1
|
Tan Y, Ma S, Ding T, Ludwig R, Lee J, Xu J. Enhancing the Antibiofilm Activity of β-1,3-Glucanase-Functionalized Nanoparticles Loaded With Amphotericin B Against Candida albicans Biofilm. Front Microbiol 2022; 13:815091. [PMID: 35685939 PMCID: PMC9172620 DOI: 10.3389/fmicb.2022.815091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/25/2022] [Indexed: 01/09/2023] Open
Abstract
Candida biofilm-related infections cause increased morbidity and mortality in patients with a reduced immune response. Traditional antifungal therapies have proven to be insufficient as the biofilm matrix acts as a perfusion barrier. Thus, novel methods are required to improve drug delivery and kill Candida within the biofilm. In this study, chitosan nanoparticles (CSNPs) loaded with Amphotericin B (AMB), which were functionalized with β-1,3-glucanase (Gls), were fabricated (CSNPs-AMB-Gls), and their antibiofilm activity against Candida albicans biofilm was evaluated in vitro. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were employed to examine biofilm architecture and cell viability. CSNPs-AMB-Gls inhibited planktonic cell growth and biofilm formation effectively and exhibited the highest efficacy on the removal of a mature biofilm than free AMB or CSNPs-AMB. The created nanoparticles (NPs) were found to penetrate the biofilm so as to directly interfere with the cells inside and disassemble the biofilm matrix. CSNPs-AMB-Gls could also eradicate biofilms from clinical isolates. These results suggest the potential applicability of CSNPs-AMB-Gls for the treatment of Candida biofilm-related infections.
Collapse
Affiliation(s)
- Yulong Tan
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
- *Correspondence: Yulong Tan,
| | - Su Ma
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ting Ding
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Jiaman Xu
- Special Food Research Institute, Qingdao Agricultural University, Qingdao, China
- Qingdao Special Food Research Institute, Qingdao, China
| |
Collapse
|
2
|
Stancik IA, Šestak MS, Ji B, Axelson-Fisk M, Franjevic D, Jers C, Domazet-Lošo T, Mijakovic I. Serine/Threonine Protein Kinases from Bacteria, Archaea and Eukarya Share a Common Evolutionary Origin Deeply Rooted in the Tree of Life. J Mol Biol 2017; 430:27-32. [PMID: 29138003 DOI: 10.1016/j.jmb.2017.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/04/2017] [Accepted: 11/05/2017] [Indexed: 11/26/2022]
Abstract
The main family of serine/threonine/tyrosine protein kinases present in eukarya was defined and described by Hanks et al. in 1988 (Science, 241, 42-52). It was initially believed that these kinases do not exist in bacteria, but extensive genome sequencing revealed their existence in many bacteria. For historical reasons, the term "eukaryotic-type kinases" propagated in the literature to describe bacterial members of this protein family. Here, we argue that this term should be abandoned as a misnomer, and we provide several lines of evidence to support this claim. Our comprehensive phylostratigraphic analysis suggests that Hanks-type kinases present in eukarya, bacteria and archaea all share a common evolutionary origin in the lineage leading to the last universal common ancestor (LUCA). We found no evidence to suggest substantial horizontal transfer of genes encoding Hanks-type kinases from eukarya to bacteria. Moreover, our systematic structural comparison suggests that bacterial Hanks-type kinases resemble their eukaryal counterparts very closely, while their structures appear to be dissimilar from other kinase families of bacterial origin. This indicates that a convergent evolution scenario, by which bacterial kinases could have evolved a kinase domain similar to that of eukaryal Hanks-type kinases, is not very likely. Overall, our results strongly support a monophyletic origin of all Hanks-type kinases, and we therefore propose that this term should be adopted as a universal name for this protein family.
Collapse
Affiliation(s)
- Ivan Andreas Stancik
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Marina Axelson-Fisk
- Department of Mathematical Sciences, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden
| | - Damjan Franjevic
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Carsten Jers
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10002 Zagreb, Croatia; Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, 2800 Lyngby, Denmark.
| |
Collapse
|