1
|
Nofiani R, Ardiningsih P, Rudiyansyah, Padupu D, Rizky, Amalia DA, Octaviana S, Sukito A, Setiyoningrum F, Weisberg AJ, Mahmud T. Biological activities and metabolomic profiles of extracts from the marine sediment bacterium Nocardiopsis alba DP1B cultivated in different media. Microb Pathog 2024; 192:106702. [PMID: 38825090 DOI: 10.1016/j.micpath.2024.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/04/2024]
Abstract
The soil bacterium DP1B was isolated from a marine sediment collected off the coast of Randayan Island, Kalimantan Barat, Indonesia and identified based on 16S rDNA as Nocardiopsis alba. The bacterium was cultivated in seven different media (A1, ISP1, ISP2, ISP4, PDB, PC-1, and SCB) with three different solvents [distilled water, 5 % NaCl solution, artificial seawater (ASW)] combinations, shaken at 200 rpm, 30 °C, for 7 days. The culture broths were extracted with ethyl acetate and each extract was tested for its antimicrobial activity and brine shrimp lethality, and the chemical diversity was assessed using thin-layer chromatography (TLC), gas chromatography (GC), and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The result showed that almost all extracts showed antibacterial but not antifungal activity, whereas their brine shrimp toxicity levels vary from high to low. The best medium/solvent combinations for antibacterial activity and toxicity were PC-1 (in either distilled water, 5% NaCl solution, or ASW) and SCB in ASW. Different chemical diversity profiles were observed on TLC, GC-MS, and LC-MS/MS. Extracts from the PC-1 cultures seem to contain a significant number of cyclic dipeptides, whereas those from the SCB cultures contain sesquiterpenes, indicating that media and solvent compositions can affect the secondary metabolite profiles of DP1B. In addition, untargeted metabolomic analyses using LC-MS/MS showed many molecular ions that did not match with those in the Global Natural Products Social Molecular Networking (GNPS) database, suggesting that DP1B has great potential as a source of new natural products.
Collapse
Affiliation(s)
- Risa Nofiani
- Department of Chemistry, Universitas Tanjungpura, Pontianak, 78124, Indonesia.
| | - Puji Ardiningsih
- Department of Chemistry, Universitas Tanjungpura, Pontianak, 78124, Indonesia
| | - Rudiyansyah
- Department of Chemistry, Universitas Tanjungpura, Pontianak, 78124, Indonesia
| | - Desi Padupu
- Department of Chemistry, Universitas Tanjungpura, Pontianak, 78124, Indonesia
| | - Rizky
- Department of Chemistry, Universitas Tanjungpura, Pontianak, 78124, Indonesia
| | - Dinda Ayu Amalia
- Department of Chemistry, Universitas Tanjungpura, Pontianak, 78124, Indonesia
| | - Senlie Octaviana
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Agus Sukito
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Fitri Setiyoningrum
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97333, United States
| |
Collapse
|
2
|
Ali AR, Bahrami Y, Kakaei E, Mohammadzadeh S, Bouk S, Jalilian N. Isolation and identification of endophytic actinobacteria from Citrullus colocynthis (L.) Schrad and their antibacterial properties. Microb Cell Fact 2022; 21:206. [PMID: 36217205 PMCID: PMC9548430 DOI: 10.1186/s12934-022-01936-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/02/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Antibiotic resistance poses a major threat to human health globally. Consequently, new antibiotics are desperately required to discover and develop from unexplored habitats to treat life-threatening infections. Microbial natural products (NP) are still remained as primary sources for the discovery of new antibiotics. Endophytic actinobacteria (EA) which are well-known producers of bioactive compounds could provide novel antibiotic against pathogenic bacteria. This research aimed to isolate EA from the Citrullus colocynthis plant and explore the antibacterial properties of their metabolites against pathogenic bacteria. RESULTS The healthy samples were collected, dissected and surface-sterilized before cultured on four different selection media at 28 °C. Six endophytic actinobacteria were isolated from Citrullus colocynthis plant. They were taxonomically classified into two family namely Streptomycetaceae and Nocardiopsaceae, based on colony morphological features, scanning electron microscope analysis and molecular identification of isolates. This is the first report on the identification of EA form Citrullus colocynthis and their antibacterial activity. The strains generated a chain of vibrio-comma, cubed or cylindrical shaped spores with indenting or smooth surfaces. Three of those were reported as endophytes for the first time. The strain KUMS-C1 showed 98.55% sequence similarity to its closely related strains which constitutes as a novel species/ strain for which the name Nocardiopsis colocynthis sp. was proposed for the isolated strain. Five isolated strains had antagonist activity against S. aureus, P. aeruginosa, and E. coli. Among those, stain KUMS-C6 showed the broadest spectrum of antibacterial activity against all test bacteria, whereas the strain KUMS-C4 had no antibacterial activity. CONCLUSIONS NPs have a long history of safe and efficient use for development of pharmaceutical products. Our study highlights that Citrullus colocynthis is an untapped source for the isolation of EA, generating novel and bioactive metabolites by which might lead to discovery of new antibiotic(s). This study reveals the future of new antibiotic developments looks bright against multi-drug resistance diseases by mining under- or unexplored habitats.
Collapse
Affiliation(s)
- Aram R Ali
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. .,Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, 5042, Australia.
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Mohammadzadeh
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Jalilian
- Forests and Rangelands Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, (AREEO), Kermanshah, Iran
| |
Collapse
|
3
|
dos Santos JDN, João SA, Martín J, Vicente F, Reyes F, Lage OM. iChip-Inspired Isolation, Bioactivities and Dereplication of Actinomycetota from Portuguese Beach Sediments. Microorganisms 2022; 10:1471. [PMID: 35889190 PMCID: PMC9319460 DOI: 10.3390/microorganisms10071471] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Oceans hold a stunning number of unique microorganisms, which remain unstudied by culture-dependent methods due to failures in establishing the right conditions for these organisms to grow. In this work, an isolation effort inspired by the iChip was performed using marine sediments from Memoria beach, Portugal. The isolates obtained were identified by 16S rRNA gene analysis, fingerprinted using BOX-PCR and ERIC-PCR, searched for the putative presence of secondary metabolism genes associated with polyketide synthase I (PKS-I) and non-ribosomal peptide synthetases (NRPS), screened for antimicrobial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and had bioactive extracts dereplicated by LC/HRMS. Of the 158 isolated strains, 96 were affiliated with the phylum Actinomycetota, PKS-I and NRPS genes were detected in 53 actinomycetotal strains, and 11 proved to be bioactive (10 against E. coli, 1 against S. aureus and 1 against both pathogens). Further bioactivities were explored using an "one strain many compounds" approach, with six strains showing continued bioactivity and one showing a novel one. Extract dereplication showed the presence of several known bioactive molecules and potential novel ones in the bioactive extracts. These results indicate the use of the bacteria isolated here as sources of new bioactive natural products.
Collapse
Affiliation(s)
- José Diogo Neves dos Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Susana Afonso João
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Francisca Vicente
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avenida del Conocimiento, 34 Parque Tecnológico de Ciencias de la Salud, 18016 Granada, Spain; (J.M.); (F.V.); (F.R.)
| | - Olga Maria Lage
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal; (S.A.J.); (O.M.L.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Canu N, Moutiez M, Belin P, Gondry M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep 2021; 37:312-321. [PMID: 31435633 DOI: 10.1039/c9np00036d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to mid-2019 Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNA as substrates. The recent characterization of large sets of CDPSs has revealed that they can produce highly diverse products, and therefore have great potential for use in the production of different 2,5-diketopiperazines (2,5-DKPs). Sequence similarity networks (SSNs) are presented as a new, efficient way of classifying CDPSs by specificity and identifying new CDPS likely to display novel specificities. Several strategies for further increasing the diversity accessible with these enzymes are discussed here, including the incorporation of non-canonical amino acids by CDPSs and use of the remarkable diversity of 2,5-DKP-tailoring enzymes discovered in recent years.
Collapse
Affiliation(s)
- Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
5
|
Mikulski L, Schäfer J, Brockmeyer K, Kraut R, Li SM. Comparative studies on similarities and differences of cyclodipeptide oxidases for installation of C-C double bonds at the diketopiperazine ring. Appl Microbiol Biotechnol 2020; 104:2523-2536. [PMID: 31989220 PMCID: PMC7044140 DOI: 10.1007/s00253-020-10392-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/29/2019] [Accepted: 01/17/2020] [Indexed: 01/09/2023]
Abstract
Cyclodipeptide oxidases (CDOs) perform dehydrogenations on diketopiperazines and play an important role in the cyclodipeptide diversification. In this study, we investigated the two known CDOs AlbA/B and Ndas_1146/7 and one new member, CDO-Np. LC-MS monitoring of 32 cyclodipeptide biotransformations in E. coli revealed good consumption of cyclodipeptides containing aromatic amino acids. Cyclodipeptides consisting solely of aliphatic amino acids were poor substrates. In vitro assays of 34 substrates with crude enzyme extracts and product identification proved that the CDO-Np-containing extract catalyzes the formation of two C-C double bonds in many cases. The extracts containing the two other enzymes had lower activities and catalyzed mainly didehydrogenations. For didehydrogenation, the phenylalanyl or tyrosyl site was usually preferred. No or very low acceptance of benzodiazepinediones and a 2,6-diketopiperazine proved the importance of the 2,5-diketopiperazine ring. N-Methylation at the diketopiperazine ring or prenylation of the tryptophan-containing cyclodipeptides influences the enzyme activity and product spectrum. KEY POINTS: • Comparison of catalytic activities of three enzymes; Diverse cyclodipeptides and derivatives as substrates; Determination of double bond formation using2H-labeled substrates; Product identification also by interpretation of MS2fragmentation pattern.
Collapse
Affiliation(s)
- Lena Mikulski
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Johanna Schäfer
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Kirsten Brockmeyer
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Rixa Kraut
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Straße 4, 35037, Marburg, Germany.
| |
Collapse
|
6
|
Modular and Integrative Vectors for Synthetic Biology Applications in Streptomyces spp. Appl Environ Microbiol 2019; 85:AEM.00485-19. [PMID: 31175189 DOI: 10.1128/aem.00485-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/22/2019] [Indexed: 01/28/2023] Open
Abstract
With the development of synthetic biology in the field of (actinobacterial) specialized metabolism, new tools are needed for the design or refactoring of biosynthetic gene clusters. If libraries of synthetic parts (such as promoters or ribosome binding sites) and DNA cloning methods have been developed, to our knowledge, not many vectors designed for the flexible cloning of biosynthetic gene clusters have been constructed. We report here the construction of a set of 12 standardized and modular vectors designed to afford the construction or the refactoring of biosynthetic gene clusters in Streptomyces species, using a large panel of cloning methods. Three different resistance cassettes and four orthogonal integration systems are proposed. In addition, FLP recombination target sites were incorporated to allow the recycling of antibiotic markers and to limit the risks of unwanted homologous recombination in Streptomyces strains when several vectors are used. The functionality and proper integration of the vectors in three commonly used Streptomyces strains, as well as the functionality of the Flp-catalyzed excision, were all confirmed. To illustrate some possible uses of our vectors, we refactored the albonoursin gene cluster from Streptomyces noursei using the BioBrick assembly method. We also used the seamless ligase chain reaction cloning method to assemble a transcription unit in one of the vectors and genetically complement a mutant strain.IMPORTANCE One of the strategies employed today to obtain new bioactive molecules with potential applications for human health (for example, antimicrobial or anticancer agents) is synthetic biology. Synthetic biology is used to biosynthesize new unnatural specialized metabolites or to force the expression of otherwise silent natural biosynthetic gene clusters. To assist the development of synthetic biology in the field of specialized metabolism, we constructed and are offering to the community a set of vectors that were intended to facilitate DNA assembly and integration in actinobacterial chromosomes. These vectors are compatible with various DNA cloning and assembling methods. They are standardized and modular, allowing the easy exchange of a module by another one of the same nature. Although designed for the assembly or the refactoring of specialized metabolite gene clusters, they have a broader potential utility, for example, for protein production or genetic complementation.
Collapse
|
7
|
Gondry M, Jacques IB, Thai R, Babin M, Canu N, Seguin J, Belin P, Pernodet JL, Moutiez M. A Comprehensive Overview of the Cyclodipeptide Synthase Family Enriched with the Characterization of 32 New Enzymes. Front Microbiol 2018; 9:46. [PMID: 29483897 PMCID: PMC5816076 DOI: 10.3389/fmicb.2018.00046] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/09/2018] [Indexed: 11/13/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) use as substrates two amino acids activated as aminoacyl-tRNAs to synthesize cyclodipeptides in secondary metabolites biosynthetic pathways. Since the first description of a CDPS in 2002, the number of putative CDPSs in databases has increased exponentially, reaching around 800 in June 2017. They are likely to be involved in numerous biosynthetic pathways but the diversity of their products is still under-explored. Here, we describe the activity of 32 new CDPSs, bringing the number of experimentally characterized CDPSs to about 100. We detect 16 new cyclodipeptides, one of which containing an arginine which has never been observed previously. This brings to 75 the number of cyclodipeptides formed by CDPSs out of the possible 210 natural ones. We also identify several consensus sequences related to the synthesis of a specific cyclodipeptide, improving the predictive model of CDPS specificity. The improved prediction method enables to propose the main product synthesized for about 80% of the CDPS sequences available in databases and opens the way for the deciphering of CDPS-dependent pathways. Analysis of phylum distribution and predicted activity for all CDPSs identified in databases shows that the experimentally characterized set is representative of the whole family. Our work also demonstrates that some cyclodipeptides, precursors of diketopiperazines with interesting pharmacological properties and previously described as being synthesized by fungal non-ribosomal peptide synthetases, can also be produced by CDPSs in bacteria.
Collapse
Affiliation(s)
- Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Isabelle B Jacques
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Robert Thai
- SIMOPRO, Institut Frédéric Joliot, CEA-Saclay, Gif-sur-Yvette, France
| | - Morgan Babin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jérôme Seguin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Jean-Luc Pernodet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
8
|
|
9
|
Antibacterial products of marine organisms. Appl Microbiol Biotechnol 2015; 99:4145-73. [PMID: 25874533 DOI: 10.1007/s00253-015-6553-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 10/23/2022]
Abstract
Marine organisms comprising microbes, plants, invertebrates, and vertebrates elaborate an impressive array of structurally diverse antimicrobial products ranging from small cyclic compounds to macromolecules such as proteins. Some of these biomolecules originate directly from marine animals while others arise from microbes associated with the animals. It is noteworthy that some of the biomolecules referred to above are structurally unique while others belong to known classes of compounds, peptides, and proteins. Some of the antibacterial agents are more active against Gram-positive bacteria while others have higher effectiveness on Gram-negative bacteria. Some are efficacious against both Gram-positive and Gram-negative bacteria and against drug-resistant strains as well. The mechanism of antibacterial action of a large number of the chemically identified antibacterial agents, possible synergism with currently used antibiotics, and the issue of possible toxicity on mammalian cells and tissues await elucidation. The structural characteristics pivotal to antibacterial activity have been ascertained in only a few studies. Demonstration of efficacy of the antibacterial agents in animal models of bacterial infection is highly desirable. Structural characterization of the active principles present in aqueous and organic extracts of marine organisms with reportedly antibacterial activity would be desirable.
Collapse
|