1
|
Gao X, Yuan S, Li X, Xing W. Non-synergistic effects of microplastics and submerged macrophytes on sediment microorganisms involved in carbon and nitrogen cycling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126213. [PMID: 40210162 DOI: 10.1016/j.envpol.2025.126213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/17/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Submerged macrophyte communities play a crucial role in regulating sediment carbon and nitrogen cycling in lake ecosystems. However, their interactions with emerging pollutants such as polystyrene microplastics (PS-MPs) remain poorly understood. In this study, we employed metagenomic analysis to examine the combined effects of submerged macrophyte communities and PS-MPs on sediment microbial communities, focusing on microbial populations, functional genes, and metabolic pathways involved in carbon and nitrogen cycling. Our results revealed a non-synergistic interaction between macrophyte communities and PS-MPs in shaping sediment biogeochemical processes. While increasing PS-MPs concentrations (from 0.5 to 2.5 % w/w) significantly enhanced microbial diversity (species richness increased from 533 to 1301), the presence of macrophytes moderated this response. Notably, we observed differential selective pressures on functional genes involved in key carbon and nitrogen cycling steps, particularly amoAB and amoC, nirS, and nirK, indicating distinct shifts in microbial functional groups. Furthermore, we identified complex substrate-pathway interactions: nitrate and ammonium differentially influenced fermentation and methanogenesis, while inorganic carbon positively regulated nitrate dissimilatory reduction. These findings provide novel insights into the regulatory mechanisms of submerged macrophytes in sediment biogeochemical cycling under microplastic stress, highlighting their potential role in maintaining ecosystem functions in contaminated aquatic environments.
Collapse
Affiliation(s)
- Xueyuan Gao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100039, China.
| | - Saibo Yuan
- Ecological Environment Monitoring and Scientific Research Center, Ecology and Environment Supervision and Administration Bureau of Yangtze Valley, Ministry of Ecology and Environment of the People's Republic of China, Wuhan, 430014, China.
| | - Xiaowei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Wei Xing
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
2
|
Alharbi SM, Al-Sulami N, Al-Amrah H, Anwar Y, Gadah OA, Bahamdain LA, Al-Matary M, Alamri AM, Bahieldin A. Metagenomic Characterization of the Maerua crassifolia Soil Rhizosphere: Uncovering Microbial Networks for Nutrient Acquisition and Plant Resilience in Arid Ecosystems. Genes (Basel) 2025; 16:285. [PMID: 40149437 PMCID: PMC11942469 DOI: 10.3390/genes16030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives:Maerua crassifolia, a threatened medicinal species endemic to drylands, exhibits a pronounced drought sensitivity. Despite the critical role of microorganisms, particularly bacteria and fungi, the microbial consortia in M. crassifolia's rhizosphere remain underexplored. Methods: Metagenomic whole genome shotgun sequencing (WGS) was employed to elucidate the taxonomic composition of bacterial and fungal communities inhabiting the soil rhizosphere of M. crassifolia. Results: The data revealed a marked predominance of bacterial genomes relative to fungal communities, as evidenced by non-redundant gene analysis. Notably, arbuscular mycorrhizal fungi (AMF), specifically Rhizophagus clarus, Rhizophagus irregularis and Funneliformis geosporum, are key rhizosphere colonizers. This study confirmed the presence of phosphate-solubilizing bacteria (PSB), such as Sphingomonas spp., Cyanobacteria and Pseudomonadota, underscoring the critical role of these microorganisms in the phosphorus cycle. Additionally, the study uncovered the presence of previously uncharacterized species within the phylum Actinobacteria, as well as unidentified taxa from the Betaproteobacteria, Gemmatimonadota and Chloroflexota phyla, which may represent novel microbial taxa with potential plant growth-promoting properties. Conclusions: Findings suggest a complex, symbiotic network where AMF facilitate phosphorus uptake through plant-root interactions. In a tripartite symbiosis, PSB enhance inorganic phosphorus solubilization, increasing bioavailability, which AMF assimilate and deliver to plant roots, optimizing nutrition. This bacterial-fungal interplay is essential for plant resilience in arid environments. Future investigations should prioritize the isolation and characterization of underexplored microbial taxa residing in the rhizosphere of M. crassifolia, with particular emphasis on members of the Actinobacteria, Betaproteobacteria, Gemmatimonadota and Chloroflexota phyla to uncover their roles in nutrient acquisition and sustainability.
Collapse
Affiliation(s)
| | - Nadiah Al-Sulami
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia (H.A.-A.); (Y.A.); (M.A.-M.); (A.M.A.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Yuan Z, Zhang J, Duan D. Vanadium-Dependent Haloperoxidase Gene Evolution in Brown Algae: Evidence for Horizontal Gene Transfer. Int J Mol Sci 2025; 26:716. [PMID: 39859430 PMCID: PMC11765636 DOI: 10.3390/ijms26020716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Compared with green plants, brown algae are characterized by their ability to accumulate iodine, contributing to their ecological adaptability in high-iodide coastal environments. Vanadium-dependent haloperoxidase (V-HPO) is the key enzyme for iodine synthesis. Despite its significance, the evolutionary origin of V-HPO genes remains underexplored. This study investigates the genomic and evolutionary dynamics of V-HPOs in brown algae, focusing on Laminariales species, particularly Saccharina japonica. Genomic analyses revealed the extensive expansion of the V-HPO gene family in brown algae, with 88 V-HPOs identified in S. japonica, surpassing the number in red algae. Phylogenetic analysis demonstrated distinct evolutionary divergence between brown and red algal V-HPOs, with the brown algal clade closely related to bacterial V-HPOs. These findings suggest horizontal gene transfer (HGT) played a key role in acquiring V-HPO genes, particularly from Acidobacteriota, a bacterial phylum known for genomic plasticity. Additionally, enriched active transposable elements were identified around V-HPO genomic clusters, highlighting their role in tandem gene duplications and rapid HGT processes. Expression profiling further revealed dynamic regulation of V-HPOs in response to environmental conditions. This study provides new insights into how HGT has driven kelp genomic adaptations and enhances understanding of marine ecological success and evolutionary processes.
Collapse
Affiliation(s)
- Zihao Yuan
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Centre, Qingdao 266237, China
| | - Jie Zhang
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Centre, Qingdao 266237, China
| | - Delin Duan
- Key Lab of Breeding Biotechnology and Sustainable Aquaculture, Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Centre, Qingdao 266237, China
| |
Collapse
|
4
|
Santoyo G, Urtis-Flores C, Orozco-Mosqueda MDC. Rhizobacterial community and growth-promotion trait characteristics of Zea mays L. inoculated with Pseudomonas fluorescens UM270 in three different soils. Folia Microbiol (Praha) 2024; 69:1291-1303. [PMID: 38748205 DOI: 10.1007/s12223-024-01171-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/06/2024] [Indexed: 10/17/2024]
Abstract
There is an increasing demand for bioinoculants based on plant growth-promoting rhizobacteria (PGPR) for use in agricultural ecosystems. However, there are still concerns and limited data on their reproducibility in different soil types and their effects on endemic rhizosphere communities. Therefore, this study explored the effects of inoculating the PGPR, Pseudomonas fluorescens strain UM270, on maize growth (Zea mays L.) and its associated rhizosphere bacteriome by sequencing the 16S ribosomal genes under greenhouse conditions. The results showed that inoculation with PGPR P. fluorescens UM270 improved shoot and root dry weights, chlorophyll concentration, and total biomass in the three soil types evaluated (clay, sandy-loam, and loam) compared to those of the controls. Bacterial community analysis of the three soil types revealed that maize plants inoculated with the UM270 strain showed a significant increase in Proteobacteria and Acidobacteria populations, whereas Actinobacteria and Bacteroidetes decreased. Shannon, Pielou, and Faith alpha-biodiversity indices did not reveal significant differences between treatments. Beta diversity revealed a bacterial community differential structure in each soil type, with some variation among treatments. Finally, some bacterial groups were found to co-occur and co-exclude with respect to UM270 inoculation. Considered together, these results show that PGPR P. fluorescens UM270 increases maize plant growth and has an important effect on the resident rhizobacterial communities of each soil type, making it a potential agricultural biofertilizer.
Collapse
Affiliation(s)
- Gustavo Santoyo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, 58030, México.
| | - Carlos Urtis-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, 58030, México
| | - Ma Del Carmen Orozco-Mosqueda
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México en Celaya, 38010, Celaya, Gto, México
| |
Collapse
|
5
|
Teng K, Zhou Y, Mao H, Long X, Zhang S, Ma J, Meng D, Yin H, Xiao Y. Synergistic effects of yeast and plant growth-promoting bacteria on Tobacco growth and soil-borne disease suppression: evidence from pot and field experiments. FRONTIERS IN PLANT SCIENCE 2024; 15:1489112. [PMID: 39554525 PMCID: PMC11563955 DOI: 10.3389/fpls.2024.1489112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Background Tobacco (Nicotiana tabacum L.) is an important economic crop, and the use of plant growth-promoting bacteria (PGPB) to enhance its growth and suppress soil-borne diseases has garnered considerable research interest. However, the potential of yeast to augment the growth-promoting and disease-suppressing effects of PGPB on tobacco remains unclear. Methods This study investigated the effects of Pichia sp. microbial fertilizer (J1), PGPB-Klebsiella oxytoca microbial fertilizer (ZS4), and their composite fertilizer (JZ) on tobacco growth indexes, soil properties, and soil microbial community through a pot experiment. Additionally, field experiments were conducted to further assess the efficacy of the composite microbial fertilizer on tobacco growth and the incidences of soil-borne diseases, including tobacco bacterial wilt (TBW) and tobacco black shank (TBS). Results and discussions In the pot experiment, application of the microbial fertilizers significantly enhanced soil organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), available phosphorus (AP), and available potassium (AK) levels. Compared to the control group (CK), J1, ZS4, and JZ microbial fertilizers significantly promoted tobacco growth, and the composite microbial fertilizers demonstrated superior to the individual microbial fertilizers. We found that the application of microbial fertilizer led to significant alterations in the structure and composition of the bacterial and fungal communities based on the high-throughput sequencing of 16S rRNA and internal transcribed spacer (ITS) regions. The bacterial and fungal diversity indexes showed a decreasing trend. Key microorganisms such as Sphingomonas, Kitasatospora, Nitrosospira, Mortierella, and Trichoderma were identified as influential in regulating soil physicochemical parameters to enhance tobacco growth. Functional prediction further demonstrated a significant increase in the relative abundances of certain enzymes, including Alkaline phosphatase, 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase), and Peroxidase, as well as antimicrobial substances like Tetracycline, Isoquinoline alkaloid, and Phenylpropanoids, following inoculation with the fertilizer. Besides, field experiments revealed that the JZ fertilizer significantly promoted tobacco growth and reduced the incidence of TBW and TBS, indicating its potential for further application in tobacco cultivation.
Collapse
Affiliation(s)
- Kai Teng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Yu Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Hui Mao
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Xianjun Long
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Sheng Zhang
- Hunan Tobacco Company Xiangxi Autonomous Prefecture Corporation, Jishou, China
| | - Jingjing Ma
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Center for the Creation of Chinese Herbal Medicine Varieties, Yuelushan Laboratory, Changsha, China
| |
Collapse
|
6
|
Romero F, Labouyrie M, Orgiazzi A, Ballabio C, Panagos P, Jones A, Tedersoo L, Bahram M, Guerra CA, Eisenhauer N, Tao D, Delgado-Baquerizo M, García-Palacios P, van der Heijden MGA. Soil health is associated with higher primary productivity across Europe. Nat Ecol Evol 2024; 8:1847-1855. [PMID: 39192006 DOI: 10.1038/s41559-024-02511-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Soil health is expected to be of key importance for plant growth and ecosystem functioning. However, whether soil health is linked to primary productivity across environmental gradients and land-use types remains poorly understood. To address this gap, we conducted a pan-European field study including 588 sites from 27 countries to investigate the link between soil health and primary productivity across three major land-use types: woodlands, grasslands and croplands. We found that mean soil health (a composite index based on soil properties, biodiversity and plant disease control) in woodlands was 31.4% higher than in grasslands and 76.1% higher than in croplands. Soil health was positively linked to cropland and grassland productivity at the continental scale, whereas climate best explained woodland productivity. Among microbial diversity indicators, we observed a positive association between the richness of Acidobacteria, Firmicutes and Proteobacteria and primary productivity. Among microbial functional groups, we found that primary productivity in croplands and grasslands was positively related to nitrogen-fixing bacteria and mycorrhizal fungi and negatively related to plant pathogens. Together, our results point to the importance of soil biodiversity and soil health for maintaining primary productivity across contrasting land-use types.
Collapse
Affiliation(s)
- Ferran Romero
- Plant-Soil Interactions group, Agroscope, Zurich, Switzerland.
| | - Maëva Labouyrie
- Plant-Soil Interactions group, Agroscope, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- European Commission, Joint Research Centre, Ispra, Italy
| | - Alberto Orgiazzi
- European Commission, Joint Research Centre, Ispra, Italy
- European Dynamics, Brussels, Belgium
| | | | - Panos Panagos
- European Commission, Joint Research Centre, Ispra, Italy
| | - Arwyn Jones
- European Commission, Joint Research Centre, Ispra, Italy
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Mohammad Bahram
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
- Departamento de Geografía, Universidade de Coimbra, Coimbra, Portugal
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dongxue Tao
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
| | - Pablo García-Palacios
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Marcel G A van der Heijden
- Plant-Soil Interactions group, Agroscope, Zurich, Switzerland.
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Sivaprakasam N, Vaithiyanathan S, Gandhi K, Narayanan S, Kavitha PS, Rajasekaran R, Muthurajan R. Metagenomics approaches in unveiling the dynamics of Plant Growth-Promoting Microorganisms (PGPM) vis-à-vis Phytophthora sp. suppression in various crop ecological systems. Res Microbiol 2024; 175:104217. [PMID: 38857835 DOI: 10.1016/j.resmic.2024.104217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Phytophthora species are destructive pathogens causing yield losses in different ecological systems, such as potato, black pepper, pepper, avocado, citrus, and tobacco. The diversity of plant growth-promoting microorganisms (PGPM) plays a crucial role in disease suppression. Knowledge of metagenomics approaches is essential for assessing the dynamics of PGPM and Phytophthora species across various ecosystems, facilitating effective management strategies for better crop protection. This review discusses the dynamic interplay between PGPM and Phytophthora sp. using metagenomics approaches that sheds light on the potential of PGPM strains tailored to specific crop ecosystems to bolster pathogen suppressiveness.
Collapse
Affiliation(s)
- Navarasu Sivaprakasam
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Karthikeyan Gandhi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Swarnakumari Narayanan
- Department of Nematology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - P S Kavitha
- School of Post Graduate Studies, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raghu Rajasekaran
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Raveendran Muthurajan
- Centre for Plant Molecular Biology & Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
8
|
Chen M, Acharya SM, Yee MO, Cabugao KGM, Chakraborty R. Developing stable, simplified, functional consortia from Brachypodium rhizosphere for microbial application in sustainable agriculture. Front Microbiol 2024; 15:1401794. [PMID: 38846575 PMCID: PMC11153752 DOI: 10.3389/fmicb.2024.1401794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024] Open
Abstract
The rhizosphere microbiome plays a crucial role in supporting plant productivity and ecosystem functioning by regulating nutrient cycling, soil integrity, and carbon storage. However, deciphering the intricate interplay between microbial relationships within the rhizosphere is challenging due to the overwhelming taxonomic and functional diversity. Here we present our systematic design framework built on microbial colocalization and microbial interaction, toward successful assembly of multiple rhizosphere-derived Reduced Complexity Consortia (RCC). We enriched co-localized microbes from Brachypodium roots grown in field soil with carbon substrates mimicking Brachypodium root exudates, generating 768 enrichments. By transferring the enrichments every 3 or 7 days for 10 generations, we developed both fast and slow-growing reduced complexity microbial communities. Most carbon substrates led to highly stable RCC just after a few transfers. 16S rRNA gene amplicon analysis revealed distinct community compositions based on inoculum and carbon source, with complex carbon enriching slow growing yet functionally important soil taxa like Acidobacteria and Verrucomicrobia. Network analysis showed that microbial consortia, whether differentiated by growth rate (fast vs. slow) or by succession (across generations), had significantly different network centralities. Besides, the keystone taxa identified within these networks belong to genera with plant growth-promoting traits, underscoring their critical function in shaping rhizospheric microbiome networks. Furthermore, tested consortia demonstrated high stability and reproducibility, assuring successful revival from glycerol stocks for long-term viability and use. Our study represents a significant step toward developing a framework for assembling rhizosphere consortia based on microbial colocalization and interaction, with future implications for sustainable agriculture and environmental management.
Collapse
Affiliation(s)
| | | | | | | | - Romy Chakraborty
- Department of Ecology, Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
9
|
Yao S, Zhou B. Enhancing phytoremediation of cadmium and arsenic in alkaline soil by Miscanthus sinensis: A study on the synergistic effect of endophytic fungi and biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171458. [PMID: 38438035 DOI: 10.1016/j.scitotenv.2024.171458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Endophytic fungi (Trichoderma harzianum (TH) and Paecilomyces lilacinus (PL)) showed potential in phytoremediation for soils contaminated with potentially toxic elements (PTEs (Cd and As)). However, their efficiency is limited, which can be enhanced with the assistance of biochar. This study sought to investigate the effects of TH at two application rates (T1: 4.5 g m-2; T2: 9 g m-2), PL at two application rates (P1: 4.5 g m-2; P2: 9 g m-2), in conjunction with biochar (BC) at 750 g m-2 on the phytoremediation of PTEs by Miscanthus sinensis (M. sinensis). The results showed that the integration of endophytic fungi with biochar notably enhanced the accumulation of Cd and As in M. sinensis by 59.60 %-114.38 % and 49.91 %-134.60 %, respectively. The treatments T2BC and P2BC emerged as the most effective. Specifically, the P2BC treatment significantly enhanced the soil quality index (SQI > 0.55) across all examined soil layers, markedly improving the overall soil condition. It was observed that T2BC treatment could elevate the SQI to 0.56 at the 0-15 cm depth. The combined amendment shifted the primary influences on plant PTEs accumulation from fungal diversity and soil nutrients to bacterial diversity and the availability of soil PTEs. Characteristic microorganisms identified under the combined treatments were RB41 and Pezizaceae, indicating an increase in both bacterial and fungal diversity. This combination altered the soil microbial community, influencing key metabolic pathways. The combined application of PL and biochar was superior to the TH and biochar combination for the phytoremediation of M. sinensis. This approach not only enhanced the phytoremediation potential but also positively impacted soil health and microbial community, suggesting that the synergistic use of endophytic fungi and biochar is an effective strategy for improving the condition of alkaline soils contaminated with PTEs.
Collapse
Affiliation(s)
- Shaoxiong Yao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China
| | - Beibei Zhou
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
10
|
Diao F, Jia B, Luo J, Ding S, Liu T, Guo W. Arbuscular mycorrhizal fungi drive bacterial community assembly in halophyte Suaeda salsa. Microbiol Res 2024; 282:127657. [PMID: 38422862 DOI: 10.1016/j.micres.2024.127657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Halophytes inhabit saline soils, wherein most plants cannot grow, therefore, their ecological value is outstanding. Arbuscular mycorrhizal (AM) fungi can reconstruct microbial communities to assist plants with stress tolerance. However, little information is available on the microbial community assembly of AM fungi in halophytes. A pot experiment was conducted to investigate the effects of AM fungi on rhizosphere bacterial community structure and soil physiochemical characteristics in the halophyte Suaeda salsa at 0, 100, and 400 mM NaCl. The results demonstrated that AM fungi increased soil alkaline phosphatase (ALP) activity at the three NaCl concentrations, and decreased available P, available K, and the activity of soil catalase (CAT) at 100 mM NaCl. AM fungi decreased the Shannon index of the community at 0 and 100 mM NaCl and increased Sobs index at 400 mM NaCl. Regarding the bacterial community structure, AM fungi substantially decreased the abundance of Acidobacteria phylum at 0 and 100 mM NaCl. AM fungi significantly increased the abundance of genus Ramlibacter, an oxyanion-reducing bacteria that can clean out reactive oxygen species (ROS). AM fungi recruited the genera Massilia and Arthrobacter at 0 and 100 mM NaCl, respectively. Some strains in the two genera have been ascribed to plant growth promoting bacteria (PGPB). AM fungi increased the dry weight and promoted halophyte growth at all three NaCl levels. This study supplements the understanding that AM fungi assemble rhizosphere bacterial communities in halophytes.
Collapse
Affiliation(s)
- Fengwei Diao
- Shanxi Institute of Organic Dryland Farming, Shanxi Agricultural University, Taiyuan 030031, China; Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bingbing Jia
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Shengli Ding
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
11
|
Kaplan DI, Boyanov MI, Losey NA, Lin P, Xu C, O’Loughlin EJ, Santschi PH, Xing W, Kuhne WW, Kemner KM. Uranium Biogeochemistry in the Rhizosphere of a Contaminated Wetland. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6381-6390. [PMID: 38547454 PMCID: PMC11008245 DOI: 10.1021/acs.est.3c10481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
The objective of this study was to determine if U sediment concentrations in a U-contaminated wetland located within the Savannah River Site, South Carolina, were greater in the rhizosphere than in the nonrhizosphere. U concentrations were as much as 1100% greater in the rhizosphere than in the nonrhizosphere fractions; however and importantly, not all paired samples followed this trend. Iron (but not C, N, or S) concentrations were significantly enriched in the rhizosphere. XAS analyses showed that in both sediment fractions, U existed as UO22+ coordinated with iron(III)-oxides and organic matter. A key difference between the two sediment fractions was that a larger proportion of U was adsorbed to Fe(III)-oxides, not organic matter, in the rhizosphere, where significantly greater total Fe concentrations and greater proportions of ferrihydrite and goethite existed. Based on 16S rRNA analyses, most bacterial sequences in both paired samples were heterotrophs, and population differences were consistent with the generally more oxidizing conditions in the rhizosphere. Finally, U was very strongly bound to the whole (unfractionated) sediments, with an average desorption Kd value (Usediment/Uaqueous) of 3972 ± 1370 (mg-U/kg)/(mg-U/L). Together, these results indicate that the rhizosphere can greatly enrich U especially in wetland areas, where roots promote the formation of reactive Fe(III)-oxides.
Collapse
Affiliation(s)
- Daniel I. Kaplan
- Savannah
River Ecology Laboratory, University of
Georgia, Aiken, South Carolina 29802, United States
| | - Maxim I. Boyanov
- Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Chemical
Engineering, Bulgarian Academy of Sciences, Sofia 1040, Bulgaria
| | - Nathaniel A. Losey
- Savannah
River National Laboratory, Aiken, South Carolina 29808, United States
| | - Peng Lin
- Savannah
River Ecology Laboratory, University of
Georgia, Aiken, South Carolina 29802, United States
| | - Chen Xu
- Marine
& Coastal Environmental Science, Texas
A&M University − Galveston, Galveston, Texas 77553, United States
| | | | - Peter H. Santschi
- Marine
& Coastal Environmental Science, Texas
A&M University − Galveston, Galveston, Texas 77553, United States
| | - Wei Xing
- Savannah
River Ecology Laboratory, University of
Georgia, Aiken, South Carolina 29802, United States
| | - Wendy W. Kuhne
- Savannah
River National Laboratory, Aiken, South Carolina 29808, United States
| | | |
Collapse
|
12
|
Ding S, Li J, Wang Y, He S, Xie H, Fu H, Feng Y, Shaheen SM, Rinklebe J, Xue L. Manure derived hydrochar reduced phosphorus loss risk via an alteration of phosphorus fractions and diversified microbial community in rice paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170582. [PMID: 38309349 DOI: 10.1016/j.scitotenv.2024.170582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Phosphorus (P) loss caused by the irrational use of manure organic fertilizer has become a worldwide environmental problem, which has caused a potential threat to water safety and intensified agricultural non-point source pollution. Hydrothermal carbonization is method with a low-energy consumption and high efficiency to deal with environmental problems. Application of pig manure-derived hydrochar (PMH) to soil exhibited potential of sustainable development compared with the pristine pig manure (PM). However, the effects of PMH on the distribution of P among the fractions/forms and the interaction between microorganisms and P forms and its relevance to the potential loss of P in paddy fields has not been clarified. Therefore, in this study, a soil column experiment was conducted using the untreated soil (control), and the PM, PMH1 (PMH derived at 180 °C), and PMH2 (PMH derived at 260 °C) treated soils (at the dose of 0.05 %) and rice was cultivated to investigate the effects of PM and PMH on the P fractions, mobilization, ad potential loss via the induced changes on soil microbial community after a complete growing season of rice. The trend of P utilization was evaluated by P speciation via continuous extraction and 31P NMR. The addition of PMH reduced the proportion of residual P in soil by 23.8-26.3 %, and increased the proportion of HCl-P and orthophosphate by 116.2-158.6 % and 6.1-6.8 % compared to PM. The abundance of gcd gene developed after the application of PMH2, which enhanced the mobile forms of soil P utilization via secreting gluconic acid. The network diagram analysis concluded that the changes in various P forms were mainly related to Proteobacteria, Bacteroides, Firmicutes and Acidobacteria. The results illustrated that PMH mitigate the potential risk of P loss more than PM by altering P fractions and affecting soil microbial community.
Collapse
Affiliation(s)
- Shudong Ding
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yu Wang
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Shiying He
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibin Fu
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Lihong Xue
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, National Agricultural Experiment Station for Agricultural Environment, (Liu He), Ministry of Agriculture and Rural Affairs; Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
13
|
Chen JS, Hussain B, Tsai HC, Nagarajan V, Kumar RS, Lin IC, Hsu BM. Deciphering microbial communities and their unique metabolic repertoire across rock-soil-plant continuum in the Dayoukeng fumarolic geothermal field of the Tatun Volcano Group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7330-7344. [PMID: 38158533 DOI: 10.1007/s11356-023-31313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
High temperature and sulfur concentrations in geothermal sulfur fumaroles host unique microbial ecosystems with niche-specific metabolic diversity and physiological functions. In this study, the microbial communities and their functionalities associated with the Dayoukeng geothermal field and the rock-soil-plant continuum were investigated to underpin the microbial modulation at different distances from the fumaroles source. At the phylum level, Bacteroidota, Planctomycetota, Armatimonadota, and Patescibacteria were abundant in plant samples; Elusimicrobiota and Desulfobacterota were in the rock samples while Nitrospirota, Micrarchaeota, and Deinococcota were dominant in the soil samples. Acidophilic thermophiles were enriched in samples within close proximity to the fumaroles, primarily at a distance of 1 m. The sulfur and iron-oxidizing acidophilic bacterial genera such as Acidothiobacillus and Sulfobacillus were abundant in the rock samples. The thermoacidophilic archaeon Acidianus and acidophilic bacteria Acidiphilium were abundant in the soil samples. Additionally, Thermosporothrix and Acidothermus were found abundant in the plant samples. The results of the functional annotation indicated that dark sulfur oxidation, iron oxidation, and hydrogen oxidation pathways were abundant in the soil samples up to 1 m from the fumaroles, while methanogenic and fermentation pathways were more prevalent in the soil samples located 10 m from the fumaroles. Interestingly, the results of this study indicated a higher microbial richness and abundance of acidophilic communities in the soils and plants compared to the rocks of the DYK fumarolic geothermal field.
Collapse
Affiliation(s)
- Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bashir Hussain
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
- Department of Biomedical Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
| | - Hsin-Chi Tsai
- Department of Psychiatry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Psychiatry, Tzu-Chi General Hospital, Hualien, Taiwan
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
| | - Rajendran Senthil Kumar
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan
| | - I-Ching Lin
- Department of Family Medicine, Asia University Hospital, Taichung, Taiwan
- Department of Kinesiology, Health and Leisure, Chienkuo Technology University, Chenghua, Taiwan
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Minxiong, Chiayi County, Taiwan.
| |
Collapse
|
14
|
Xin J, Cao H, Bao X, Hu C. Does nest occupancy by birds influence the microbial composition? Front Microbiol 2023; 14:1232208. [PMID: 38053547 PMCID: PMC10694247 DOI: 10.3389/fmicb.2023.1232208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023] Open
Abstract
Nest microbiota plays a vital role in the breeding and development of birds, which not only provides protection to bird hosts but also negatively affects the host. At present, it is unclear whether the composition of the microbes in the nests is affected by nesting. For this reason, we hung artificial nest boxes to simulate the natural nesting environment and combined 16S rRNA and ITS high-throughput sequencing technology to further study the differences in microbial composition and richness between used nests and control nests of Japanese tits (Parus minor). The study found that the bacteria in used nests and control nests showed significant differences at the phylum level (p < 0.05). It is also worth noting that the predominant bacteria in used nests were Proteobacteria (51.37%), Actinobacteria (29.72%), Bacteroidetes (6.59%), and Firmicutes (3.82%), while the predominant bacteria in control nests were Proteobacteria (93.70%), Bacteroidetes (2.33%), and Acidobacteria (2.06%). Both used nests and control nests showed similar fungi at the phylum level, which consisted mainly of Ascomycota and Basidiomycota, although significant differences were found in their relative abundance between both groups. The results of alpha diversity analysis showed significant differences in bacteria between the two groups and not in fungi. However, the beta diversity analysis showed significant differences between both bacteria and fungi. In summary, our results showed that the used nests had a higher abundance of beneficial microbiota and a lower presence of pathogenic microbiota. Therefore, we speculate that birds will change the characteristics of the nest microbial composition in the process of nest breeding to ensure their smooth reproductive development.
Collapse
Affiliation(s)
- Jiajia Xin
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Heqin Cao
- Forestry College, Guizhou University, Guiyang, Guizhou, China
- Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang, Guizhou, China
| | - Xiaoyang Bao
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Canshi Hu
- College of Life Sciences, Guizhou University, Guiyang, Guizhou, China
- Research Center for Biodiversity and Nature Conservation, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
15
|
Verma K, Manisha M, Shivali NU, Santrupt RM, Anirudha TP, Ramesh N, Chanakya HN, Parama VRR, Mohan Kumar MS, Rao L. Investigating the effects of irrigation with indirectly recharged groundwater using recycled water on soil and crops in semi-arid areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122516. [PMID: 37690469 DOI: 10.1016/j.envpol.2023.122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The utilization of direct wastewater for irrigation poses many environmental problems such as soil quality deterioration due to the accumulation of salts, heavy metals, micro-pollutants, and health risks due to undesirable microorganisms. This hampers its agricultural reuse in arid and semi-arid regions. To address these concerns, the present study introduces a recent approach that involves using indirectly recharged groundwater (GW) with secondary treated municipal wastewater (STW) for irrigation through a Soil Aquifer Treatment-based system (SAT). This method aims to mitigate freshwater scarcity in semi-arid regions. The study assessed GW levels, physicochemical properties, and microbial diversity of GW, and soil in both impacted (receiving recycled water) and non-impacted (not receiving recycled water) areas, before recycling (2015-2018) and after recycling (2019-2022) period of the project. The results indicated a significant increase of 68-70% in GW levels of the studied boreholes in the impacted areas. Additionally, the quality of indirectly recharged GW in the impacted areas improved notably in terms of electrical conductivity (EC), hardness, total dissolved solids (TDS), sodium adsorption ratio (SAR), along with certain cations and anions (hard water to soft water). No significant difference was observed in soil properties and microbial diversity of the impacted areas, except for EC and SAR, which were reduced by 50% and 39%, respectively, after the project commenced. The study also monitored specific microbial species, including total coliforms, Escherichia coli (as indicator organisms), Shigella, and Klebsiella in some of the harvested crops (beetroot, tomato, and spinach). However, none of the analysed crops exhibited the presence of the studied microorganisms. Overall, the study concludes that indirectly recharged GW using STW is a better sustainable and safe irrigation alternative compared to direct wastewater use or extracted hard GW from deep aquifers.
Collapse
Affiliation(s)
- Kavita Verma
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India.
| | - Manjari Manisha
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - N U Shivali
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - R M Santrupt
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - T P Anirudha
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - N Ramesh
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - H N Chanakya
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| | - V R R Parama
- Department of Soil Science & Agricultural Chemistry, College of Agriculture, UAS, GKVK, Bengaluru, India
| | - M S Mohan Kumar
- Formerly @ Department of Civil Engineering, Indian Institute of Science, Bengaluru, India; Currently @ Gitam University, Bengaluru, India
| | - Lakshminarayana Rao
- Center for Sustainable Technologies, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
16
|
Chen Y, Huang X, Lang X, Tang R, Zhang R, Li S, Su J. Effects of plant diversity, soil microbial diversity, and network complexity on ecosystem multifunctionality in a tropical rainforest. FRONTIERS IN PLANT SCIENCE 2023; 14:1238056. [PMID: 37794931 PMCID: PMC10545900 DOI: 10.3389/fpls.2023.1238056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023]
Abstract
Introduction Plant diversity and soil microbial diversity are important driving factors in sustaining ecosystem multifunctionality (EMF) in terrestrial ecosystems. However, little is known about the relative importance of plant diversity, soil microbial diversity, and soil microbial network complexity to EMF in tropical rainforests. Methods This study took the tropical rainforest in Xishuangbanna, Yunnan Province, China as the research object, and quantified various ecosystem functions such as soil organic carbon stock, soil nutrient cycling, biomass production, and water regulation in the tropical rainforest to explore the relationship and effect of plant diversity, soil microbial diversity, soil microbial network complexity and EMF. Results Our results exhibited that EMF decreased with increasing liana species richness, soil fungal diversity, and soil fungal network complexity, which followed a trend of initially increasing and then decreasing with soil bacterial diversity while increasing with soil bacterial network complexity. Soil microbial diversity and plant diversity primarily affected soil nutrient cycling. Additionally, liana species richness had a significant negative effect on soil organic carbon stocks. The random forest model suggested that liana species richness, soil bacterial network complexity, and soil fungal network complexity indicated more relative importance in sustaining EMF. The structural equation model revealed that soil bacterial network complexity and tree species richness displayed the significantly positive effects on EMF, while liana species richness significantly affected EMF via negative pathway. We also observed that soil microbial diversity indirectly affected EMF through soil microbial network complexity. Soil bulk density had a significant and negative effect on liana species richness, thus indirectly influencing EMF. Simultaneously, we further found that liana species richness was the main indicator of sustaining EMF in a tropical rainforest, while soil bacterial diversity was the primary driving factor. Discussion Our findings provide new insight into the relationship between biodiversity and EMF in a tropical rainforest ecosystem and the relative contribution of plant and soil microibal diversity to ecosystem function with increasing global climate change.
Collapse
Affiliation(s)
- Yanxuan Chen
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Xiaobo Huang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Xuedong Lang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Rong Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Rui Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Shuaifeng Li
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| | - Jianrong Su
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Pu’er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China, Kunming, China
- Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Science and Technology Department of Yunnan Province, Kunming, China
| |
Collapse
|
17
|
Chauhan S, Yadav U, Bano N, Kumar S, Fatima T, Anshu, Dubey A, Singh PC. Carbendazim Modulates the Metabolically Active Bacterial Populations in Soil and Rhizosphere. Curr Microbiol 2023; 80:280. [PMID: 37439951 DOI: 10.1007/s00284-023-03391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
The impact of fungicide residues on non-target soil bacterial communities is relatively unexplained. We hypothesize that the persistence of fungicide residues in the soil will affect the soil bacterial populations. Persistence depends on biotic and abiotic factors, primarily determined by agricultural activities. Activities such as fallow soil (F), farmyard manure (FYM) amendment, rice straw (RS) mulching, and cultivation of maize (Zea mays) and clover (Trifolium alexandrinum) were used as treatments. The soil CO2 efflux showed no effect of Carbendazim on dormant bacteria (unwatered condition). However, in irrigated condition, Carbendazim enhanced the CO2 efflux by 8, 164, 131, 249, and 182% in fallow, FYM, RS, maize, and Trifolium treatments, respectively. However, 16S rRNA metagenome study after 30 days of carbendazim treatment showed that maize rhizosphere microflora was most susceptible, decreasing the Shannon diversity index from 0.321 to 0.165. Diversity indices generally increased in maize and RS treatments, and Proteobacteria was the most prominent bacterial phyla in the maize rhizosphere. The microbial communities separated into distinct groups on the Principal Co-ordinate analysis (PCoA) plot. The separation on scale 1 (35%) and scale 2 (13%) was based, respectively, on microbial activity and carbendazim treatments. Functionally Maize+Carbendazim treatment showed the highest enzyme activities dehydrogenase (82.25%), acid phosphatase (78.10%), alkaline phosphatase (48.26%), β-glucosidase (59.99%), protease (126.65%), and urease (50.66%) compared to fallow soil. Overall, Carbendazim enhanced non-target bacterial activity in metabolically active niches, while it did not affect the dormant microflora. Thus, organic amendments and cultivation of fungicide-contaminated soil may help render the contaminant through bacterial activity.
Collapse
Affiliation(s)
- Soni Chauhan
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Biosciences, Integral University, Kursi Rd, Lucknow, 226026, India
| | - Udit Yadav
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Nasreen Bano
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sanjeev Kumar
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Touseef Fatima
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
- Department of Biosciences, Integral University, Kursi Rd, Lucknow, 226026, India
| | - Anshu
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Amita Dubey
- Department of Biosciences, Integral University, Kursi Rd, Lucknow, 226026, India
| | - Poonam C Singh
- Microbial Technology Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
18
|
Zuo Y, Li Y, Chen H, Ran G, Liu X. Effects of multi-heavy metal composite pollution on microorganisms around a lead-zinc mine in typical karst areas, southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115190. [PMID: 37390724 DOI: 10.1016/j.ecoenv.2023.115190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 09/29/2022] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Heavy metal pollution poses a serious hazard to the soil bacterial community. The purpose of this study is to understand the characteristics of soil heavy metal pollution in lead-zinc mines in karst areas and the response of Pb, Zn, Cd, and As-induced composite pollution to soil microorganisms. This paper selected soil samples from the lead-zinc mining area of Xiangrong Mining Co., Ltd., Puding County, Guizhou Province, China. The soil in the mining area is contaminated by multiple heavy metals such as Pb, Zn, Cd and As. The average levels of Pb, Zn, Cd and As in the Pb-Zn mining soil were 14.5, 7.8, 5.5 and 4.4 times higher than the soil background in this area, respectively. Bacterial community structures and functions were analyzed using 16 S rRNA high-throughput sequencing technology and the PICRUSt method. A total of 19 bacterial phyla, 34 classes and 76 orders were detected in the tested soil. At the phylum level, the Proteobacteria are the dominant flora of the soil in the tailings reservoir area of the lead-zinc mine, respectively GWK1 (49.64%), GWK2 (81.89%), GWK3 (95.16%); and for the surrounding farmland soil, the Proteobacteria, Actinobacteriota, Acidobacteriota, Chloroflexi and Firmicutes are the most abundant in five bacterial groups. RDA analyses revealed that the heavy metal pollution of the lead-zinc mining area has a significant impact on the diversity of soil microorganisms. As the distance from the mining area increased, the heavy metal comprehensive pollution and potential risk value decreased, and the bacterial diversity increased. Additionally, various types of heavy metals have different effects on bacterial communities, and soil heavy metal content will also change the bacterial community structure. Proteobacteria positively related to Pb, Cd, and Zn, therefore, Proteobacteria were highly resistant to heavy metals. PICRUSt analysis suggested that heavy metals significantly affect the metabolic function of microorganisms. Microorganisms might generate resistance and enable themselves to survive by increasing the transport of metal ions and excreting metal ions. These results can be used as a basis for the microbial remediation of heavy metal-contaminated farmland in mining areas.
Collapse
Affiliation(s)
- Yingying Zuo
- College of Chemistry, Liaoning University, Shenyang 110036, People's Republic of China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Ying Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Hu Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Gang Ran
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China.
| |
Collapse
|
19
|
Becker MF, Klueken AM, Knief C. Effects of above ground pathogen infection and fungicide application on the root-associated microbiota of apple saplings. ENVIRONMENTAL MICROBIOME 2023; 18:43. [PMID: 37245023 DOI: 10.1186/s40793-023-00502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/14/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND The root-associated microbiome has been of keen research interest especially in the last decade due to the large potential for increasing overall plant performance in agricultural systems. Knowledge about the impact of above ground plant disturbances on the root-associated microbiome remains limited. We addressed this by focusing on two potential impacts, foliar pathogen infection alone and in combination with the application of a plant health protecting product. We hypothesized that these lead to plant-mediated responses in the rhizosphere microbiota. RESULTS The effects of an infection of greenhouse grown apple saplings with either Venturia inaequalis or Podosphaera leucotricha as foliar pathogen, as well as the combined effect of P. leucotricha infection and foliar application of the synthetic plant health protecting product Aliette (active ingredient: fosetyl-aluminum), were studied on the root-associated microbiota. The bacterial community structure of rhizospheric soil and endospheric root material was characterized post-infection, using 16S rRNA gene amplicon sequencing. With increasing disease severity both pathogens led to changes in the rhizosphere and endosphere bacterial communities in comparison to uninfected plants (explained variance up to 17.7%). While the preventive application of Aliette on healthy plants two weeks prior inoculation did not induce changes in the root-associated microbiota, a second later application on the diseased plants decreased disease severity and resulted in differences of the rhizosphere bacterial community between infected and several of the cured plants, though differences were overall not statistically significant. CONCLUSIONS Foliar pathogen infections can induce plant-mediated changes in the root-associated microbiota, indicating that above ground disturbances are reflected in the below-ground microbiome, even though these become evident only upon severe leaf infection. The application of the fungicide Aliette on healthy plants itself did not induce any changes, but the application to diseased plants helped the plant to regain the microbiota of a healthy plant. These findings indicate that above ground agronomic management practices have implications for the root-associated microbiome, which should be considered in the context of microbiome management strategies.
Collapse
Affiliation(s)
- Maximilian Fernando Becker
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany
| | - A Michael Klueken
- Crop Science Division, Disease Control Biology, Bayer AG, Alfred-Nobel-Str. 50, 40789, Monheim am Rhein, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Nussallee 13, 53115, Bonn, Germany.
| |
Collapse
|
20
|
Ghouili E, Abid G, Hogue R, Jeanne T, D'Astous-Pagé J, Sassi K, Hidri Y, M'Hamed HC, Somenahally A, Xue Q, Jebara M, Nefissi Ouertani R, Riahi J, de Oliveira AC, Muhovski Y. Date Palm Waste Compost Application Increases Soil Microbial Community Diversity in a Cropping Barley ( Hordeum vulgare L.) Field. BIOLOGY 2023; 12:biology12040546. [PMID: 37106747 PMCID: PMC10135526 DOI: 10.3390/biology12040546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023]
Abstract
Application of date palm waste compost is quite beneficial in improving soil properties and crop growth. However, the effect of its application on soil microbial communities is less understood. High-throughput sequencing and quantitative real-time PCR (qPCR) were used to evaluate the effect of compost application on the soil microbial composition in a barley field during the tillering, booting and ripening stages. The results showed that compost treatment had the highest bacterial and fungal abundance, and its application significantly altered the richness (Chao1 index) and α-diversity (Shannon index) of fungal and bacterial communities. The dominant bacterial phyla found in the samples were Proteobacteria and Actinobacteria while the dominant fungal orders were Ascomycota and Mortierellomycota. Interestingly, compost enriched the relative abundance of beneficial microorganisms such as Chaetomium, Actinobacteriota, Talaromyces and Mortierella and reduced those of harmful microorganisms such as Alternaria, Aspergillus and Neocosmospora. Functional prediction based on Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that amplicon sequence variant (ASV) sequences related to energy metabolism, amino acid metabolism and carbohydrate metabolism were associated with compost-treated soil. Based on Fungi Functional Guild (FUNGuild), identified fungi community metabolic functions such as wood saprotroph, pathotroph, symbiotroph and endophyte were associated with compost-treated soil. Overall, compost addition could be considered as a sustainable practice for establishing a healthy soil microbiome and subsequently improving the soil quality and barley crop production.
Collapse
Affiliation(s)
- Emna Ghouili
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), Hammam-Lif 2050, PB 901, Tunisia
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), Hammam-Lif 2050, PB 901, Tunisia
| | - Richard Hogue
- Microbial Ecology Laboratory, Research and Development Institute for the Agri-Environment (IRDA), Einstein Street 2700, Québec City, QC G1P 3W8, Canada
| | - Thomas Jeanne
- Microbial Ecology Laboratory, Research and Development Institute for the Agri-Environment (IRDA), Einstein Street 2700, Québec City, QC G1P 3W8, Canada
| | - Joël D'Astous-Pagé
- Microbial Ecology Laboratory, Research and Development Institute for the Agri-Environment (IRDA), Einstein Street 2700, Québec City, QC G1P 3W8, Canada
| | - Khaled Sassi
- Laboratory of Agronomy, National Agronomy Institute of Tunisia (INAT), University of Carthage, Avenue Charles Nicolle, Tunis-Mahrajène 1082, BP 43, Tunisia
| | - Yassine Hidri
- Olive Tree Institute, Laboratory of Integrated Olive Production in the Humid, Sub-humid and Semi-arid Region (LR16IO3), Cité Mahragène 1082, BP 208, Tunisia
| | - Hatem Cheikh M'Hamed
- Agronomy Laboratory, National Institute of Agronomic Research of Tunis (INRAT), University of Carthage, Hedi Karray Street, Ariana 2049, Tunisia
| | - Anil Somenahally
- Department of Soil and Crop Sciences, Texas A&M University, 370 Olsen Blvd., College Station, TX 77843-2474, USA
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX 79106, USA
| | - Moez Jebara
- Laboratory of Legumes and Sustainable Agrosystems, Centre of Biotechnology of Borj-Cedria, (L2AD, CBBC), Hammam-Lif 2050, PB 901, Tunisia
| | - Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Hammam-Lif 2050, BP 901, Tunisia
| | - Jouhaina Riahi
- Technical Center for Organic Agriculture, Chott Mariem, Sousse 4042, BP 54, Tunisia
| | - Ana Caroline de Oliveira
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, 5030 Gembloux, 234 BP, Belgium
| | - Yordan Muhovski
- Biological Engineering Unit, Department of Life Sciences, Walloon Agricultural Research Centre, Chaussée de Charleroi, 5030 Gembloux, 234 BP, Belgium
| |
Collapse
|
21
|
Yang J, Sooksa-nguan T, Kannan B, Cano-Alfanar S, Liu H, Kent A, Shanklin J, Altpeter F, Howe A. Microbiome differences in sugarcane and metabolically engineered oilcane accessions and their implications for bioenergy production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:56. [PMID: 36998044 PMCID: PMC10064762 DOI: 10.1186/s13068-023-02302-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/12/2023] [Indexed: 04/01/2023]
Abstract
Oilcane is a metabolically engineered sugarcane (Saccharum spp. hybrid) that hyper-accumulates lipids in its vegetable biomass to provide an advanced feedstock for biodiesel production. The potential impact of hyper-accumulation of lipids in vegetable biomass on microbiomes and the consequences of altered microbiomes on plant growth and lipid accumulation have not been explored so far. Here, we explore differences in the microbiome structure of different oilcane accessions and non-modified sugarcane. 16S SSU rRNA and ITS rRNA amplicon sequencing were performed to compare the characteristics of the microbiome structure from different plant compartments (leaf, stem, root, rhizosphere, and bulk soil) of four greenhouse-grown oilcane accessions and non-modified sugarcane. Significant differences were only observed in the bacterial microbiomes. In leaf and stem microbiomes, more than 90% of the entire microbiome of non-modified sugarcane and oilcane was dominated by similar core taxa. Taxa associated with Proteobacteria led to differences in the non-modified sugarcane and oilcane microbiome structure. While differences were observed between multiple accessions, accession 1566 was notable in that it was consistently observed to differ in its microbial membership than other accessions and had the lowest abundance of taxa associated with plant-growth-promoting bacteria. Accession 1566 is also unique among oilcane accessions in that it has the highest constitutive expression of the WRI1 transgene. The WRI1 transcription factor is known to contribute to significant changes in the global gene expression profile, impacting plant fatty acid biosynthesis and photomorphogenesis. This study reveals for the first time that genetically modified oilcanes associate with distinct microbiomes. Our findings suggest potential relationships between core taxa, biomass yield, and TAG in oilcane accessions and support further research on the relationship between plant genotypes and their microbiomes.
Collapse
Affiliation(s)
- Jihoon Yang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Ames, IA USA
| | - Thanwalee Sooksa-nguan
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Ames, IA USA
| | - Baskaran Kannan
- Present Address: Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL USA
| | - Sofia Cano-Alfanar
- Present Address: Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL USA
| | - Hui Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY USA
| | - Angela Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Upton, NY USA
| | - Fredy Altpeter
- Present Address: Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, IFAS, Gainesville, FL USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Ames, IA USA
| |
Collapse
|
22
|
LeBlanc N. Green Manures Alter Taxonomic and Functional Characteristics of Soil Bacterial Communities. MICROBIAL ECOLOGY 2023; 85:684-697. [PMID: 35112152 DOI: 10.1007/s00248-022-01975-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Incorporation of plant biomass into soil as green manures can reduce soilborne diseases and improve crop and soil health in agricultural ecosystems. Soil microbial communities can mediate beneficial effects of these amendments, but their response to different types of green manures is poorly understood. This study tested the effect of green manures from broccoli, marigold, and sudangrass on taxonomic and functional characteristics of soil bacterial communities. Green manures were amended to field soil and maintained in microcosms artificially infested with the soilborne plant pathogen Verticillium dahliae. Lettuce seedlings were transplanted into green manure amended and fallow soil and maintained under growth chamber conditions for 12 weeks. Bacterial communities in bulk and rhizosphere soils were characterized using nanopore sequencing of 16S rRNA and shotgun metagenome libraries. Under microcosm conditions, all green manures reduced the abundance of the soilborne plant pathogen V. dahliae and altered the taxonomic composition of bacterial communities. Twelve weeks following amendment, green manures had differential effects on lettuce yield as well as the taxonomic diversity and composition of soil bacterial communities. In addition, multiple green manures increased the abundance of bacterial functional traits in rhizosphere soil related to iron and polysaccharide acquisition and decreased the abundance of functional traits related to bacterial protein secretion systems. This study demonstrates green manures alter the taxonomic composition and functional traits in soil bacterial communities suggesting these changes may impact beneficial effects of green manures on plant and soil health.
Collapse
Affiliation(s)
- Nicholas LeBlanc
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, 1636 E. Alisal St., Salinas, CA, 93905, USA.
| |
Collapse
|
23
|
Gonçalves OS, Souza TS, Gonçalves GDC, Fernandes AS, Veloso TGR, Tupy SM, Garcia EA, Santana MF. Harnessing Novel Soil Bacteria for Beneficial Interactions with Soybean. Microorganisms 2023; 11:300. [PMID: 36838264 PMCID: PMC9964534 DOI: 10.3390/microorganisms11020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
It is claimed that one g of soil holds ten billion bacteria representing thousands of distinct species. These bacteria play key roles in the regulation of terrestrial carbon dynamics, nutrient cycles, and plant productivity. Despite the overwhelming diversity of bacteria, most bacterial species remain largely unknown. Here, we used an oligotrophic medium to isolate novel soil bacteria for positive interaction with soybean. Strictly 22 species of bacteria from the soybean rhizosphere were selected. These isolates encompass ten genera (Kosakonia, Microbacterium, Mycobacterium, Methylobacterium, Monashia, Novosphingobium, Pandoraea, Anthrobacter, Stenotrophomonas, and Rhizobium) and have potential as novel species. Furthermore, the novel bacterial species exhibited plant growth-promoting traits in vitro and enhanced soybean growth under drought stress in a greenhouse experiment. We also reported the draft genome sequences of Kosakonia sp. strain SOY2 and Agrobacterium sp. strain SOY23. Along with our analysis of 169 publicly available genomes for the genera reported here, we demonstrated that these bacteria have a repertoire of genes encoding plant growth-promoting proteins and secondary metabolite biosynthetic gene clusters that directly affect plant growth. Taken together, our findings allow the identification novel soil bacteria, paving the way for their application in crop production.
Collapse
Affiliation(s)
- Osiel Silva Gonçalves
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Thamires Santos Souza
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Guilherme de Castro Gonçalves
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Alexia Suellen Fernandes
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Tomás Gomes Reis Veloso
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Sumaya Martins Tupy
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Ediones Amaro Garcia
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| | - Mateus Ferreira Santana
- Grupo de Genômica Evolutiva Microbiana, Laboratório de Genética Molecular de Microrganismos, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa CEP 36570-900, MG, Brazil
| |
Collapse
|
24
|
Genome insights into the plant growth-promoting bacterium Saccharibacillus brassicae ATSA2 T. AMB Express 2023; 13:9. [PMID: 36680648 PMCID: PMC9867790 DOI: 10.1186/s13568-023-01514-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
Endophytes can facilitate the improvement of plant growth and health in agriculturally important crops, yet their genomes and secondary metabolites remain largely unexplored. We previously isolated Saccharibacillus brassicae strain ATSA2T from surface-sterilized seeds of kimchi cabbage and represented a novel species of the genus Saccharibacillus. In this study, we evaluated the plant growth-promoting (PGP) effect of strain ATSA2T in kimchi cabbage, bok choy, and pepper plants grown in soils. We found a significant effect on the shoot and root biomass, and chlorophyll contents following strain ATSA2T treatment. Strain ATSA2T displayed PGP traits such as indole acetic acid (IAA, 62.9 μg/mL) and siderophore production, and phosphate solubilization activity. Furthermore, genome analysis of this strain suggested the presence of gene clusters involved in iron acquisition (fhuABD, afuABC, fbpABC, and fepCDG) and phosphate solubilization (pstABCHS, phoABHLU, and phnCDEP) and other phytohormone biosynthesis genes, including indole-3-acetic acid (trpABCDEFG), in the genome. Interestingly, the secondary metabolites cerecidin, carotenoid, siderophore (staphylobactin), and bacillaene underlying plant growth promotion were found in the whole genome via antiSMASH analysis. Overall, physiological testing and genome analysis data provide comprehensive insights into plant growth-promoting mechanisms, suggesting the relevance of strain ATSA2T in agricultural biotechnology.
Collapse
|
25
|
Wang B, Wang X, Wang Z, Zhu K, Wu W. Comparative metagenomic analysis reveals rhizosphere microbial community composition and functions help protect grapevines against salt stress. Front Microbiol 2023; 14:1102547. [PMID: 36891384 PMCID: PMC9987714 DOI: 10.3389/fmicb.2023.1102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Soil salinization is a serious abiotic stress for grapevines. The rhizosphere microbiota of plants can help counter the negative effects caused by salt stress, but the distinction between rhizosphere microbes of salt-tolerant and salt-sensitive varieties remains unclear. Methods This study employed metagenomic sequencing to explore the rhizosphere microbial community of grapevine rootstocks 101-14 (salt tolerant) and 5BB (salt sensitive) with or without salt stress. Results and Discussion Compared to the control (treated with ddH2O), salt stress induced greater changes in the rhizosphere microbiota of 101-14 than in that of 5BB. The relative abundances of more plant growth-promoting bacteria, including Planctomycetes, Bacteroidetes, Verrucomicrobia, Cyanobacteria, Gemmatimonadetes, Chloroflexi, and Firmicutes, were increased in 101-14 under salt stress, whereas only the relative abundances of four phyla (Actinobacteria, Gemmatimonadetes, Chloroflexi, and Cyanobacteria) were increased in 5BB under salt stress while those of three phyla (Acidobacteria, Verrucomicrobia, and Firmicutes) were depleted. The differentially enriched functions (KEGG level 2) in 101-14 were mainly associated with pathways related to cell motility; folding, sorting, and degradation functions; glycan biosynthesis and metabolism; xenobiotics biodegradation and metabolism; and metabolism of cofactors and vitamins, whereas only the translation function was differentially enriched in 5BB. Under salt stress, the rhizosphere microbiota functions of 101-14 and 5BB differed greatly, especially pathways related to metabolism. Further analysis revealed that pathways associated with sulfur and glutathione metabolism as well as bacterial chemotaxis were uniquely enriched in 101-14 under salt stress and therefore might play vital roles in the mitigation of salt stress on grapevines. In addition, the abundance of various sulfur cycle-related genes, including genes involved in assimilatory sulfate reduction (cysNC, cysQ, sat, and sir), sulfur reduction (fsr), SOX systems (soxB), sulfur oxidation (sqr), organic sulfur transformation (tpa, mdh, gdh, and betC), increased significantly in 101-14 after treatment with NaCl; these genes might mitigate the harmful effects of salt on grapevine. In short, the study findings indicate that both the composition and functions of the rhizosphere microbial community contribute to the enhanced tolerance of some grapevines to salt stress.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Zhuangwei Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| | - Kefeng Zhu
- Department of Technology Commercialization, Jiangsu Academy of Agricultural Sciences, Nanjing City, Jiangsu Province, China.,Huaian Herong Ecological Agriculture Co., Ltd, Huaian City, Jiangsu Province, China
| | - Weimin Wu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing City, Jiangsu Province, China
| |
Collapse
|
26
|
Improved Cultivation and Isolation of Diverse Endophytic Bacteria Inhabiting Dendrobium Roots by Using Simply Modified Agar Media. Microbiol Spectr 2022; 10:e0223822. [PMID: 36301116 PMCID: PMC9769524 DOI: 10.1128/spectrum.02238-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendrobium plants are members of the family Orchidaceae, many of which are endangered orchids with ornamental and medicinal values. Dendrobium endophytic microbes have attracted attention for the development of strategies for plant protection and utilization of medicinal principles. However, the role of endophytic bacteria is poorly elucidated due to the lack of their successful cultivation. This study obtained a total of 749 endophytic isolates from Dendrobium roots using solid media prepared by simply modified methods (separate sterilization of phosphate and agar [PS] and use of gellan gum as a gelling reagent [GG]) and by a conventional method of autoclaving the phosphate and agar together (PT method). Notably, based on a comparison of 16S rRNA gene sequences between the isolates and the Dendrobium root endophyte community, we successfully retrieved more than 50% (17 out of 30) of the predominant endophytic bacterial operational taxonomic units (OTUs) using PS and GG media, which is a much higher recovery rate than that of PT medium (16.7%). We further found that a number of recalcitrant bacteria, including phylogenetically novel isolates and members of even the rarely cultivated phyla Acidobacteriota and Verrucomicrobiota, were obtained only when using PS and/or GG medium. Intriguingly, the majority of these recalcitrant bacteria formed colonies faster on PS or GG medium than on PT medium, which may have contributed to their successful isolation. Taken together, this study succeeded in isolating a wide variety of Dendrobium endophytic bacteria, including predominant ones using PS and GG media, and enables performance of future studies to clarify their unknown roles associated with the growth of Dendrobium plants. IMPORTANCE Dendrobium endophytic bacteria are of great interest since their functions may contribute to the protection of endangered orchids with ornamental and medicinal values. To understand and reveal the "true roles" of the endophytes, obtaining those axenic cultures is necessary even in the metagenomic era. However, no effective methods for isolating a variety of endophytic bacteria have been established. This study first demonstrated that the use of simply modified medium is quite effective and indeed allows the isolation of more than half of the predominant endophytic bacteria inhabiting Dendrobium roots. Besides, even phylogenetically novel and/or recalcitrant endophytic bacteria were successfully obtained by the same strategy. The obtained endophytic bacteria could serve as "living material" for elucidating their unprecedented functions related to the conservation of endangered orchid plants. Furthermore, the culture method used in this study may enable the isolation of various endophytic bacteria dominating not only in orchid plants but also in other useful plants.
Collapse
|
27
|
Wang CW, Michelle Wong JW, Yeh SS, Eric Hsieh Y, Tseng CH, Yang SH, Tang SL. Soil Bacterial Community May Offer Solutions for Ginger Cultivation. Microbiol Spectr 2022; 10:e0180322. [PMID: 36098526 PMCID: PMC9603371 DOI: 10.1128/spectrum.01803-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/26/2022] [Indexed: 12/31/2022] Open
Abstract
The Taitung region is one of Taiwan's main sites for ginger agriculture. Due to issues with disease and nutrients, farmers cannot use continuous cropping techniques on ginger, meaning that the ginger industry is constantly searching for new land. Continuous cropping increases the risk of infection by Pythium myriotylum and Ralstonia solanacearum, which cause soft rot disease and bacterial wilt, respectively. In addition, fertilizer additives, which are commonly used to increase trace elements in the soil, cannot restore the soil when it is undergoing continuous cropping on ginger, even when there has been no observable decrease in trace elements in the soil. Recent studies about soil microbiome manipulation and the application of microorganisms have shown that plant-associated microbes have the ability to improve plant growth and facilitate sustainable agriculture, but studies of this kind still need to be carried out on ginger cultivation. Therefore, in this study, we used the bacterial 16S V3-V4 hypervariable region of the 16S rRNA region to investigate microbe compositions in ginger soil to identify the difference between ginger soil with and without disease. Later, to investigate the influence of the well-known biocontrol agent B. velezensis and the fungicide Etridiazole on soil microbes and ginger productivity, we designed an experiment that collected the soil samples according to the different periods of ginger cultivation to examine the microbial community dynamics in the rhizome and bulk soil. We demonstrated that B. velezensis is beneficial to ginger reproduction. In accordance with our results, we suggest that B. velezensis may influence the plant's growth by adjusting its soil microbial composition. Etridiazole, on the other hand, may have some side effects on the ginger or beneficial bacteria in the soils that inhibit ginger reproduction. IMPORTANCE Pythium myriotylum and Ralstonia solanacearum cause soft rot disease and bacterial wilt, respectively. In this study, we used the bacterial 16S V3-V4 hypervariable region of the 16S rRNA region to investigate microbe compositions in healthy and diseased ginger soil and find out the influence of the well-known biocontrol agent B. velezensis and the fungicide Etridiazole on soil microbes and ginger productivity. These results demonstrated that B. velezensis benefits ginger reproduction and may influence the soil bacterial composition, while Etridiazole may have some side effects on the ginger or beneficial bacteria in the soils. The interactions among ginger, biocontrol agents, and fungicides need to be further investigated.
Collapse
Affiliation(s)
- Chih-Wei Wang
- Taitung District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Taitung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | - Shu-Shuo Yeh
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Yunli Eric Hsieh
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Shan-Hua Yang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Sen-Lin Tang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
28
|
Procter M, Kundu B, Sudalaimuthuasari N, AlMaskari RS, Saeed EE, Hazzouri KM, Amiri KMA. Microbiome of Citrullus colocynthis (L.) Schrad. Reveals a Potential Association with Non-Photosynthetic Cyanobacteria. Microorganisms 2022; 10:microorganisms10102083. [PMID: 36296358 PMCID: PMC9607294 DOI: 10.3390/microorganisms10102083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Citrullus colocynthis grows in the sandy desert soil of the Arabian Peninsula with limited access to water, aside from occasional precipitation or dew. Understanding its ability to produce water-filled fruit and nutrient-rich seeds despite the harsh environment, can be useful for agricultural applications. However, information regarding the microbiome of C. colocynthis is lacking. We hypothesized that C. colocynthis associates with bacteria that aid its survival, like what has been observed in other desert plants. Here, we used 16S rRNA gene data to gain insight into the microbiome of C. colocynthis to identify its associated bacteria. In total, 9818 and 6983 OTUs were generated from root, soil, and leaf samples combined. Overall, bulk soils had the highest alpha diversity, followed by rhizosphere and root zone soils. Furthermore, C. colocynthis is associated with known plant-growth-promoting bacteria (including Acidobacteria, Bacterioidetes, and Actinobacteria), and interestingly a class of non-photosynthetic Cyanobacteria (Melainabacteria) that is more abundant on the inside and outside of the root surface than control samples, suggesting its involvement in the rhizophagy process. This study will provide a foundation for functional studies to further understand how C. colocynthis-microbes interactions help them grow in the desert, paving the path for possible agricultural applications.
Collapse
Affiliation(s)
- Miranda Procter
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Biduth Kundu
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Naganeeswaran Sudalaimuthuasari
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Raja S. AlMaskari
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Esam E. Saeed
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
| | - Khaled M. Hazzouri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
- Correspondence: (K.M.H.); (K.M.A.A.)
| | - Khaled M. A. Amiri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain P.O. Box. 15551, United Arab Emirates
- Correspondence: (K.M.H.); (K.M.A.A.)
| |
Collapse
|
29
|
Yang C, Yue H, Ma Z, Feng Z, Feng H, Zhao L, Zhang Y, Deakin G, Xu X, Zhu H, Wei F. Influence of plant genotype and soil on the cotton rhizosphere microbiome. Front Microbiol 2022; 13:1021064. [PMID: 36204634 PMCID: PMC9530387 DOI: 10.3389/fmicb.2022.1021064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Rhizosphere microbial communities are recognized as crucial products of intimate interactions between plant and soil, playing important roles in plant growth and health. Enhancing the understanding of this process is a promising way to promote the next green revolution by applying the multifunctional benefits coming with rhizosphere microbiomes. In this study, we propagated eight cotton genotypes (four upland cotton cultivars and four sea-land cotton cultivars) with varying levels of resistance to Verticillium dahliae in three distinct soil types. Amplicon sequencing was applied to profile both bacterial and fungal communities in the rhizosphere of cotton. The results revealed that soil origin was the primary factor causing divergence in rhizosphere microbial community, with plant genotype playing a secondary role. The Shannon and Simpson indices revealed no significant differences in the rhizosphere microbial communities of Gossypium barbadense and G. hirsutum. Soil origin accounted for 34.0 and 59.05% of the total variability in the PCA of the rhizosphere bacterial and fungal communities, respectively, while plant genotypes within species only accounted for 1.1 to 6.6% of the total variability among microbial population. Similar results were observed in the Bray-Curtis indices. Interestingly, the relative abundance of Acidobacteria phylum in G. barbadense was greater in comparison with that of G. hirsutum. These findings suggested that soil origin and cotton genotype modulated microbiome assembly with soil predominantly shaping rhizosphere microbiome assembly, while host genotype slightly tuned this recruitment process by changing the abundance of specific microbial consortia.
Collapse
Affiliation(s)
- Chuanzhen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongchen Yue
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zheng Ma
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Greg Deakin
- NIAB East Malling Research, Kent, United Kingdom
| | - Xiangming Xu
- NIAB East Malling Research, Kent, United Kingdom
| | - Heqin Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Zhang X, Huang Z, Zhong Z, Li Q, Bian F, Gao G, Yang C, Wen X. Evaluating the Rhizosphere and Endophytic Microbiomes of a Bamboo Plant in Response to the Long-Term Application of Heavy Organic Amendment. PLANTS (BASEL, SWITZERLAND) 2022; 11:2129. [PMID: 36015431 PMCID: PMC9412275 DOI: 10.3390/plants11162129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Root-associated bacteria play a major role in plant health and productivity. However, how organic amendment influences root-associated bacteria is uncertain in Lei bamboo (Phyllostachys praecox) plantations. Here, we compared the rhizosphere and endophytic microbiomes in two Lei bamboo plantations with (IMS) and without (TMS) the application of organic amendment for 16 years. The results showed IMS significantly increased (p < 0.05) the relative abundance of Proteobacteria and significantly decreased (p < 0.05) the relative abundance of Acidobacteria, Bacteroidetes, and Verrucomicrobiota. The root endophytic Proteobacteria and Acidobacteria were significantly higher in abundance (p < 0.05) in the IMS than in the TMS, while Actinobacteria and Firmicutes were significantly lower in abundance. Five taxa were assigned to Proteobacteria and Acidobacteria, which were identified as keystones in the rhizosphere soil microbiome, while two species taxonomically affiliated with Proteobacteria were identified as keystones in the root endophytic microbiota, indicating this phylum can be an indicator for a root-associated microbiome in response to IMS. The soil pH, soil total organic carbon (TOC), total nitrogen (TN), total phosphorus (TP), available potassium (AK), and TOC:TP ratio were significantly correlated (p < 0.05) with the bacterial community composition of both rhizosphere soils and root endophytes. TMS increased the microbial network complexity of root endophytes but decreased the microbial network complexity of rhizosphere soil. Our results suggest IMS shapes the rhizosphere and endophytic bacterial community compositions and their interactions differently, which should be paid attention to when designing management practices for the sustainable development of forest ecosystems.
Collapse
Affiliation(s)
- Xiaoping Zhang
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
- Engineering Research Center of Biochar of Zhejiang Province, Hangzhou 310021, China
| | - Zhiyuan Huang
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Zheke Zhong
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Qiaoling Li
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Fangyuan Bian
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Guibin Gao
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Chuanbao Yang
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| | - Xing Wen
- China National Bamboo Research Center, Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou 310012, China
- National Long-Term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou 310012, China
| |
Collapse
|
31
|
Li Y, He X, Yuan H, Lv G. Differed Growth Stage Dynamics of Root-Associated Bacterial and Fungal Community Structure Associated with Halophytic Plant Lycium ruthenicum. Microorganisms 2022; 10:microorganisms10081644. [PMID: 36014066 PMCID: PMC9414475 DOI: 10.3390/microorganisms10081644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 01/02/2023] Open
Abstract
Lycium ruthenicum, a halophytic shrub, has been used to remediate saline soils in northwest China. However, little is known about its root-associated microbial community and how it may be affected by the plant’s growth cycle. In this study, we investigate the microbial community structure of L. ruthenicum by examining three root compartments (rhizosphere, rhizoplane, and endosphere) during four growth stages (vegetative, flowering, fruiting, and senescence). The microbial community diversity and composition were determined by Illumina MiSeq sequencing of the 16S V3–V4 and 18S ITS regions. Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Acidobacteria were the dominant bacterial phyla, while Ascomycota, Basidiomycota, and Mortierellomycota were the most dominant fungal phyla. The alpha diversity of the bacterial communities was highest in the rhizosphere and decreased from the rhizosphere to the endosphere compartments; the fungal communities did not show a consistent trend. The rhizosphere, rhizoplane, and endosphere had distinct bacterial community structures among the three root compartments and from the bulk soil. Additionally, PERMANOVA indicated that the effect of rhizocompartments explained a large proportion of the total community variation. Differential and biomarker analysis not only revealed that each compartment had unique biomarkers and was enriched for specific bacteria, but also that the biomarkers changed with the plant growth cycle. Fungi were also affected by the rhizocompartment, but to a much less so than bacteria, with significant differences in the community composition along the root compartments observed only during the vegetative and flowering stages. Instead, the growth stages appear to account for most of the fungal community variation as demonstrated by PCoA and NMDS, and supported by differential and biomarker analysis, which revealed that the fungal community composition in the rhizosphere and endosphere were dynamic in response to the growth stage. Many enriched OTUs or biomarkers that were identified in the root compartments were potentially beneficial to the plant, meanwhile, some harmful OTUs were excluded from the root, implying that the host plant can select for beneficial bacteria and fungi, which can promote plant growth or increase salt tolerance. In conclusion, the root compartment and growth stage were both determinant factors in structuring the microbial communities of L. ruthenicum, but the effects were different in bacteria and fungi, suggesting that bacterial and fungal community structures respond differently to these growth factors.
Collapse
Affiliation(s)
- Yan Li
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Xuemin He
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
| | - Hongfei Yuan
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Guanghui Lv
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
- Key Laboratory of Oasis Ecology, Ministry of Education, Urumqi 830046, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830046, China
- Correspondence:
| |
Collapse
|
32
|
Prescott RD, Zamkovaya T, Donachie SP, Northup DE, Medley JJ, Monsalve N, Saw JH, Decho AW, Chain PSG, Boston PJ. Islands Within Islands: Bacterial Phylogenetic Structure and Consortia in Hawaiian Lava Caves and Fumaroles. Front Microbiol 2022; 13:934708. [PMID: 35935195 PMCID: PMC9349362 DOI: 10.3389/fmicb.2022.934708] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Lava caves, tubes, and fumaroles in Hawai‘i present a range of volcanic, oligotrophic environments from different lava flows and host unexpectedly high levels of bacterial diversity. These features provide an opportunity to study the ecological drivers that structure bacterial community diversity and assemblies in volcanic ecosystems and compare the older, more stable environments of lava tubes, to the more variable and extreme conditions of younger, geothermally active caves and fumaroles. Using 16S rRNA amplicon-based sequencing methods, we investigated the phylogenetic distinctness and diversity and identified microbial interactions and consortia through co-occurrence networks in 70 samples from lava tubes, geothermal lava caves, and fumaroles on the island of Hawai‘i. Our data illustrate that lava caves and geothermal sites harbor unique microbial communities, with very little overlap between caves or sites. We also found that older lava tubes (500–800 yrs old) hosted greater phylogenetic diversity (Faith's PD) than sites that were either geothermally active or younger (<400 yrs old). Geothermally active sites had a greater number of interactions and complexity than lava tubes. Average phylogenetic distinctness, a measure of the phylogenetic relatedness of a community, was higher than would be expected if communities were structured at random. This suggests that bacterial communities of Hawaiian volcanic environments are phylogenetically over-dispersed and that competitive exclusion is the main driver in structuring these communities. This was supported by network analyses that found that taxa (Class level) co-occurred with more distantly related organisms than close relatives, particularly in geothermal sites. Network “hubs” (taxa of potentially higher ecological importance) were not the most abundant taxa in either geothermal sites or lava tubes and were identified as unknown families or genera of the phyla, Chloroflexi and Acidobacteria. These results highlight the need for further study on the ecological role of microbes in caves through targeted culturing methods, metagenomics, and long-read sequence technologies.
Collapse
Affiliation(s)
- Rebecca D. Prescott
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- *Correspondence: Rebecca D. Prescott
| | - Tatyana Zamkovaya
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Stuart P. Donachie
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Diana E. Northup
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Joseph J. Medley
- Department of Biology, University of New Mexico, Albuquerque, NM, United States
| | - Natalia Monsalve
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Jimmy H. Saw
- Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Alan W. Decho
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States
| | - Patrick S. G. Chain
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Penelope J. Boston
- National Aeronautics and Space Administration (NASA) Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
33
|
Rotoni C, Leite MFA, Pijl A, Kuramae EE. Rhizosphere microbiome response to host genetic variability: a trade-off between bacterial and fungal community assembly. FEMS Microbiol Ecol 2022; 98:6590037. [PMID: 35595468 DOI: 10.1093/femsec/fiac061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Rhizosphere microbial community composition is strongly influenced by plant species and cultivar. However, our understanding of the impact of plant cultivar genetic variability on microbial assembly composition remains limited. Here, we took advantage of vegetatively propagated chrysanthemum (Chrysanthemum indicum L.) as a plant model and induced roots in five commercial cultivars: Barolo, Chic, Chic 45, Chic Cream, and Haydar. We observed strong rhizosphere selection for the bacterial community but weaker selection for the fungal community. The genetic distance between cultivars explained 42.83% of the total dissimilarity between the bacteria selected by the different cultivars. By contrast, rhizosphere fungal selection was not significantly linked to plant genetic dissimilarity. Each chrysanthemum cultivar selected unique bacterial and fungal genera in the rhizosphere. We also observed a trade-off in the rhizosphere selection of bacteria and fungi in which the cultivar with the strongest selection of fungal communities showed the weakest bacterial selection. Finally, bacterial and fungal family taxonomic groups consistently selected by all cultivars were identified (bacteria Chitinophagaceae, Beijerinckiaceae, and Acidobacteriaceae and fungi Pseudeurotiaceae and Chrysozymaceae). Taken together, our findings suggest that chrysanthemum cultivars select distinct rhizosphere microbiomes and share a common core of microbes partially explained by the genetic dissimilarity between cultivars.
Collapse
Affiliation(s)
- Cristina Rotoni
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Marcio F A Leite
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Agata Pijl
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.,Ecology and Biodiversity, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
34
|
Tree Cover Species Modify the Diversity of Rhizosphere-Associated Microorganisms in Nothofagus obliqua (Mirb.) Oerst Temperate Forests in South-Central Chile. FORESTS 2022. [DOI: 10.3390/f13050756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chilean native forests have been subjected to several types of disturbances, with one of them being the replacement by exotic species. Pinus radiata D. Don is a widespread exotic tree that forms extensive plantations in southern Chile. It covers extended areas, affecting the landscape, biodiversity, and ecosystem services associated with native forest ecosystems. Although advances in assessing the impact of exotic plant species have been conducted, few studies have focused on the alteration of soil microorganisms. This study aimed to characterize the rhizosphere bacterial and fungal communities associated with the tree species Nothofagus obliqua inside a native forest stand and within a P. radiata plantation growing nearby. We used a 16S rRNA gene and ITS region metabarcoding approach. Using bioinformatics, diversity indices, relative abundance, preferential taxa, and predicted functions and guilds were estimated. The β-diversity analysis showed that both factors, the type of soil (rhizosphere or bulk soil) and the type of site (native forest or P. radiata plantation), were significant, with the site explaining most of the variation among bacterial and fungal communities. Proteobacteria and Basidiomycota were the most abundant bacterial and fungal phyla in both types of soil and sites. Similarly, bacteria showed similar abundant taxa at the family level, independent of the soil type or the site. The main fungal taxa associated with native forests were Tricholomataceae and Cantharellales, whereas in P. radiata plantations, Russulaceae and Hyaloscyphaceae were the most abundant families. The main bacteria functional groups were chemoheterotrophy and aerobic chemoheterotrophy, without significant differences between the type of soil or sites. Overall, these results demonstrate that the composition and diversity of bacterial and fungal communities associated with native N. obliqua forest are influenced by the surrounding forest, and mainly depend on the site’s characteristics, such as the lignin-rich wood source. These results improve our understanding of the impact of native forest replacement on soil microbial communities, which can alter microbial-related soil ecosystem services.
Collapse
|
35
|
Li M, Xu M, Su A, Zhang Y, Niu L, Xu Y. Combined Phenanthrene and Copper Pollution Imposed a Selective Pressure on the Rice Root-Associated Microbiome. Front Microbiol 2022; 13:888086. [PMID: 35602076 PMCID: PMC9114715 DOI: 10.3389/fmicb.2022.888086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Combined organic and inorganic pollutants can greatly impact crops and microbes, but the interaction between coexisted pollutants and their effects on root-associated microbes under flooding conditions remains poorly understood. In this study, greenhouse experiments were conducted to investigate the individual and combined effects of phenanthrene (PHE) and copper (Cu) on rice uptake and root-associated microbial coping strategies. The results showed that more than 90% of phenanthrene was degraded, while the existence of Cu significantly reduced the dissipation of PHE in the rhizosphere, and the coexistence of phenanthrene and copper promoted their respective accumulation in plant roots. Copper played a dominant role in the interaction between these two chemicals. Microbes that can tolerate heavy metals and degrade PAHs, e.g., Herbaspirillum, Sphingobacteriales, and Saccharimonadales, were enriched in the contaminated soils. Additionally, microbes associated with redox processes reacted differently under polluted treatments. Fe reducers increased in Cu-treated soils, while sulfate reducers and methanogens were considerably inhibited under polluted treatments. In total, our results uncover the combined effect of heavy metals and polycyclic aromatic hydrocarbons on the assemblage of root-associated microbial communities in anaerobic environments and provide useful information for the selection of effective root-associated microbiomes to improve the resistance of common crops in contaminated sites.
Collapse
Affiliation(s)
- Mingyue Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Minmin Xu
- Shandong Academy of Environmental Sciences Co., Ltd., Jinan, China
| | - Aoxue Su
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Ying Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao, China
| |
Collapse
|
36
|
Satjarak A, Golinski GK, Trest MT, Graham LE. Microbiome and related structural features of Earth's most archaic plant indicate early plant symbiosis attributes. Sci Rep 2022; 12:6423. [PMID: 35443766 PMCID: PMC9021317 DOI: 10.1038/s41598-022-10186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Origin of earliest land plants from ancestral algae dramatically accelerated the evolution of Earth’s terrestrial ecosystems, in which microbial symbioses have played key roles. Recent molecular diversification analyses identify the rare, geographically-limited moss Takakia as Earth’s most archaic modern land plant. Despite occupying a phylogenetic position pivotal for understanding earliest plants, Takakia microbial associations are poorly known. Here, we describe symbiosis-related structural features and contig-based metagenomic data that illuminate the evolutionary transition from streptophyte algae to early embryophytes. We observed that T. lepidozioides shares with streptophyte algae secretion of microbe-harboring mucilage and bacterial taxa such as Rhizobium and genes indicating nitrogen fixation. We find that Takakia root-analogs produce lateral mucilage organs that are more complex than generally understood, having structural analogies to angiosperm lateral roots adapted for N-fixation symbioses, including presence of intracellular microbes. We also find structural and metagenomic evidence for mycorrhiza-like species of glomalean fungi (including Rhizophagus irregularis) not previously known for mosses, as well as ascomycete fungi (e.g. Rhizoscyphus ericae) that associate with other early-diverging plants. Because Takakia is the oldest known modern plant genus, this study of plants of a remote locale not strongly influenced by human activities may indicate microbiome features of early land plants.
Collapse
Affiliation(s)
- Anchittha Satjarak
- Plants of Thailand Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - G Karen Golinski
- University of British Columbia Herbarium, Beaty Biodiversity Museum, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Marie T Trest
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda E Graham
- Department of Botany, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
37
|
Lin Y, Zhang Y, Liang X, Duan R, Yang L, Du Y, Wu L, Huang J, Xiang G, Bai J, Zhen Y. Assessment of rhizosphere bacterial diversity and composition in a metal hyperaccumulator (
Boehmeria nivea
) and a non‐accumulator (
Artemisia annua
) in an antimony mine. J Appl Microbiol 2022; 132:3432-3443. [DOI: 10.1111/jam.15486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/12/2022] [Accepted: 02/08/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Yuxiang Lin
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yaqi Zhang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Xin Liang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Renyan Duan
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Li Yang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yihuan Du
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Lianfu Wu
- Key Laboratory of Biodiversity Research and Ecological Conservation in Southwest Anhui Province Anqing Normal University Anqing Anhui China
| | - Jiacheng Huang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Guohong Xiang
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Jing Bai
- College of Agriculture and Biotechnology Loudi Hunan China
| | - Yu Zhen
- College of Agriculture and Biotechnology Loudi Hunan China
| |
Collapse
|
38
|
Sikorski J, Baumgartner V, Birkhofer K, Boeddinghaus RS, Bunk B, Fischer M, Fösel BU, Friedrich MW, Göker M, Hölzel N, Huang S, Huber KJ, Kandeler E, Klaus VH, Kleinebecker T, Marhan S, von Mering C, Oelmann Y, Prati D, Regan KM, Richter-Heitmann T, Rodrigues JFM, Schmitt B, Schöning I, Schrumpf M, Schurig E, Solly EF, Wolters V, Overmann J. The Evolution of Ecological Diversity in Acidobacteria. Front Microbiol 2022; 13:715637. [PMID: 35185839 PMCID: PMC8847707 DOI: 10.3389/fmicb.2022.715637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/10/2022] [Indexed: 12/15/2022] Open
Abstract
Acidobacteria occur in a large variety of ecosystems worldwide and are particularly abundant and highly diverse in soils. In spite of their diversity, only few species have been characterized to date which makes Acidobacteria one of the most poorly understood phyla among the domain Bacteria. We used a culture-independent niche modeling approach to elucidate ecological adaptations and their evolution for 4,154 operational taxonomic units (OTUs) of Acidobacteria across 150 different, comprehensively characterized grassland soils in Germany. Using the relative abundances of their 16S rRNA gene transcripts, the responses of active OTUs along gradients of 41 environmental variables were modeled using hierarchical logistic regression (HOF), which allowed to determine values for optimum activity for each variable (niche optima). By linking 16S rRNA transcripts to the phylogeny of full 16S rRNA gene sequences, we could trace the evolution of the different ecological adaptations during the diversification of Acidobacteria. This approach revealed a pronounced ecological diversification even among acidobacterial sister clades. Although the evolution of habitat adaptation was mainly cladogenic, it was disrupted by recurrent events of convergent evolution that resulted in frequent habitat switching within individual clades. Our findings indicate that the high diversity of soil acidobacterial communities is largely sustained by differential habitat adaptation even at the level of closely related species. A comparison of niche optima of individual OTUs with the phenotypic properties of their cultivated representatives showed that our niche modeling approach (1) correctly predicts those physiological properties that have been determined for cultivated species of Acidobacteria but (2) also provides ample information on ecological adaptations that cannot be inferred from standard taxonomic descriptions of bacterial isolates. These novel information on specific adaptations of not-yet-cultivated Acidobacteria can therefore guide future cultivation trials and likely will increase their cultivation success.
Collapse
Affiliation(s)
- Johannes Sikorski
- Department of Microbial Ecology and Diversity Research, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Vanessa Baumgartner
- Department of Microbial Ecology and Diversity Research, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Klaus Birkhofer
- Department of Ecology, Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
| | - Runa S. Boeddinghaus
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Boyke Bunk
- Bioinformatics Group, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Bärbel U. Fösel
- Department of Microbial Ecology and Diversity Research, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Michael W. Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Markus Göker
- Bioinformatics Group, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Norbert Hölzel
- Biodiversity and Ecosystem Research Group, Institute of Landscape Ecology, University Münster, Münster, Germany
| | - Sixing Huang
- Bioinformatics Group, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Katharina J. Huber
- Department of Microbial Ecology and Diversity Research, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ellen Kandeler
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | | | - Till Kleinebecker
- Institute of Landscape Ecology and Resources Management, University of GieBen, GieBen, Germany
| | - Sven Marhan
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Christian von Mering
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | | | - Daniel Prati
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Kathleen M. Regan
- Soil Biology Department, Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - João F. Matias Rodrigues
- Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Barbara Schmitt
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ingo Schöning
- Department for Biogeochemical Processes and Biogeochemical Integration, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | - Marion Schrumpf
- Department for Biogeochemical Processes and Biogeochemical Integration, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Emily F. Solly
- Department for Biogeochemical Processes and Biogeochemical Integration, Max-Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Jörg Overmann
- Department of Microbial Ecology and Diversity Research, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Microbiology, Faculty of Life Sciences, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
39
|
Wang G, Li Y, Liu J, Chen B, Su H, Liang J, Huang W, Yu K. Comparative Genomics Reveal the Animal-Associated Features of the Acanthopleuribacteraceae Bacteria, and Description of Sulfidibacter corallicola gen. nov., sp., nov. Front Microbiol 2022; 13:778535. [PMID: 35173698 PMCID: PMC8841776 DOI: 10.3389/fmicb.2022.778535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the phylum Acidobacteria are ubiquitous in various environments. Soil acidobacteria have been reported to present a variety of strategies for their success in terrestrial environments. However, owing to lack of pure culture, information on animal-associated acidobacteria are limited, except for those obtained from 16S rRNA genes. To date, only two acidobacteria have been isolated from animals, namely strain M133T obtained from coral Porites lutea and Acanthopleuribacter pedis KCTC 12899T isolated from chiton. Genomics and physiological characteristics of strain M133T and A. pedis KCTC 12899T were compared with 19 other isolates (one strain from each genus) in the phylum Acidobacteria. The results revealed that strain M133T represents a new species in a new genus in the family Acanthopleuribacteraceae. To date, these two Acanthopleuribacteraceae isolates have the largest genomes (10.85–11.79 Mb) in the phylum Acidobacteria. Horizontal gene transfer and gene duplication influenced the structure and plasticity of these large genomes. Dissimilatory nitrate reduction and abundant secondary metabolite biosynthetic gene clusters (including eicosapentaenoic acid de novo biosynthesis) are two distinct features of the Acanthopleuribacteraceae bacteria in the phylum Acidobacteria. The absence of glycoside hydrolases involved in plant polysaccharide degradation and presence of animal disease-related peptidases indicate that these bacteria have evolved to adapt to the animal hosts. In addition to low- and high-affinity respiratory oxygen reductases, enzymes for nitrate to nitrogen, and sulfhydrogenase were also detected in strain M133T, suggesting the capacity and flexibility to grow in aerobic and anaerobic environments. This study highlighted the differences in genome structure, carbohydrate and protein utilization, respiration, and secondary metabolism between animal-associated acidobacteria and other acidobacteria, especially the soil acidobacteria, displaying flexibility and versatility of the animal-associated acidobacteria in environmental adaption.
Collapse
Affiliation(s)
- Guanghua Wang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuanjin Li
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jianfeng Liu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Hongfei Su
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Wen Huang
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning, China
- Coral Reef Research Center of China, Guangxi University, Nanning, China
- School of Marine Sciences, Guangxi University, Nanning, China
- *Correspondence: Kefu Yu,
| |
Collapse
|
40
|
Seaweed Fertilizer Prepared by EM-Fermentation Increases Abundance of Beneficial Soil Microbiome in Paddy (Oryza sativa L.) during Vegetative Stage. FERMENTATION 2022. [DOI: 10.3390/fermentation8020046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Excessive use of chemical fertilizer could potentially decrease soil productivity by decreasing soil microbiome diversity. In this study, we evaluated the effects of fermented seaweed fertilizer in the soil microbial community of paddy plants (Oryza sativa L.). The paddy seedlings were divided into five groups, control (C0), chemical fertilizer (CF), seaweed fertilizer (SF), chemical and seaweed fertilizer combination 50:50 (CFSF1), and chemical and fertilizer combination 75:25 (CFSF2). The CFSF1 combination showed to be the most effective in inducing plant height (83.99 ± 3.70 cm) and number of tillers (24.20 ± 4.08). After 8 weeks after transplantation, the isolated DNA from each soil treatment were subjected to 16S rRNA (v3–v4 region) next-generation sequencing. The beneficial Acidobacteriota was most abundant in CFSF1. At genus level, the nitrifying bacteria MND1 was seen to be abundant in CFSF1 and also present in other SF treatments. The genus Chujaibacter is highly abundant in CF, which potentially plays a role in denitrification resulting in soil degradation. In addition, the CFSF1-treated soils show significantly higher diversity of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). The current results could potentially contribute to the utilization of SF as a bioremediator and promoting green agriculture practice by reducing the amount of CF usage.
Collapse
|
41
|
Rhizosphere Diazotrophs and Other Bacteria Associated with Native and Encroaching Legumes in the Succulent Karoo Biome in South Africa. Microorganisms 2022; 10:microorganisms10020216. [PMID: 35208671 PMCID: PMC8880511 DOI: 10.3390/microorganisms10020216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/04/2021] [Accepted: 12/23/2021] [Indexed: 12/10/2022] Open
Abstract
Total and diazotrophic bacteria were assessed in the rhizosphere soils of native and encroaching legumes growing in the Succulent Karoo Biome (SKB), South Africa. These were Calobota sericea, Lessertia diffusa, Vachellia karroo, and Wiborgia monoptera, of Fabaceae family near Springbok (Northern Cape Province) and neighboring refugia of the Fynbos biome for C. sericea for comparison purposes. Metabarcoding approach using 16S rRNA gene revealed Actinobacteria (26.7%), Proteobacteria (23.6%), Planctomycetes, and Acidobacteria (10%), while the nifH gene revealed Proteobacteria (70.3%) and Cyanobacteria (29.5%) of the total sequences recovered as the dominant phyla. Some of the diazotrophs measured were assigned to families; Phyllobacteriaceae (39%) and Nostocaceae (24.4%) (all legumes), Rhodospirillaceae (7.9%), Bradyrhizobiaceae (4.6%) and Methylobacteriaceae (3%) (C. sericea, V. karroo, W. monoptera), Rhizobiaceae (4.2%; C. sericea, L. diffusa, V. Karroo), Microchaetaceae (4%; W. monoptera, V. karroo), Scytonemataceae (3.1%; L. diffusa, W. monoptera), and Pseudomonadaceae (2.7%; V. karroo) of the total sequences recovered. These families have the potential to fix the atmospheric nitrogen. While some diazotrophs were specific or shared across several legumes, a member of Mesorhizobium species was common in all rhizosphere soils considered. V. karroo had statistically significantly higher Alpha and distinct Beta-diversity values, than other legumes, supporting its influence on soil microbes. Overall, this work showed diverse bacteria that support plant life in harsh environments such as the SKB, and shows how they are influenced by legumes.
Collapse
|
42
|
Kim B, Westerhuis JA, Smilde AK, Floková K, Suleiman AKA, Kuramae EE, Bouwmeester HJ, Zancarini A. OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6524125. [PMID: 35137050 PMCID: PMC8902685 DOI: 10.1093/femsec/fiac010] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/03/2022] Open
Abstract
Strigolactones are endogenous plant hormones regulating plant development and are exuded into the rhizosphere when plants experience nutrient deficiency. There, they promote the mutualistic association of plants with arbuscular mycorrhizal fungi that help the plant with the uptake of nutrients from the soil. This shows that plants actively establish—through the exudation of strigolactones—mutualistic interactions with microbes to overcome inadequate nutrition. The signaling function of strigolactones could possibly extend to other microbial partners, but the effect of strigolactones on the global root and rhizosphere microbiome remains poorly understood. Therefore, we analyzed the bacterial and fungal microbial communities of 16 rice genotypes differing in their root strigolactone exudation. Using multivariate analyses, distinctive differences in the microbiome composition were uncovered depending on strigolactone exudation. Moreover, the results of regression modeling showed that structural differences in the exuded strigolactones affected different sets of microbes. In particular, orobanchol was linked to the relative abundance of Burkholderia–Caballeronia–Paraburkholderia and Acidobacteria that potentially solubilize phosphate, while 4-deoxyorobanchol was associated with the genera Dyella and Umbelopsis. With this research, we provide new insight into the role of strigolactones in the interplay between plants and microbes in the rhizosphere.
Collapse
Affiliation(s)
- Bora Kim
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Johan A Westerhuis
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Age K Smilde
- Biosystems Data Analysis Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Kristýna Floková
- Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Afnan K A Suleiman
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Soil Health Group, Bioclear Earth B.V., 9727 DL Groningen, The Netherlands
| | - Eiko E Kuramae
- Department of Microbial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Harro J Bouwmeester
- Corresponding author: Plant Hormone Biology Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Postbus 1210, 1000 BE Amsterdam, The Netherlands. Tel: +31-20-525-6476; E-mail:
| | | |
Collapse
|
43
|
Ali Q, Ayaz M, Mu G, Hussain A, Yuanyuan Q, Yu C, Xu Y, Manghwar H, Gu Q, Wu H, Gao X. Revealing plant growth-promoting mechanisms of Bacillus strains in elevating rice growth and its interaction with salt stress. FRONTIERS IN PLANT SCIENCE 2022; 13:994902. [PMID: 36119605 PMCID: PMC9479341 DOI: 10.3389/fpls.2022.994902] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 05/04/2023]
Abstract
Soil salinity is a major environmental stress that has been negatively affecting the growth and productivity of rice. However, various salt-resistant plant growth-promoting rhizobacteria (PGPR) have been known to promote plant growth and alleviate the damaging effects of salt stress via mitigating physio-biochemical and molecular characteristics. This study was conducted to examine the salt stress potential of Bacillus strains identified from harsh environments of the Qinghai-Tibetan plateau region of China. The Bacillus strains NMTD17, GBSW22, and FZB42 were screened for their response under different salt stress conditions (1, 4, 7, 9, 11, 13, and 16%). The screening analysis revealed strains NMTD17, GBSW22, and FZB42 to be high-salt tolerant, moderate-salt tolerant, and salt-sensitive, respectively. The NMTD17 strain produced a strong biofilm, followed by GBSW22 and FZB42. The expression of salt stress-related genes in selected strains was also analyzed through qPCR in various salt concentrations. Further, the Bacillus strains were used in pot experiments to study their growth-promoting ability and antioxidant activities at various concentrations (0, 100, 150, and 200 mmol). The analysis of growth-promoting traits in rice exhibited that NMTD17 had a highly significant effect and GSBW22 had a moderately significant effect in comparison with FZB42. The highly resistant strain NMTD17 that stably promoted rice plant growth was further examined for its function in the composition of rhizobacterial communities. The inoculation of NMTD17 increased the relative abundance and richness of rhizobacterial species. These outcomes propose that NMTD17 possesses the potential of PGPR traits, antioxidants enzyme activities, and reshaping the rhizobacterial community that together mitigate the harmful effects of salinity in rice plants.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Guangyuan Mu
- Shenzhen Batian Ecotypic Engineering Co., Ltd., Shenzhen, China
| | - Amjad Hussain
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Qiu Yuanyuan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Chenjie Yu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Yujiao Xu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, The Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xuewen Gao,
| |
Collapse
|
44
|
OUP accepted manuscript. FEMS Microbiol Ecol 2022; 98:6543701. [DOI: 10.1093/femsec/fiac027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/11/2022] [Accepted: 03/03/2022] [Indexed: 11/14/2022] Open
|
45
|
Soil bacterial community composition and diversity response to land conversion is depth-dependent. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
46
|
Zhang Q, Wei P, Banda JF, Ma L, Mao W, Li H, Hao C, Dong H. Succession of Microbial Communities in Waste Soils of an Iron Mine in Eastern China. Microorganisms 2021; 9:2463. [PMID: 34946065 PMCID: PMC8704403 DOI: 10.3390/microorganisms9122463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/09/2021] [Accepted: 11/27/2021] [Indexed: 11/16/2022] Open
Abstract
The reclamation of mine dump is largely centered on the role played by microorganisms. However, the succession of microbial community structure and function in ecological restoration of the mine soils is still poorly understood. In this study, soil samples with different stacking time were collected from the dump of an iron mine in China and the physicochemical characteristics and microbial communities of these samples were comparatively investigated. The results showed that the fresh bare samples had the lowest pH, highest ion concentration, and were the most deficient in nutrients while the acidity and ion concentration of old bare samples decreased significantly, and the nutritional conditions improved remarkably. Vegetated samples had the weakest acidity, lowest ion concentration, and the highest nutrient concentration. In the fresh mine soils, the iron/sulfur-oxidizers such as Acidiferrobacter and Sulfobacillus were dominant, resulting in the strongest acidity. Bacteria from genera Acidibacter, Metallibacterium, and phyla Cyanobacteria, WPS-2 were abundant in the old bare samples, which contributed to the pH increase and TOC accumulation respectively. Acidobacteriota predominated in the vegetated samples and promoted nutrient enrichment and plant growth significantly. The microbial diversity and evenness of the three types of soils increased gradually, with more complex microbial networks, suggesting that the microbial community became more mature with time and microorganisms co-evolved with the mine soils.
Collapse
Affiliation(s)
- Qin Zhang
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Pengfei Wei
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Joseph Frazer Banda
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Linqiang Ma
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Weiao Mao
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Hongyi Li
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Chunbo Hao
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China; (Q.Z.); (P.W.); (J.F.B.); (L.M.); (W.M.); (H.L.)
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China;
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
47
|
Patterns in the Microbial Community of Salt-Tolerant Plants and the Functional Genes Associated with Salt Stress Alleviation. Microbiol Spectr 2021; 9:e0076721. [PMID: 34704793 PMCID: PMC8549722 DOI: 10.1128/spectrum.00767-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salinity is an important abiotic stress affecting plant growth. We have known that plants can recruit beneficial microbes from the surrounding soil. However, the ecological functions of the core microbiome in salt-tolerant plants, together with their driving factors, remain largely unexplored. Here, we employed both amplicon and shotgun metagenomic sequencing to investigate the microbiome and function signatures of bulk soil and rhizocompartment samples from three salt-tolerant plants (legumes Glycine soja and Sesbania cannabina and nonlegume Sorghum bicolor). Strong filtration effects for microbes and functional genes were found in the rhizocompartments following a spatial gradient. The dominant bacteria belonged to Ensifer for legumes and Bacillus for S. bicolor. Although different salt-tolerant plants harbored distinct bacterial communities, they all enriched genes involved in cell motility, Na+ transport, and plant growth-promoting function (e.g., nitrogen fixation and phosphate solubilization) in rhizoplane soils, implying that the microbiome assembly of salt-tolerant plants might depend on the ecological functions of microbes rather than microbial taxa. Moreover, three metagenome-assembled genomes affiliated to Ensifer were obtained, and their genetic basis for salt stress alleviation were predicted. Soil pH, electrical conductivity, and total nitrogen were the most important driving factors for explaining the above microbial and functional gene selection. Correspondingly, the growth of an endophyte, Ensifer meliloti CL09, was enhanced by providing root exudates, suggesting that root exudates might be one of factors in the selection of rhizosphere and endosphere microbiota. Overall, this study reveals the ecological functions of the populations inhabiting the root of salt-tolerant plants. IMPORTANCE Salinity is an important but little-studied abiotic stressor affecting plant growth. Although several previous reports have examined salt-tolerant plant microbial communities, we still lack a comprehensive understanding about the functional characteristics and genomic information of this population. The results of this study revealed the root-enriched and -depleted bacterial groups, and found three salt-tolerant plants harbored different bacterial populations. The prediction of three metagenome-assembled genomes confirmed the critical role of root dominant species in helping plants tolerate salt stress. Further analysis indicated that plants enriched microbiome from soil according to their ecological functions but not microbial taxa. This highlights the importance of microbial function in enhancing plant adaptability to saline soil and implies that we should pay more attention to microbial function and not only to taxonomic information. Ultimately, these results provide insight for future agriculture using the various functions of microorganisms on the saline soil.
Collapse
|
48
|
Ishimoto CK, Aono AH, Nagai JS, Sousa H, Miranda ARL, Melo VMM, Mendes LW, Araujo FF, de Melo WJ, Kuroshu RM, Esposito E, Araujo ASF. Microbial co-occurrence network and its key microorganisms in soil with permanent application of composted tannery sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147945. [PMID: 34051496 DOI: 10.1016/j.scitotenv.2021.147945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Soil microbial communities act on important environmental processes, being sensitive to the application of wastes, mainly those potential contaminants, such as tannery sludge. Due to the microbiome complexity, graph-theoretical approaches have been applied to represent model microbial communities interactions and identify important taxa, mainly in contaminated soils. Herein, we performed network and statistical analyses into microbial 16S rRNA gene sequencing data from soil samples with the application of different levels of composted tannery sludge (CTS) to assess the most connected nodes and the nodes that act as bridges to identify key microbes within each community. The network analysis revealed hubs belonging to Proteobacteria in soil with lower CTS rates, while active degraders of recalcitrant and pollutant chemical hubs belonging to Proteobacteria and Actinobacteria were found in soils under the highest CTS rates. The majority of classified connectors belonged to Actinobacteria, but similarly to hubs taxa, they shifted from metabolic functional profile to taxa with abilities to degrade toxic compounds, revealing a soil perturbation with the CTS application on community organization, which also impacted the community modularity. Members of Actinobacteria and Acidobacteria were identified as both hub and connector suggesting their role as keystone groups. Thus, these results offered us interesting insights about crucial taxa, their response to environmental alterations, and possible implications for the ecosystem.
Collapse
Affiliation(s)
| | - Alexandre Hild Aono
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | - James Shiniti Nagai
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | - Hério Sousa
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | | | - Vania Maria Maciel Melo
- Laboratório de Ecologia Microbiana e Biotecnologia, Federal University of Ceara, Fortaleza, CE, (Brazil)
| | - Lucas William Mendes
- Center for Nuclear Energy in Agriculture, University of Sao Paulo, Piracicaba, SP, (Brazil)
| | | | - Wanderley José de Melo
- Universidade Estadual Paulista, Campus de Jaboticabal, Jaboticabal, SP, Brazil; Universidade Brasil, Descalvado, SP, Brazil
| | | | - Elisa Esposito
- Institute of Science and Technology, Universidade Federal de São Paulo, Brazil
| | | |
Collapse
|
49
|
Li X, Jia R, Lu X, Xu Y, Liang X, Shen L, Li B, Ma C, Wang N, Yao C, Zhang S. The use of mercapto-modified palygorskite prevents the bioaccumulation of cadmium in wheat. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:125917. [PMID: 34004579 DOI: 10.1016/j.jhazmat.2021.125917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
In this study, the mechanism by which mercapto-modified palygorskite (MPAL) mediates Cd and Mn absorption by wheat was elucidated. In the aqueous phase, MPAL can react with Cd to form Cd-thiol complexes and CdO and with Mn to form MnO. In the wheat-soil system, 0.1-0.3% MPAL application increased the biomass of wheat by 18.6-29.4% and decreased the Cd concentration in shoots and roots by 19.4-51.8% and 35.9-64%, respectively; however, MPAL application did not decrease the diethylenetriaminepentaacetic acid (DTPA)-extracted Cd concentration in soil, probably because the formed Cd-thiol complexes and CdO could not be taken up by plants but could be extracted by DTPA. MPAL appeared to increase the Mn concentration in plants and the DTPA-extracted Mn concentration in soil, possibly because of the reduction in soil Mn oxides to more soluble Mn(Ⅱ) by the thiol groups in MPAL. MPAL enriched plant growth-promoting rhizobacteria and Cd-immobilizing bacteria and strengthened the sulfate reduction metabolism in rhizosphere soil, which partly contributed to the improvement in plant growth and the reduction in Cd bioaccumulation in wheat. These findings highlight the importance of the thiol group in MPAL and the regulation of the rhizosphere bacterial community in mediating Cd and Mn bioaccumulation in wheat.
Collapse
Affiliation(s)
- Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Rui Jia
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiazi Lu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yingming Xu
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China, Tianjin 300191, China
| | - Xuefeng Liang
- Agro-environmental Protection Institute, Ministry of Agriculture and Rural Affairs of China, Tianjin 300191, China
| | - Lianfeng Shen
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Benyin Li
- Plant Nutrition & Resources and Environment Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 450000, China
| | - Ning Wang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chen Yao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Shimin Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
50
|
Pivato B, Semblat A, Guégan T, Jacquiod S, Martin J, Deau F, Moutier N, Lecomte C, Burstin J, Lemanceau P. Rhizosphere Bacterial Networks, but Not Diversity, Are Impacted by Pea-Wheat Intercropping. Front Microbiol 2021; 12:674556. [PMID: 34127925 PMCID: PMC8195745 DOI: 10.3389/fmicb.2021.674556] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-plant associations, notably cereal-legume intercropping, have been proposed in agroecology to better value resources and thus reduce the use of chemical inputs in agriculture. Wheat-pea intercropping allows to decreasing the use of nitrogen fertilization through ecological processes such as niche complementarity and facilitation. Rhizosphere microbial communities may account for these processes, since they play a major role in biogeochemical cycles and impact plant nutrition. Still, knowledge on the effect of intecropping on the rhizosphere microbiota remains scarce. Especially, it is an open question whether rhizosphere microbial communities in cereal-legume intercropping are the sum or not of the microbiota of each plant species cultivated in sole cropping. In the present study, we assessed the impact of wheat and pea in IC on the diversity and structure of their respective rhizosphere microbiota. For this purpose, several cultivars of wheat and pea were cultivated in sole and intercropping. Roots of wheat and pea were collected separately in intercropping for microbiota analyses to allow deciphering the effect of IC on the bacterial community of each plant species/cultivar tested. Our data confirmed the well-known specificity of the rhizosphere effect and further stress the differentiation of bacterial communities between pea genotypes (Hr and hr). As regards the intercropping effect, diversity and structure of the rhizosphere microbiota were comparable to sole cropping. However, a specific co-occurrence pattern in each crop rhizosphere due to intercropping was revealed through network analysis. Bacterial co-occurrence network of wheat rhizosphere in IC was dominated by OTUs belonging to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. We also evidenced a common network found in both rhizosphere under IC, indicating the interaction between the plant species; this common network was dominated by Acidobacteria, Alphaproteobacteria, and Bacteroidetes, with three OTUs belonging to Acidobacteria, Betaproteobacteria and Chloroflexi that were identified as keystone taxa. These findings indicate more complex rhizosphere bacterial networks in intercropping. Possible implications of these conclusions are discussed in relation with the functioning of rhizosphere microbiota in intercropping accounting for its beneficial effects.
Collapse
Affiliation(s)
- Barbara Pivato
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | - Amélie Semblat
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | - Thibault Guégan
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | - Samuel Jacquiod
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Florence Deau
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | - Nathalie Moutier
- IGEPP, INRAE, Institut Agro Agrocampus Ouest, Université de Rennes 1, Le Rheu, France
| | - Christophe Lecomte
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| | - Philippe Lemanceau
- Agroécologie, AgroSup Dijon, INRAE, Université de Bourgogne - Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|