1
|
Wan J, Gao X, Liu F. Regulatory role of the Cpx ESR in bacterial behaviours. Virulence 2024; 15:2404951. [PMID: 39292643 PMCID: PMC11790278 DOI: 10.1080/21505594.2024.2404951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
The envelope demarcates the boundary between bacterial cell and its environment, providing a place for bacteria to transport nutrients and excrete metabolic waste, while buffering external environmental stress. Envelope stress responses (ESRs) are important tools for bacteria to sense and repair envelope damage. In this review, we discussed evidence that indicates the important role of the Cpx ESR in pathogen-host interactions, including environmental stress sensing and responses, modulation of bacterial virulence, antimicrobial resistance, and inter-kingdom signaling.
Collapse
Affiliation(s)
- Jiajia Wan
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
2
|
Wang S, You C, Memon FQ, Zhang G, Sun Y, Si H. BaeR participates in cephalosporins susceptibility by regulating the expression level of outer membrane proteins in Escherichia coli. J Biochem 2021; 169:101-108. [PMID: 32882009 DOI: 10.1093/jb/mvaa100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/09/2020] [Indexed: 11/14/2022] Open
Abstract
The two-component system BaeSR participates in antibiotics resistance of Escherichia coli. To know whether the outer membrane proteins involve in the antibiotics resistance mediated by BaeSR, deletion of acrB was constructed and the recombined plasmid p-baeR was introduced into E. coli K12 and K12△acrB. Minimum inhibitory concentrations (MICs) of antibacterial agents were determined by 2-fold broth micro-dilution method. Gene expressions related with major outer membrane proteins and multidrug efflux pump-related genes were determined by real-time quantitative reverse transcription polymerase chain reaction. The results revealed that the MICs of K12ΔacrB to the tested drugs except for gentamycin and amikacin decreased 2- to 16.75-folds compared with those of K12. When BaeR was overexpressed, the MICs of K12ΔacrB/p-baeR to ceftiofur and cefotaxime increased 2.5- and 2-fold, respectively, compared with their corresponding that of K12△acrB. At the same time, the expression levels of ompC, ompF, ompW, ompA and ompX showed significant reduction in K12ΔacrB/p-baeR as compared with K12△acrB. Moreover, the expression levels of ompR, marA, rob and tolC also significantly 'decreased' in K12ΔacrB/p-baeR. These findings indicated that BaeR overproduction can decrease cephalosporins susceptibility in acrB-free E. coli by decreasing the expression level of outer membrane proteins.
Collapse
Affiliation(s)
- Shuaiyang Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, People's Republic of China
| | - Chunbo You
- Guangxi Nongken Yongxin Animal Husbandry Group Xijiang Co. LTD, Guigang 537000, People's Republic of China
| | - Fareed Qumar Memon
- College of Animal Science and Technology, Guangxi University, Nanning 530005, People's Republic of China
| | - Geyin Zhang
- College of Animal Science and Technology, Guangxi University, Nanning 530005, People's Republic of China
| | - Yawei Sun
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, People's Republic of China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530005, People's Republic of China
| |
Collapse
|
3
|
BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. Sci Rep 2021; 11:12219. [PMID: 34108601 PMCID: PMC8190156 DOI: 10.1038/s41598-021-91765-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/25/2021] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) have emerged as a promising alternative to small molecule antibiotics. Although AMPs have previously been isolated in many organisms, efforts on the systematic identification of AMPs in fish have been lagging. Here, we collected peptides from the plasma of medaka (Oryzias latipes) fish. By using mass spectrometry, 6399 unique sequences were identified from the isolated peptides, among which 430 peptides were bioinformatically predicted to be potential AMPs. One of them, a thermostable 13-residue peptide named BING, shows a broad-spectrum toxicity against pathogenic bacteria including drug-resistant strains, at concentrations that presented relatively low toxicity to mammalian cell lines and medaka. Proteomic analysis indicated that BING treatment induced a deregulation of periplasmic peptidyl-prolyl isomerases in gram-negative bacteria. We observed that BING reduced the RNA level of cpxR, an upstream regulator of envelope stress responses. cpxR is known to play a crucial role in the development of antimicrobial resistance, including the regulation of genes involved in drug efflux. BING downregulated the expression of efflux pump components mexB, mexY and oprM in P. aeruginosa and significantly synergised the toxicity of antibiotics towards these bacteria. In addition, exposure to sublethal doses of BING delayed the development of antibiotic resistance. To our knowledge, BING is the first AMP shown to suppress cpxR expression in Gram-negative bacteria. This discovery highlights the cpxR pathway as a potential antimicrobial target.
Collapse
|
4
|
Zhou Q, Zhou T, Feng F, Huang S, Sun Y. The response of copper resistance genes, antibiotic resistance genes, and intl1/2 to copper addition during anaerobic digestion in laboratory. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111822. [PMID: 33418156 DOI: 10.1016/j.ecoenv.2020.111822] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/12/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Heavy metal pollution can serve as a selective pressure for antibiotic resistance genes in polluted environments. Anaerobic fermentation, as a recommended wastewater treatment method, is an effective mitigation measure of antibiotic resistance diffusion. To explore the influence of copper on anaerobic fermentation, we exposed the fermentation substrate to copper in a laboratory setup. We found that the relative abundance of 8 genes (pcoD, tetT, tetA, tetB, tetO, qnrS, ermA and ermB) increased at the late stage of fermentation and their abundance was linked to copper content. Corynebacterium and Streptococcus were significantly positively correlated with ermA, ermB, tetA and tetB (P < 0.05). The relative abundance of tetT was significantly positively correlated with Terrisporobacter, Clostridium_sensu_stricto_1 and Turicibacter (P < 0.05). We screened 90 strains of copper resistant bacteria from blank, medium and high copper test groups on days 25, 31 and 37. The number of fragments carried by a single strain increased with time while intl1, ermA and ermB existed in almost all combinations of the multiple fragments we identified. The relative abundance of these three genes were linearly correlated with Corynebacterium and Streptococcus. The antibiotic resistance genes carried by class 1 integrons gradually increased with time in the fermentation system and integrons carrying ermA and ermB most likely contributed to host survival through the late stages of fermentation. The genera Corynebacterium and Streptococcus may be the primary carriers of such integrated mobile gene element and this was most likely the reason for their rebound in relative abundance during the late fermentation stages.
Collapse
Affiliation(s)
- Qin Zhou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Tong Zhou
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Fenglin Feng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Shujian Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, Guangdong Province, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
5
|
Zhang WB, Yan HL, Zhu ZC, Zhang C, Du PX, Zhao WJ, Li WM. Genome-wide identification of the Sec-dependent secretory protease genes in Erwinia amylovora and analysis of their expression during infection of immature pear fruit. J Zhejiang Univ Sci B 2020; 21:716-726. [PMID: 32893528 DOI: 10.1631/jzus.b2000281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The general secretory (Sec) pathway represents a common mechanism by which bacteria secrete proteins, including virulence factors, into the extracytoplasmic milieu. However, there is little information about this system, as well as its associated secretory proteins, in relation to the fire blight pathogen Erwinia amylovora. In this study, data mining revealed that E. amylovora harbors all of the essential components of the Sec system. Based on this information, we identified putative Sec-dependent secretory proteases in E. amylovora on a genome-wide scale. Using the programs SignalP, LipoP, and Phobius, a total of 15 putative proteases were predicted to contain the N-terminal signal peptides (SPs) that might link them to the Sec-dependent pathway. The activities of the predicted SPs were further validated using an Escherichia coli-based alkaline phosphatase (PhoA) gene fusion system that confirmed their extracytoplasmic property. Transcriptional analyses showed that the expression of 11 of the 15 extracytoplasmic protease genes increased significantly when E. amylovora was used to inoculate immature pears, suggesting their potential roles in plant infection. The results of this study support the suggestion that E. amylovora might employ the Sec system to secrete a suite of proteases to enable successful infection of plants, and shed new light on the interaction of E. amylovora with host plants.
Collapse
Affiliation(s)
- Wang-Bin Zhang
- College of Plant Science, Tarim University, Alar 843300, China.,Southern Xinjiang Key Laboratory of Integrated Pest Management, Tarim University, Alar 843300, China
| | - Hai-Lin Yan
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zong-Cai Zhu
- College of Plant Science, Tarim University, Alar 843300, China.,Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pei-Xiu Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wen-Jun Zhao
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Wei-Min Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Zhai YJ, Huang H, Liu J, Sun HR, He D, Pan YS, Hu G. CpxR overexpression increases the susceptibility of acrB and cpxR double-deleted Salmonella enterica serovar Typhimurium to colistin. J Antimicrob Chemother 2018; 73:3016-3024. [DOI: 10.1093/jac/dky320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hui Huang
- Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jianhua Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua-Run Sun
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Li B, Huang Q, Cui A, Liu X, Hou B, Zhang L, Liu M, Meng X, Li S. Overexpression of Outer Membrane Protein X (OmpX) Compensates for the Effect of TolC Inactivation on Biofilm Formation and Curli Production in Extraintestinal Pathogenic Escherichia coli (ExPEC). Front Cell Infect Microbiol 2018; 8:208. [PMID: 29988395 PMCID: PMC6024092 DOI: 10.3389/fcimb.2018.00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/05/2018] [Indexed: 11/24/2022] Open
Abstract
Our previous study showed that the inactivation of the efflux pump TolC could abolish biofilm formation and curli production of extraintestinal pathogenic Escherichia coli (ExPEC) strain PPECC42 under hyper-osmotic conditions. In this study we investigated the role of OmpX in biofilm formation and curli production of ExPEC PPECC42. Our data showed that OmpX disruption or overexpression didn't significantly affect the biofilm formation and curli production of the wild-type strain. However, in the tolC-deleted mutant, overexpressing OmpX suppressed the effect of TolC inactivation on ExPEC biofilm formation and curli production under hyper-osmotic growth conditions. Real-time qRT-PCR confirmed that OmpX overexpression affected curli production by regulating the transcription of the curli biosynthesis-related genes in the ΔtolC strain. Our findings suggest that OmpX is involved in biofilm formation and curli production.
Collapse
Affiliation(s)
- Binyou Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qi Huang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ailian Cui
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xueling Liu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bo Hou
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liyuan Zhang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mei Liu
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xianrong Meng
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Puławska J, Kałużna M, Warabieda W, Mikiciński A. Comparative transcriptome analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars - susceptible and resistant to fire blight. BMC Genomics 2017; 18:868. [PMID: 29132313 PMCID: PMC5683332 DOI: 10.1186/s12864-017-4251-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/31/2017] [Indexed: 12/23/2022] Open
Abstract
Background Erwinia amylovora is generally considered to be a homogeneous species in terms of phenotypic and genetic features. However, strains show variation in their virulence, particularly on hosts with different susceptibility to fire blight. We applied the RNA-seq technique to elucidate transcriptome-level changes of the lowly virulent E. amylovora 650 strain during infection of shoots of susceptible (Idared) and resistant (Free Redstar) apple cultivars. Results The highest number of differentially expressed E. amylovora genes between the two apple genotypes was observed at 24 h after inoculation. Six days after inoculation, only a few bacterial genes were differentially expressed in the susceptible and resistant apple cultivars. The analysis of differentially expressed gene functions showed that generally, higher expression of genes related to stress response and defence against toxic compounds was observed in Free Redstar. Also in this cultivar, higher expression of flagellar genes (FlaI), which are recognized as PAMP (pathogen-associated molecular pattern) by the innate immune systems of plants, was noted. Additionally, several genes that have not yet been proven to play a role in the pathogenic abilities of E. amylovora were found to be differentially expressed in the two apple cultivars. Conclusions This RNA-seq analysis generated a novel dataset describing the transcriptional response of the lowly virulent strain of E. amylovora in susceptible and resistant apple cultivar. Most genes were regulated in the same way in both apple cultivars, but there were also some cultivar-specific responses suggesting that the environment in Free Redstar is more stressful for bacteria what can be the reason of their inability to infect of this cultivar. Among genes with the highest fold change in expression between experimental combinations or with the highest transcript abundance, there are many genes without ascribed functions, which have never been tested for their role in pathogenicity. Overall, this study provides the first transcriptional profile by RNA-seq of E. amylovora during infection of a host plant and insights into the transcriptional response of this pathogen in the environments of susceptible and resistant apple plants. Electronic supplementary material The online version of this article (10.1186/s12864-017-4251-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joanna Puławska
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland.
| | - Monika Kałużna
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| | - Wojciech Warabieda
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| | - Artur Mikiciński
- Research Institute of Horticulture, ul. Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| |
Collapse
|
9
|
Cerminati S, Giri GF, Mendoza JI, Soncini FC, Checa SK. The CpxR/CpxA system contributes to Salmonella gold-resistance by controlling the GolS-dependent gesABC transcription. Environ Microbiol 2017. [PMID: 28631419 DOI: 10.1111/1462-2920.13837] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Several regulatory systems contribute to bacterial resistance to heavy metals controlling the expression of factors required to eliminate the intoxicant and/or to repair the damage caused by it. In Salmonella, the response to Au ions is mediated by the specific metalloregulator GolS that, among other genes, controls the expression of the RND-efflux pump GesABC. In this work, we demonstrate that CpxR/CpxA, a main cell-envelope stress-responding system, promotes gesABC transcription in the presence of Au ions at neutral pH. Deletion of either cpxA or cpxR, or mutation of the CpxR-binding site identified upstream of the GolS-operator in the gesABC promoter region reduces but does not abrogate the GolS- and Au-dependent activation of gesABC. Au also triggers the activation of the CpxR/CpxA system and deletion of the cpxRA operon severely reduces survival in the presence of the toxic metal. Our results indicate that the coordinated action of GolS and CpxR/CpxA contribute to protecting the cell from severe Au damage.
Collapse
Affiliation(s)
- Sebastián Cerminati
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Germán F Giri
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Julián I Mendoza
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Fernando C Soncini
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| | - Susana K Checa
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario (UNR), CONICET y Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
10
|
Tian ZX, Yi XX, Cho A, O’Gara F, Wang YP. CpxR Activates MexAB-OprM Efflux Pump Expression and Enhances Antibiotic Resistance in Both Laboratory and Clinical nalB-Type Isolates of Pseudomonas aeruginosa. PLoS Pathog 2016; 12:e1005932. [PMID: 27736975 PMCID: PMC5063474 DOI: 10.1371/journal.ppat.1005932] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/13/2016] [Indexed: 12/30/2022] Open
Abstract
Resistance-Nodulation-Division (RND) efflux pumps are responsible for multidrug resistance in Pseudomonas aeruginosa. In this study, we demonstrate that CpxR, previously identified as a regulator of the cell envelope stress response in Escherichia coli, is directly involved in activation of expression of RND efflux pump MexAB-OprM in P. aeruginosa. A conserved CpxR binding site was identified upstream of the mexA promoter in all genome-sequenced P. aeruginosa strains. CpxR is required to enhance mexAB-oprM expression and drug resistance, in the absence of repressor MexR, in P. aeruginosa strains PA14. As defective mexR is a genetic trait associated with the clinical emergence of nalB-type multidrug resistance in P. aeruginosa during antibiotic treatment, we investigated the involvement of CpxR in regulating multidrug resistance among resistant isolates generated in the laboratory via antibiotic treatment and collected in clinical settings. CpxR is required to activate expression of mexAB-oprM and enhances drug resistance, in the absence or presence of MexR, in ofloxacin-cefsulodin-resistant isolates generated in the laboratory. Furthermore, CpxR was also important in the mexR-defective clinical isolates. The newly identified regulatory linkage between CpxR and the MexAB-OprM efflux pump highlights the presence of a complex regulatory network modulating multidrug resistance in P. aeruginosa. Pseudomonas aeruginosa is one of the major pathogens associated with cystic fibrosis and multidrug resistant P. aeruginosa has been listed as the Top 10 antibiotic resistance threats in the US CDC report (http://www.cdc.gov/drugresistance/biggest_threats.html). Drug efflux systems play a major role in multidrug resistance in P. aeruginosa. Currently, the regulatory networks modulating efflux pump expression are not fully understood. Here, we demonstrate that CpxR, a potentially multifaceted regulator, is directly involved in regulation of expression of MexAB-OprM, the major efflux pump in P. aeruginosa. The newly identified activator CpxR plays an important role in modulating multidrug resistance in nalB-type laboratory and clinical isolates. This work provides insight into the complex regulatory networks modulating multidrug resistance in P. aeruginosa.
Collapse
Affiliation(s)
- Zhe-Xian Tian
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZXT); (YPW)
| | - Xue-Xian Yi
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Anna Cho
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Fergal O’Gara
- BIOMERIT Research Centre, Department of Microbiology, University College Cork, Cork, Ireland
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Yi-Ping Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
- * E-mail: (ZXT); (YPW)
| |
Collapse
|
11
|
Chen J, Su L, Wang X, Zhang T, Liu F, Chen H, Tan C. Polyphosphate Kinase Mediates Antibiotic Tolerance in Extraintestinal Pathogenic Escherichia coli PCN033. Front Microbiol 2016; 7:724. [PMID: 27242742 PMCID: PMC4871857 DOI: 10.3389/fmicb.2016.00724] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/02/2016] [Indexed: 02/04/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) causes a variety of acute infections in its hosts, and multidrug-resistant strains present significant challenges to public health and animal husbandry. Therefore, it is necessary to explore new drug targets to control E. coli epidemics. Previous studies have reported that ppk mutants of Burkholderia pseudomallei and Mycobacterium tuberculosis are more susceptible than the wild types (WTs) to stress. Therefore, we investigated the stress response to antibiotics mediated by polyphosphate kinase (PPK) in ExPEC strain PCN033. We observed that planktonic cells of a ppk knockout strain (Δppk) were more susceptible to antibiotics than was WT. However, biofilm-grown Δppk cells showed similar susceptibility to that of the WT and were more tolerant than the planktonic cells. During the planktonic lifestyle, the expression of genes involved in antibiotic tolerance (including resistance-conferring genes, and antibiotic influx, and efflux genes) did not change in the Δppk mutant without antibiotic treatment. However, the resistance-conferring gene bla and efflux genes were upregulated more in the WT than in the Δppk mutant by treatment with tazobactam. After treatment with gentamycin, the efflux genes and influx genes were upregulated and downregulated, respectively, more in the WT than in the Δppk mutant. The expression of genes involved in biofilm regulation also changed after treatment with tazobactam or gentamycin, and which is consistent with the results of the biofilm formation. Together, these observations indicate that PPK is important for the antibiotic stress response during the planktonic growth of ExPEC and might be a potential drug target in bacteria.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Lijie Su
- School of Public Health, Guangzhou Medical University Guangzhou, China
| | - Xiangru Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Tao Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Feng Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory for the Development of Veterinary Diagnostic Products, The Cooperative Innovation Center for Sustainable Pig Production, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China; Key Laboratory for the Development of Veterinary Diagnostic Products, The Cooperative Innovation Center for Sustainable Pig Production, Ministry of Agriculture, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
12
|
Thekkiniath J, Ravirala R, San Francisco M. Multidrug Efflux Pumps in the Genus Erwinia: Physiology and Regulation of Efflux Pump Gene Expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 142:131-49. [DOI: 10.1016/bs.pmbts.2016.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|