1
|
Liu Q, Dai H, Cheng H, Shao G, Wang L, Zhang H, Gao Y, Liu K, Xie X, Gong J, Qian X, Li Z. Rhizosphere-associated bacterial and fungal communities of two maize hybrids under increased nitrogen fertilization. FRONTIERS IN PLANT SCIENCE 2025; 16:1549995. [PMID: 40098643 PMCID: PMC11911359 DOI: 10.3389/fpls.2025.1549995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025]
Abstract
Introduction The selection and application of nitrogen-efficient maize hybrids have significantly bolstered contemporary food security. Nevertheless, the effects of heightened nitrogen fertilizer demand of these crops on the composition and assembly of soil microbial communities in agricultural production require further elucidation. Methods In this study, the effects of four nitrogen fertilizer managements on rhizosphere bacterial and fungal community assembly, co-occurrence network and function of two maize hybrids (LD981 and DH605) were compared. Results and discussion Findings revealed that the bacterial community was primarily shaped by deterministic processes, while stochastic processes played a pivotal role in fungal community assembly. N-efficient hybrid DH605 had a more stable microbial network than N-inefficient hybrid LD981. At N3 (130 g N/m2) rate, the bacterial and fungal community networks were the most complex but unstable, followed by N2 (87 g N/m2), N0 (0 g N/m2), and N1 (43 g N/m2) rates. Excessive nitrogen rate (N3) increased the relative abundance of denitrification genes nirK and norB by enriching nitrogen-related genus such as Nitrolancea and Nitrosospira. It led to an increase in the relative abundance of pathways such as cysteine and methionine metabolism and pyruvate metabolism. The effects of management practices (i.e. maize hybrids and N rates) on microbial communities were ultimately directly or indirectly reflected in microbial functions. Our findings illustrate the relationship between the appropriate selection of crop hybrids and management measures in optimizing rhizosphere microbial community assembly and promoting nitrogen use, which is necessary for sustainable food security.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - HongCui Dai
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hao Cheng
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Guodong Shao
- Geo-Biosphere Interactions, Department of Geosciences, University of Tuebingen, Tuebingen, Germany
| | - Liang Wang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hui Zhang
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yingbo Gao
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Kaichang Liu
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaomei Xie
- Engineering Technology Research Institute, Shikefeng Chemical Industry Co., Ltd, Linyi, China
| | - Junhua Gong
- Engineering Technology Research Institute, Shikefeng Chemical Industry Co., Ltd, Linyi, China
| | - Xin Qian
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zongxin Li
- State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
2
|
Liu H, He H, Wei L, Lei Y, Liu M, Ding Y, Su X, Wang J, Yang J, Li S. Fed-batch fermentation strategy for efficient welan gum production by Sphingomonas sp. FM01. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:926-936. [PMID: 39311036 DOI: 10.1002/jsfa.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND As a novel type of extracellular polysaccharide produced by Sphingomonas sp., welan gum has been widely applied in various fields because of its excellent properties. The study has improved the fermentation process. RESULTS The initial sucrose concentration, temperature and stirring speed were set to 20 g L-1, 33 °C and 400 rpm, respectively, and 13.3 g L-1 sucrose was added at 24, 40 and 56 h. The temperature and stirring speed were then set at 28 °C and 600 rpm from 24 to 48 h and 28 °C and 600 rpm from 48 to 72 h, respectively. As a result, welan gum production, dry cell weight, sucrose conversion rate and viscosity were correspondingly increased to 38.60 g L-1, 5.47 g L-1, 0.64 g g-1 and 3779 mPa·s, respectively. In addition, the mechanism by which fermentation strategy promotes welan gum synthesis was investigated by transcriptome analysis. CONCLUSION Improving respiration and ATP supply, reducing unnecessary protein synthesis, and alleviating competition between cell growth and welan gum synthesis contribute to promoting the fermentation performance of Sphingomonas sp., thus providing a practical strategy for efficient welan gum production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui Liu
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Hailin He
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Yinfeng Lei
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Mengyu Liu
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Yifei Ding
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Xiaochun Su
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Jinxuan Wang
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| | - Jian Yang
- A CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Shubo Li
- College of Light Industry and Food Engineering, sGuangxi University, Nanning, China
| |
Collapse
|
3
|
Effect of an inorganic nitrogen source (NH 4) 2SO 4 on the production of welan gum from Sphingomonas sp. mutant obtained through UV-ARTP compound mutagenesis. Int J Biol Macromol 2022; 210:630-638. [PMID: 35513098 DOI: 10.1016/j.ijbiomac.2022.04.219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022]
Abstract
As one of the most expensive extracellular polysaccharides, welan gum is widely used in biomedicine, food products, and petroleum because of its unique structure and excellent rheological properties. To reduce the cost of welan gum fermentation, together with (NH4)2SO4, which served as the sole nitrogen source, a high-welan-gum-producing mutant, B-8, screened through UV-ARTP compound mutagenesis was used. Under optimum conditions (C:N ratio 25:1, sucrose 50 g/L, (NH4)2SO4 4 g/L, and adding 8 mM NaCl at 32 h fermentation), the yield of welan gum and sucrose conversion were 18.86 g/L and 0.38 g/g, respectively, which were 98.95% and 137.50% higher than those achieved with the parent strain FM01, respectively. After the same treatment process, IN-welan (obtained with (NH4)2SO4) consumed less 95% ethanol, had higher molecular weight, and exhibited better rheological properties than ON-welan (obtained with beef extract). Transcriptome analysis revealed that (NH4)2SO4 could affect the synthetic pathway and monosaccharide content of welan gum by increasing bacterial chemotaxis and the availability of key intermediates. The fermentation performance of Sphingomonas sp. mutants could further be improved by providing several target genes to the mutants through metabolic engineering.
Collapse
|
4
|
Li H, Chen M, Zhang Z, Li B, Liu J, Xue H, Ji S, Guo Z, Wang J, Zhu H. Hybrid Histidine Kinase WelA of Sphingomonas sp. WG Contributes to WL Gum Biosynthesis and Motility. Front Microbiol 2022; 13:792315. [PMID: 35300474 PMCID: PMC8921679 DOI: 10.3389/fmicb.2022.792315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Sphingomonas sp. WG produced WL gum with commercial utility potential in many industries. A hybrid sensor histidine kinase/response regulator WelA was identified to regulate the WL gum biosynthesis, and its function was evaluated by gene deletion strategy. The WL gum production and broth viscosity of mutant ΔwelA was only 44% and 0.6% of wild type strain at 72 h. The transcriptomic analysis of differentially expressed genes showed that WelA was mapped to CckA; ChpT, and CtrA in the CckA-ChpT-CtrA pathway was up-regulated. One phosphodiesterase was up-regulated by CtrA, and the intracellular c-di-GMP was decreased. Most genes involved in WL gum biosynthesis pathway was not significantly changed in ΔwelA except the up-regulated atrB and atrD and the down-regulated pmm. Furthermore, the up-regulated regulators ctrA, flaEY, flbD, and flaF may participate in the regulation of flagellar biogenesis and influenced motility. These results suggested that CckA-ChpT-CtrA pathway and c-di-GMP were involved in WL gum biosynthesis regulation. This work provides useful information on the understanding of molecular mechanisms underlying WL gum biosynthesis regulation.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.,Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
Ke C, Wei L, Wang M, Li Q, Liu X, Guo Y, Li S. Effect of NaCl addition on the production of welan gum with the UV mutant of Sphingomonas sp. Carbohydr Polym 2021; 265:118110. [PMID: 33966819 DOI: 10.1016/j.carbpol.2021.118110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 02/03/2023]
Abstract
Because of its excellent stability, non-toxicity, biodegradability and unique rheology, welan gum can be widely used in various fields, such as petroleum, biomedicine and food products. In this study, a high-yield mutant strain FM01-S09 was screened through two rounds of UV mutagenesis. Remarkably, the production of welan gum could be further increased by adding 4 mM NaCl at 32 h fermentation, reaching 30.12 ± 0.25 g/L (28.66% higher than no adding), and the NaCl-WG solution had stronger structural, impact resistance, and temperature resistance than H2O2-WG and WG solutions. Furthermore, the mechanism by which NaCl promotes welan gum synthesis was also investigated. It was found that cell membrane characteristics, intracellular microenvironment makeup, and key enzyme gene expression levels were significantly altered in different fermentation stages. Therefore, the addition of NaCl could effectively promote the growth and fermentation performance of Sphingomonas sp., providing a novel strategy for cost-effective welan gum production.
Collapse
Affiliation(s)
- Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Lulu Wei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Miao Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Qiwen Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xiaoling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530004, China
| | - Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
6
|
Zhao M, Zhang H, Xu X, Li S, Xu H. A strategy for the synthesis of low-molecular-weight welan gum by eliminating capsule form of Sphingomonas strains. Int J Biol Macromol 2021; 178:11-18. [PMID: 33636257 DOI: 10.1016/j.ijbiomac.2021.02.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Welan gum is widely used in food, concrete additives, and oil recovery. Here we changed the capsule form of Sphingomonas strains by knocked out the sortase gene (srtW). The obtained welan gum was mainly composed of mannose, glucose, rhamnose, and glucuronic acid at a molar ratio of 4.0:5.8:1.6:1, respectively. Meanwhile, the molecular weight of welan gum decreased sharply (about 68 kDa). Moreover, the low molecular weight (LMW) welan gum was characterized by FT-IR and NMR spectroscopy. The rheological results revealed that the LMW welan gum solution is a pseudoplastic fluid with a lower apparent viscosity. Furthermore, the oscillation test illustrated stable dynamic viscoelasticity within the temperature range of 5-68 °C and frequency range of 0.01-15 rad/s. To the best of our knowledge, this is the first report of LMW welan gum production and characterization. These results provide references for LMW welan gum applications, and likely applicable for other biopolymers production.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Li Q, Zhou Y, Ke C, Bai Y, Liu X, Li S. Production of welan gum from cane molasses by Sphingomonas sp. FM01. Carbohydr Polym 2020; 244:116485. [DOI: 10.1016/j.carbpol.2020.116485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/03/2020] [Accepted: 05/19/2020] [Indexed: 01/02/2023]
|