1
|
Yang Y, Callaham MA, Wu X, Zhang Y, Wu D, Wang D. Gut microbial communities and their potential roles in cellulose digestion and thermal adaptation of earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166666. [PMID: 37657540 DOI: 10.1016/j.scitotenv.2023.166666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Adaptations to temperature and food resources, which can be affected by gut microbiota, are two main adaptive strategies allowing soil fauna to survive in their habitats, especially for cold-blooded animals. Earthworms are often referred to as ecosystem engineers because they make up the biggest component of the animal biomass found in the soil. They are considered as an important indicator in the triangle of soil quality, health and functions. However, the roles of gut microbiota in the environmental adaptation of earthworms at a large scale remain obscure. We explored the gut bacterial communities and their functions in the environmental adaptation of two widespread earthworm species (Eisenia nordenskioldi Eisen and Drawida ghilarovi Gates) in Northeast China (1661 km). Based on our findings, the alpha diversity of gut bacterial communities decreased with the increase of latitude, and the gut bacterial community composition was shaped by both mean annual temperature (MAT) and cellulose. Actinobacteria, Proteobacteria, Firmicutes, and Planctomycetes, recognized as the predominant cellulose degraders, were keystone taxa driving gut bacterial interactions. Actinobacteria, Firmicutes, and Planctomycetes were influenced by MAT and cellulose, and had higher contributions to gut total cellulase activity. The optimal temperature for total cellulase in the gut of E. nordenskioldi (25-30 °C) was lower than that of D ghilarovi (40 °C). The gut microbiota-deleted earthworms had the lowest cellulose degradation rate (1.07 %). The cellulose was degraded faster by gut bacteria from the host they were derived, indicating the presence of home field advantage of cellulose decomposition. This study provides a foundation for understanding the biotic strategies adopted by earthworms when they enter a new habitat, with gut microbiota being central to food digestion and environmental adaptability.
Collapse
Affiliation(s)
- Yurong Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Mac A Callaham
- USDA, Forest Service, Southern Research Station, Center for Forest Disturbance Science, Athens, GA 30602, USA
| | - Xuefeng Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yufeng Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China; Hebei Key Laboratory of Animal Diversity, Langfang Normal University, Langfang, 065000, China
| | - Donghui Wu
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China; Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130117, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China.
| | - Deli Wang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China; Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, 130024, China
| |
Collapse
|
2
|
Ma C, Zhang G, Cheng Y, Lei W, Yang C, Liu Y, Yang J, Lu S, Jin D, Liu L, Xu J. Dyadobacter chenhuakuii sp. nov., Dyadobacter chenwenxiniae sp. nov., and Dyadobacter fanqingshengii sp. nov., isolated from soil of the Qinghai-Tibetan Plateau. Int J Syst Evol Microbiol 2023; 73. [PMID: 36913273 DOI: 10.1099/ijsem.0.005747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Six novel bacterial strains, designated CY22T, CY357, LJ419T, LJ53, CY399T and CY107 were isolated from soil samples collected from the Qinghai-Tibetan Plateau, PR China. Cells were aerobic, rod-shaped, yellow-pigmented, catalase- and oxidase-positive, Gram-stain-negative, non-motile and non-spore-forming. All strains were psychrotolerant and could grow at 0 °C. The results of phylogenetic and phylogenomic analyses, based on 16S rRNA gene sequences and core genomic genes, indicated that the three strain pairs (CY22T/CY357, LJ419T/LJ53 and CY399T/CY107) were closely related to members of the genus Dyadobacter and clustered tightly with two species with validly published names, Dyadobacter alkalitolerans 12116T and Dyadobacter psychrophilus BZ26T. Values of digital DNA-DNA hybridization between genome sequences of the isolates and other strains from the GenBank database in the genus Dyadobacter were far below the 70.0 % threshold. The genomic DNA G+C content of these six strains ranged from 45.2 to 45.8 %. The major cellular fatty acids of all six strains were iso-C15 : 0 and summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c). MK-7 was the only respiratory quinone, and phosphatidylethanolamine was the predominant polar lipid for strains CY22T, LJ419T and CY399T. On the basis of the phenotypic, phylogenetic and genomic evidence presented, these six strains represent three novel members of the genus Dyadobacter, for which the names Dyadobacter chenhuakuii sp. nov., Dyadobacter chenwenxiniae sp. nov. and Dyadobacter fanqingshengii sp. nov. are proposed. The type strains are CY22T (= GDMCC 1.3045T = KCTC 92299T), LJ419T (= GDMCC 1.2872T = JCM 33794T) and CY399T (= GDMCC 1.3052T = KCTC 92306T), respectively.
Collapse
Affiliation(s)
- Caiyun Ma
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Gui Zhang
- Infection Management Office, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Yanpeng Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518073, PR China
| | - Wenjing Lei
- Shanxi Eye Hospital, Taiyuan 030001, PR China
| | - Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yue Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 100730, PR China
- Institute of Public Health, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
3
|
Ran L, Peng M, Wang WQ, Feng YZ, Wang J, Wang Y, Li CY, Liu XX, Chunyu WX, Tang SK. Dyadobacter diqingensis sp. nov., isolated from Baima snow mountain of Diqing Tibetan Autonomous Prefecture in Yunnan province, south-west China. Arch Microbiol 2022; 204:573. [PMID: 36006481 DOI: 10.1007/s00203-022-03192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
A Gram-negative, aerobic, nonmotile, rod-shaped and yellow-pigment-producing bacteria was isolated from Baima snow mountain of Diqing Tibetan Autonomous Prefecture in Yunnan province, south-west China and characterized using a polyphasic approach. The results of 16S rRNA gene sequence similarity analysis showed that strain YIM B04101T was closely related to the type strain of Dyadobacter koreensis DSM 19938T (97.81%) and Dyadobacter frigoris AR-3-8T (97.95%). The predominant respiratory quinone was menaquinone-7 (MK-7). The major polar lipid was phosphatidylethanolamine. The major fatty acids were summed feature 3 (C16:1ω7c/C16:1ω6c), C18:1ω9c and C16:0. The DNA G + C content was 43.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain YIM B04101T belonged to a cluster comprising species of the genus Dyadobacter. However, it differed from its closest relative, Dyadobacter koreensis KCTC 12537T and Dyadobacter frigoris AR-3-8T, in many physiological properties. Based on these phenotypic characteristics and phylogenetic distinctiveness, strain YIM B04101T is considered to be a novel species of the genus Dyadobacter, for which the name Dyadobacter diqingensis sp. nov. is proposed. The type strain is YIM B04101T (= CGMCC 1.19249T = CCTCC AB 2021270).
Collapse
Affiliation(s)
- Lei Ran
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Man Peng
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wei-Qun Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu-Zhou Feng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Juan Wang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yu Wang
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Cui-Ying Li
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xin-Xing Liu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Wei-Xun Chunyu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Shu-Kun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Conservation and Utilization of Bio-Resource, and Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
4
|
Zhang Y, Peng X, Qin K, Liu J, Xu Q, Niu J, Zheng Y, Peng F. Dyadobacter sandarakinus sp. nov., isolated from Arctic tundra soil, and emended descriptions of Dyadobacter alkalitolerans, Dyadobacter koreensis and Dyadobacter psychrophilus. Int J Syst Evol Microbiol 2021; 71. [PMID: 34846279 DOI: 10.1099/ijsem.0.005103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Strain Q3-56T, isolated from Arctic tundra soil, was found to be a Gram-stain-negative, yellow-pigmented, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and aerobic bacterium. Strain Q3-56T grew optimally at pH 7.0 and 28 °C. The strain could tolerate up to 1 % (w/v) NaCl with optimum growth in the absence of NaCl. The strain was not sensitive to oxacillin and ceftazidime. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Q3-56T belonged to the genus Dyadobacter. Strain Q3-56T showed the highest sequence similarities to Dyadobacter luticola T17T (96.58 %), Dyadobacter ginsengisoli Gsoil 043T (96.50 %), Dyadobacter flavalbus NS28T (96.43 %) and Dyadobacter bucti QTA69T (96.43 %). The predominant respiratory isoprenoid quinone was identified as MK-7, The polar lipid profile of strain Q3-56T was found to contain one phosphatidylethanolamine, three unidentified aminolipids, three unidentified lipids and one unidentified phospholipid. The G+C content of the genomic DNA was determined to be 49.1 mol%. The main fatty acids were summed feature 3 (comprising C16 : 1 ω7c/C16 : 1 ω6c), iso-C15 : 0, C16 : 1 ω5c and iso-C16 : 1 3-OH. On the basis of the evidence presented in this study, a novel species of the genus Dyadobacter, Dyadobacter sandarakinus sp. nov., is proposed, with the type strain Q3-56T (=CCTCC AB 2019271T=KCTC 72739T). Emended descriptions of Dyadobacter alkalitolerans, Dyadobacter koreensis and Dyadobacter psychrophilus are also provided.
Collapse
Affiliation(s)
- Yongping Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiaoya Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Kun Qin
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jia Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qiang Xu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Jingjing Niu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yanyan Zheng
- College of Science, Tibet University, Tibet 850000, PR China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
5
|
Dahal RH, Chaudhary DK, Kim DU, Kim J. Azohydromonas caseinilytica sp. nov., a Nitrogen-Fixing Bacterium Isolated From Forest Soil by Using Optimized Culture Method. Front Microbiol 2021; 12:647132. [PMID: 34093463 PMCID: PMC8175650 DOI: 10.3389/fmicb.2021.647132] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
A bacterial strain, designated strain G-1-1-14T, was isolated from Kyonggi University forest soil during a study of previously uncultured bacterium. The cells of strain G-1-1-14T were motile by means of peritrichous flagella, Gram-stain-negative, rod-shaped, and able to grow autotrophically with hydrogen and fix nitrogen. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain G-1-1-14T belonged to the genus Azohydromonas. The closest species of strain G-1-1-14T were Azohydromonas ureilytica UCM-80T (98.4% sequence similarity), Azohydromonas lata IAM 12599T (97.5%), Azohydromonas riparia UCM-11T (97.1%), and Azohydromonas australica IAM 12664T (97.0%). The genome of strain G-1-1-14T was 6,654,139 bp long with 5,865 protein-coding genes. The genome consisted of N2-fixing genes (nifH) and various regulatory genes for CO2 fixation and H2 utilization. The principal respiratory quinone was ubiquinone-8, and the major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol. The major fatty acids were summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c), C16:0, summed feature 8 (C18:1ω7c and/or C18:1ω6c), and cyclo-C17:0. The DNA G + C content was 69.9%. The average nucleotide identity (OrthoANI), in silico DNA–DNA hybridization (dDDH), and conventional DDH relatedness values were below the species demarcation values for novel species. Based on genomic, genetic, phylogenetic, phenotypic, and chemotaxonomic characterizations, strain G-1-1-14T represents a novel species within the genus Azohydromonas, for which the name Azohydromonas caseinilytica sp. nov. is proposed. The type strain is G-1-1-14T (= KACC 21615T = NBRC 114390T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Sciences, College of Natural Sciences, Kyonggi University, Suwon-si, South Korea.,Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Dhiraj Kumar Chaudhary
- Department of Life Sciences, College of Natural Sciences, Kyonggi University, Suwon-si, South Korea.,Department of Environmental Engineering, Korea University Sejong Campus, Sejong City, South Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju-si, South Korea
| | - Jaisoo Kim
- Department of Life Sciences, College of Natural Sciences, Kyonggi University, Suwon-si, South Korea
| |
Collapse
|
6
|
Chaudhary DK, Dahal RH, Kim DU, Kim J. Novosphingobium olei sp. nov., with the ability to degrade diesel oil, isolated from oil-contaminated soil and proposal to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans. Int J Syst Evol Microbiol 2021; 71. [PMID: 33411666 DOI: 10.1099/ijsem.0.004628] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two yellow-pigmented, non-motile, Gram-stain-negative, and rod-shaped bacteria, designated TW-4T and TNP-2 were obtained from oil-contaminated soil. Both strains degrade diesel oil, hydrolyse aesculin, DNA, Tween 40 and Tween 60. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain TW-4T formed a lineage within the family Erythrobacteraceae and clustered as members of the genus Novosphingobium. The closest members of strain TW-4T were Novosphingobium subterraneum DSM 12447T (97.9 %, sequence similarity), Novosphingobium lubricantis KSS165-70T (97.8 %), Novosphingobium taihuense T3-B9T (97.8 %), Novosphingobium aromaticivorans DSM 12444T (97.7 %), Novosphingobium flavum UCT-28T (97.7 %), and Novosphingobium bradum STM-24T (97.6 %). The sequence similarity for other members was ≤97.6 %. The genome of strain TW-4T was 4 683 467 bp long with 44 scaffolds and 4280 protein-coding genes. The sole respiratory quinone was Q-10. The major cellular fatty acids were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0 and C14 : 0 2-OH. The major polar lipids were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylcholine (PC), phosphatidyl-n-methylethanolamine (PME) and sphingoglycolipid (SGL). The DNA G+C content of the type strain was 65.0 %. The average nucleotide identity (ANIu) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain TW-4T and closest members were below the threshold value for species delineation. Based on polyphasic taxonomic analyses, strain TW-4T represents novel species in the genus Novosphingobium, for which the name Novosphingobium olei sp. nov. is proposed. The type strain is TW-4T (=KACC 21628T=NBRC 114364T) and strain TNP-2 (=KACC 21629=NBRC 114365) represents an additional strain. Based on new data obtained in this study, it is also proposed to reclassify Novosphingobium stygium as a later heterotypic synonym of Novosphingobium aromaticivorans.
Collapse
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, 2511 Sejong-ro, Sejong City, 30019, Republic of Korea.,Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
7
|
Dahal RH, Chaudhary DK, Kim DU, Kim J. Chitinophaga fulva sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 33470923 DOI: 10.1099/ijsem.0.004646] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative, oxidase- and catalase-positive, non-motile, non-spore-forming, rod-shaped and yellow-coloured bacterium designated strain G-6-1-13T was isolated from Gwanggyo mountain forest soil. Strain G-6-1-13T could grow at 15-40 °C (optimum, 20-32 °C), pH 4.5-10.5 (optimum, pH 6.0-9.0), at 2 % (w/v) NaCl concentration, and produced flexirubin-type pigments. Phylogenetic analysis based on its 16S rRNA gene sequence showed that strain G-6-1-13T formed a lineage within the genus Chitinophaga that was distinct from other species of the genus. Closest member was Chitinophaga varians 10-7 W-9003T (98.6 % sequence similarity) followed by C. eiseniae DSM 22224T (98.4 %), C. qingshengii JN246T (97.6 %) and C. terrae KP01T (97.4%). The major cellular fatty acids were iso-C15 : 0, C16 : 1 ω5c, and summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω6c). MK-7 was the sole respiratory quinone. The major polar lipids were phosphatidylethanolamine and an unidentified phospholipid. The DNA G+C content of strain G-6-1-13T was 48.7 mol%. Average nucleotide identity and in silico DNA-DNA hybridization were below the species threshold. On the basis of phenotypic, genotypic, phylogenetic and chemotaxonomic characterization, G-6-1-13T represents a novel species in the genus Chitinophaga, for which the name Chitinophaga fulva sp. nov. is proposed. The type strain is G-6-1-13T (=KACC 21624T=NBRC 114361T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 14944, Republic of Korea.,Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City 30019, Republic of Korea.,Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
8
|
Dahal RH, Lee H, Chaudhary DK, Kim DY, Son J, Kim J, Ka JO, Kim DU. Caenimonas soli sp. nov., isolated from soil. Arch Microbiol 2020; 203:1123-1129. [PMID: 33174135 DOI: 10.1007/s00203-020-02110-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 11/25/2022]
Abstract
A non-motile, Gram-stain-negative, rod-shaped bacterium, designated strain S4T, was obtained from soil sampled at Wonju, Gyeonggi-do, Republic of Korea. Cells were white-coloured, aerobic, grew optimally at 25-32 °C on R2A agar plate. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain S4T formed a lineage within the family Comamonadaceae. The closest members were Caenimonas terrae SGM1-15T (98.1% sequence similarity), Caenimonas koreensis EMB320T (97.5%) and Ramlibacter solisilvae 5-10T (97.8%). The sequence similarities of strain S4T with other members of the family Comamonadaceae were ≤ 97.5%. The sole respiratory quinone was ubiquinone-8 (Q-8) and the principal polar lipid was phosphatidylethanolamine. The predominant cellular fatty acids were summed feature 3 (iso-C15 :0 2-OH/C16 :1 ω7c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The DNA G + C content was 65.1 mol%. In addition, the average nucleotide identity (ANIu) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain S4T and Caenimonas koreensis were 77.6 and 21%, respectively. Based on genomic, chemotaxonomic, phenotypic, and phylogenetic analyses, strain S4T represents a novel species in the genus Caenimonas, for which the name Caenimonas soli sp. nov. is proposed. The type strain is S4T (= KCTC 72742T = NBRC 114610T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea
| | - Hyosun Lee
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University, Sejong City, 30019, Republic of Korea
| | - Dae-Young Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea
| | - Jigwan Son
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea
| | - Jong-Ok Ka
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, 26339, Republic of Korea.
| |
Collapse
|
9
|
Chryseobacterium cheonjiense sp. nov., isolated from forest soil. Arch Microbiol 2020; 203:725-731. [PMID: 33047174 DOI: 10.1007/s00203-020-02065-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/30/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
A yellow-pigmented, non-motile and rod-shaped bacterium, designated RJ-7-14T was obtained from forest soil sampled at Cheonji-dong, Seogwipo-si, Jeju-do, South Korea. Cells were Gram-stain-negative and produced flexirubin type pigments. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain RJ-7-14T formed a lineage within the family Weeksellaceae and clustered as members of the genus Chryseobacterium. The closest members were Chryseobacterium geocarposphaerae DSM 27617T (98.2% sequence similarity), Chryseobacterium hispalense DSM 25574T (98.0%) and Chryseobacterium nepalense KACC 18907T (98.0%). The sequence similarity for other members was < 98.0%. The genome was 4,276,416 bp long with 9 scaffolds and 3779 protein-coding genes. The sole respiratory quinone was MK-6. The major cellular fatty acids were iso-C15:0, summed feature 9 (iso-C17:1 ω9c and/or C16:0 10-methyl), summed feature 3 (iso-C15:0 2-OH and/or C16: 1ω7c) and iso-C17:0 3-OH. The major polar lipid was phosphatidylethanolamine (PE). The DNA G + C content of the type strain was 37.2 mol%. In addition, the average nucleotide identity (ANIu) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain RJ-7-14T and phylogenetically closest members were ≤ 88.2% and ≤ 35.0%, respectively, which were below the threshold values of 95-96% (for ANI) and 70% (for dDDH), suggesting the allocation of novel strain to a new species. Based on genomic, chemotaxonomic, phenotypic and phylogenetic analyses, strain RJ-7-14T represents novel species in the genus Chryseobacterium, for which the name Chryseobacterium cheonjiense sp. nov. is proposed. The type strain is RJ-7-14T (= KACC 21625T = NBRC 114362T).
Collapse
|
10
|
Dahal RH, Chaudhary DK, Kim DU, Kim J. Luteolibacter luteus sp. nov., isolated from stream bank soil. Arch Microbiol 2020; 203:377-382. [PMID: 32964255 DOI: 10.1007/s00203-020-02048-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 11/30/2022]
Abstract
A non-motile, Gram-stain-negative, rod-shaped and yellow-colored bacterium, designated G-1-1-1T was obtained from soil sampled at Gwanggyo stream bank, Gyeonggi-do, Republic of Korea. Cells were aerobic, catalase positive, grew optimally at 25-30 °C and hydrolysed aesculin and casein. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain G-1-1-1T formed a lineage within the genus Luteolibacter. The closest members were Luteolibacter flavescens GKXT (97.7% sequence similarity) and Luteolibacter arcticus MC 3726T (97.3%). The sequence similarities with other members of the genus Luteolibacter were ≤ 93.9%. The genome of strain G-1-1-1T was 6,412,079 bp long with 5176 protein-coding genes. The diagnostic amino acid of cell-wall peptidoglycan of strain G-1-1-1T was meso-diaminopimelic acid. The only respiratory quinone was menaquinone-9 and the principal polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol and unidentified phospholipids. The predominant cellular fatty acids were iso-C14:0, C16:1 ω9c, C16:0, C14:0 and anteiso-C15:0. The DNA G + C content was 61.0 mol%. The anti-SMASH analysis of whole genome showed eight putative biosynthetic gene clusters responsible for various secondary metabolites. Based on genomic, chemotaxonomic, phenotypic and phylogenetic analyses, strain G-1-1-1T represents a novel species in the genus Luteobacter, for which the name Luteolibacter luteus sp. nov. is proposed. The type strain is G-1-1-1T (= KACC 21614T = NBRC 114341T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City, 30019, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do, 16227, Republic of Korea.
| |
Collapse
|
11
|
Chryseobacterium antibioticum sp. nov. with antimicrobial activity against Gram-negative bacteria, isolated from Arctic soil. J Antibiot (Tokyo) 2020; 74:115-123. [DOI: 10.1038/s41429-020-00367-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Accepted: 08/16/2020] [Indexed: 11/09/2022]
|
12
|
Dahal RH, Chaudhary DK, Kim DU, Kim J. Zoogloea dura sp. nov., a N 2-fixing bacterium isolated from forest soil and emendation of the genus Zoogloea and the species Zoogloea oryzae and Zoogloea ramigera. Int J Syst Evol Microbiol 2020; 70:5312-5318. [PMID: 32841112 DOI: 10.1099/ijsem.0.004416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A motile, Gram-stain-negative, rod-shaped bacterium, designated G-4-1-14T, was obtained from forest soil sampled at Gwanggyo mountain, Gyeonggi-do, Republic of Korea. Cells were colourless, aerobic, grew optimally at 28-35 °C and hydrolysed DNA and casein. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain G-4-1-14T formed a lineage within the genus Zoogloea. The closest members were Zoogloea resiniphila ATCC 70068T (98.6 % sequence similarity), Zoogloea caeni EMB43T (98.2 %), Zoogloea oryzae A-7T (97.7 %), Zoogloea ramigera IAM 12136T (96.9 %) and Zoogloea oleivorans BucT (96.2 %). The major respiratory quinone was ubiquinone-8 and the principal polar lipids were phosphatidylethanolamine, phosphatidyl-N-methylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. The predominant cellular fatty acids were summed feature 3 (iso-C15 :0 2-OH/C16 : 1 ω7c) and C16 : 0. The DNA G+C content was 65.9 mol%. The average nucleotide identity and digital DNA-DNA hybridization relatedness values between strain G-4-1-14T and other type strains were ≤81.6 and ≤24.9 %, respectively, which are below the species demarcation thresholds. Based on the results of phenotypic, phylogenetic and genomic analyses, strain G-4-1-14T represents a novel species in the genus Zoogloea, for which the name Zoogloea dura sp. nov. is proposed. The type strain is G-4-1-14T (=KACC 21618T=NBRC 114358T). In addition, we propose emendation of the genus Zoogloea and the species Zoogloea oryzae and Zoogloea ramigera.
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University Sejong Campus, Sejong City 30019, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
13
|
Dahal RH, Chaudhary DK, Kim DU, Kim J. Hymenobacter polaris sp. nov., a psychrotolerant bacterium isolated from an Arctic station. Int J Syst Evol Microbiol 2020; 70:4890-4896. [PMID: 32730196 DOI: 10.1099/ijsem.0.004356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A pink-pigmented, non-motile, Gram-stain-negative, rod-shaped bacterium, designated RP-2-7T, was obtained from soil sampled at the Arctic station, Spitsbergen, Svalbard, Norway. Cells were strictly aerobic, psychrotolerant, grew optimally at 15-20 °C and hydrolysed CM-cellulose. Phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain RP-2-7T formed a lineage within the family Hymenobacteraceae and clustered with members of the genus Hymenobacter. Its closest relative was Hymenobacter marinus KJ035T (97.6 % sequence similarity). The sequence similarities to other strains were ≤96.9 %. The principal respiratory quinone was MK-7 and the major polar lipids were phosphatidylethanolamine and an unidentified aminophospholipid. The predominant cellular fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), anteiso-C15 : 0, iso-C15 : 0, C16 : 1 ω5c and summed featured 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B). The DNA G+C content was 62.8 mol%. In addition, the average nucleotide identity and in silico DNA-DNA hybridization relatedness values between strain RP-2-7T and closely related strains were lower than species demarcation thresholds. Based on the resuls of genomic, chemotaxonomic, phenotypic and phylogenetic analyses, strain RP-2-7T represents novel species in the genus Hymenobacter, for which the name Hymenobacter polaris sp. nov. is proposed. The type strain is RP-2-7T (=KACC 21670T=NBRC 114391T).
Collapse
Affiliation(s)
- Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| | - Dhiraj Kumar Chaudhary
- Department of Environmental Engineering, Korea University, Sejong City 30019, Republic of Korea
| | - Dong-Uk Kim
- Department of Biological Science, College of Science and Engineering, Sangji University, Wonju, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Kyonggi-Do 16227, Republic of Korea
| |
Collapse
|
14
|
Chaudhary DK, Dahal RH, Kim J. Dyadobacter psychrotolerans sp. nov. and Dyadobacter frigoris sp. nov., two novel psychrotolerant members of the family Cytophagaceae isolated from Arctic soil. Int J Syst Evol Microbiol 2020; 70:569-575. [DOI: 10.1099/ijsem.0.003796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Dhiraj Kumar Chaudhary
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Ram Hari Dahal
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| | - Jaisoo Kim
- Department of Life Science, College of Natural Sciences, Kyonggi University, Suwon, Gyeonggi-Do 16227, Republic of Korea
| |
Collapse
|
15
|
Qu JH, Yue YF, Zhou J, Qu LB, Wang LF. Dyadobacter flavalbus sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 2019; 70:1064-1070. [PMID: 31751194 DOI: 10.1099/ijsem.0.003876] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterial strain, designated NS28T, was isolated from interfacial sediment sampled at Taihu Lake, PR China. Cells were rod-shaped, Gram-negative, aerobic and non-motile on Reasoner's 2A medium. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that strain NS28T was most closely related to species from the genus Dyadobacter, with 98.4 and 96.0 % 16S rRNA gene sequence similarity to its closest phylogenetic neighbours Dyadobacter sediminis CGMCC 1.12895T and Dyadobacter luticola CCTCC AB 2017091T, respectively. MK-7 was the only cellular menaquinone. The major fatty acids were summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), iso-C15 : 0 and C16 : 1ω5c. The major polar lipids were phosphatidylethanolamine, one phospholipid, one aminolipid, one lipid and two unidentified lipids. Genomic analysis of strain NS28T indicated that the total genome size was 6 477 094 bp with a G+C content of 44.8 mol%, 5380 protein-coding genes, 79 contigs and an N50 length of 299584 bp. On the basis of the genomic DNA sequence, the average nucleotide identity values were 90.5 and 74.1 % with D. sediminis CGMCC 1.12895T and D. luticola CCTCC AB 2017091T, respectively. Digital DNA-DNA hybridization results of strain NS28T with D. sediminis CGMCC 1.12895T and D. luticola CCTCC AB 2017091T were 40.9 and 18.6 %, respectively. Based on the phenotypic, chemotaxonomic, phylogenetic and genome sequence data presented here, it is proposed that strain NS28T represents a novel species of the genus Dyadobacter for which the name Dyadobacter flavalbus is proposed . The type strain is NS28T (=NBRC 113854T=MCCC 1K03764T).
Collapse
Affiliation(s)
- Jian-Hang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, PR China
| | - Yi-Fei Yue
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, PR China
| | - Jia Zhou
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan Province, PR China
| | - Ling-Bo Qu
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, PR China
| | - Lin-Feng Wang
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang 473000, Henan Province, PR China
| |
Collapse
|
16
|
Chen L, Gao X, Ma Q, Liu H, Wang X, Xu Y, Liu Y. Dyadobacter luteus sp. nov., isolated from rose rhizosphere soil. Arch Microbiol 2019; 202:191-196. [PMID: 31595323 DOI: 10.1007/s00203-019-01738-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/03/2019] [Accepted: 09/24/2019] [Indexed: 02/08/2023]
Abstract
A novel Gram-negative, aerobic, rod-shaped bacterium, RS19T, was isolated from rose rhizosphere soil. The strain was psychrophilic and showed good growth over a temperature range of 1-37 ℃. Colonies on TSB agar were circular, smooth, mucoid, convex with clear edges and yellow. Phylogenetic analysis based on 16S rRNA gene sequences characterized RS19T in the genus Dyadobacter and showed that strain RS19T was most closely related to Dyadobacter psychrophilus CGMCC 1.8951T (97.4%) and Dyadobacter alkalitolerans CGMCC 1.8973T (97.1%). The average nucleotide identity values to the closest related species type strains were less than 84.0%. The DNA G + C content was 43.1 mol%, and the predominant respiratory menaquinone was MK-7. The major fatty acids were summed features 3 (C16:1ω7c and/or C16:1ω6c), iso-C15:0, C16:1ω5c and iso-C17:0 3-OH. Based on genotypic, phenotypic and chemotaxonomic data, strain RS19T is different from closely related species of the genus Dyadobacter. RS19T represents a novel species within the genus Dyadobacter, for which the name Dyadobacter luteus sp. nov. is proposed. The type strain is RS19T (= CGMCC 1.13719T = ACCC 60381T = JCM 32940T).
Collapse
Affiliation(s)
- Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
| | - Xu Gao
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
| | - Qinghua Ma
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
| | - Huihui Liu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
| | - Xinghong Wang
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
| | - Yan Xu
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
17
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:5-9. [PMID: 30614438 DOI: 10.1099/ijsem.0.003174] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
18
|
Mumtaz R, Bashir S, Numan M, Shinwari ZK, Ali M. Pigments from Soil Bacteria and Their Therapeutic Properties: A Mini Review. Curr Microbiol 2018; 76:783-790. [PMID: 30178099 DOI: 10.1007/s00284-018-1557-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Advancement in research on dyes obtained from natural sources e.g., plants, animals, insects and micro-organisms is widening the application of natural dyes in various fields. The natural dyes substituted their synthetic analogs at the beginning of twentieth century due to their improved quality, value, ease of production, ease of dyeing and some other factors. This era of dominance ended soon when toxic effects of synthetic dyes were reported. In the last few decades, pigments from micro-organisms especially soil derived bacteria is replacing dyes from other natural sources because of the increasing demand for safe, non-toxic, and biodegradable natural product. Apart from application in agriculture practices, cosmetics, textile, food and paper industries, bacterial pigments have additional biological activities e.g., anti-tumor, anti-fungal, anti-bacterial, immunosuppressive anti-viral, and many more which make them a potential candidate for pharmaceutical industry. Optimization of culture conditions and fermentation medium is the key strategies for large scale production of these natural dyes. An effort has been done to give an overview of pigments obtained from bacteria of soil origin, their dominance over dyes from other sources (natural and synthetic) and applications in the medical world in the underlying study.
Collapse
Affiliation(s)
- Roqayya Mumtaz
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Samina Bashir
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Muhammad Numan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|