conserved STPK Pkb5 and species-specific STPK Pkb2 was demonstrated. This is the first report on Hanks-type STPK in bifidobacteria.
Collapse
Affiliation(s)
- Venera Z Nezametdinova
- Department of Genetics of Microorganisms, Vavilov Institute of General Genetics, Russian Academy of Sciences, 3 Gubkin Street, 119991, Moscow, Russia,
| | | | | | | | | | | |
Collapse
|
20
|
Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol Lett 2013; 346:11-9. [PMID: 23731382 DOI: 10.1111/1574-6968.12189] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 01/05/2023] Open
Abstract
In this review, we address some recent developments in the field of bacterial protein phosphorylation, focusing specifically on serine/threonine and tyrosine kinases. We present an overview of recent studies outlining the scope of physiological processes that are regulated by phosphorylation, ranging from cell cycle, growth, cell morphology, to metabolism, developmental phenomena, and virulence. Specific emphasis is placed on Mycobacterium tuberculosis as a showcase organism for serine/threonine kinases, and Bacillus subtilis to illustrate the importance of protein phosphorylation in developmental processes. We argue that bacterial serine/threonine and tyrosine kinases have a distinctive feature of phosphorylating multiple substrates and might thus represent integration nodes in the signaling network. Some open questions regarding the evolutionary benefits of relaxed substrate selectivity of these kinases are treated, as well as the notion of nonfunctional 'background' phosphorylation of cellular proteins. We also argue that phosphorylation events for which an immediate regulatory effect is not clearly established should not be dismissed as unimportant, as they may have a role in cross-talk with other post-translational modifications. Finally, recently developed methods for studying protein phosphorylation networks in bacteria are briefly discussed.
Collapse
|