1
|
Geng L, Yang L, Liu T, Zhang S, Sun X, Wang W, Pan H, Yan L. Higher diversity of sulfur-oxidizing bacteria based on soxB gene sequencing in surface water than in spring in Wudalianchi volcanic group, NE China. Int Microbiol 2025; 28:119-136. [PMID: 38740654 DOI: 10.1007/s10123-024-00526-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Sulfur-oxidizing bacteria (SOB) play a key role in the biogeochemical cycling of sulfur. OBJECTIVES To explore SOB diversity, distribution, and physicochemical drivers in five volcanic lakes and two springs in the Wudalianchi volcanic field, China. METHODS This study analyzed microbial communities in samples via high-throughput sequencing of the soxB gene. Physical-chemical parameters were measured, and QIIME 2 (v2019.4), R, Vsearch, MEGA7, and Mothur processed the data. Alpha diversity indices and UPGMA clustering assessed community differences, while heat maps visualized intra-sample variations. Canoco 5.0 analyzed community-environment correlations, and NMDS, Adonis, and PcoA explored sample dissimilarities and environmental factor correlations. SPSS v.18.0 tested for statistical significance. RESULTS The diversity of SOB in surface water was higher than in springs (more than 7.27 times). We detected SOB affiliated to β-proteobacteria (72.3 %), α-proteobacteria (22.8 %), and γ-proteobacteria (4.2 %) distributed widely in these lakes and springs. Rhodoferax and Cupriavidus were most frequent in all water samples, while Rhodoferax and Bradyrhizobium are dominant in surface waters but rare in springs. SOB genera in both habitats were positively correlated. Co-occurrence analysis identified Bradyrhizobium, Blastochloris, Methylibium, and Metyhlobacterium as potential keystone taxa. Redundancy analysis (RDA) revealed positive correlations between SOB diversity and total carbon (TC), Fe2+, and total nitrogen (TN) in all water samples. CONCLUSION The diversity and community structure of SOB in volcanic lakes and springs in the Wudalianchi volcanic group were clarified. Moreover, the diversity and abundance of SOB decreased with the variation of water openness, from open lakes to semi-enclosed lakes and enclosed lakes.
Collapse
Affiliation(s)
- Lirong Geng
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Lei Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China
- Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hong Pan
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Science, Harbin, 150090, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, China.
- Key Laboratory of Low‑carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs P. R. China, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| |
Collapse
|
2
|
Xi Z, Dou L, Zhang M, Pan L. Desulfurization properties, pathways, and potential applications of two novel and efficient chemolithotrophic sulfur-oxidizing strains of Pseudomonas sp. GHWS3 and Sphingobacterium sp. GHWS5. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:3495-3511. [PMID: 38085488 DOI: 10.1007/s11356-023-31404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/03/2023] [Indexed: 01/19/2024]
Abstract
With the accelerated modernization of agriculture and industry, sulfides have been released into the environment as a by-products of various production processes. Elevated levels of sulfide pose a threat to organisms' health and disrupt ecosystem equilibrium. This study successfully isolated two highly efficient sulfur-oxidizing strains, namely Pseudomonas aeruginosa GHWS3 and Sphingobacterium sp. GHWS5. Neither strain exhibited hemolytic activity or pathogenicity. Additionally, GHWS3 inhibited the common aquaculture pathogen Vibrio anguillarum, while GHWS5 exhibited inhibitory effects against Vibrio harveyi. GHWS3 and GHWS5 demonstrated effective removal of sulfide under the following conditions: temperature range of 20-40 °C, pH level of 4.5-8.5, salinity range of 0-50‰, C/N ratio of 5-15, and sulfide concentration of 20-200 mg/L. By amplifying the key functional genes of the sulfur-oxidizing Sox and rDsr systems in both GHWS3 and GHWS5 strains, potential desulfurization pathways were analyzed. Furthermore, both strains displayed high efficiency in removing sulfides from actual aquaculture pond substrate mixtures. The findings of this study provide two promising candidate strains for sulfides removal from farm tailwater, industrial wastewater, and domestic wastewater.
Collapse
Affiliation(s)
- Zeyan Xi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Le Dou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Mengyu Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, China.
| |
Collapse
|
3
|
Patil PK, Nagaraju VT, Baskaran V, Avunje S, Rameshbabu R, Ghate SD, Solanki HG. Development of microbial enrichments for simultaneous removal of sulfur and nitrogenous metabolites in saline water aquaculture. J Appl Microbiol 2023; 134:lxad173. [PMID: 37541958 DOI: 10.1093/jambio/lxad173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
AIM The aim of the study was to develop microbial enrichments from the nitrifying microbial consortia and the environment for simultaneous removal of ammonia, nitrate, and sulfide in aquaculture systems at varied salinities. METHODS AND RESULTS Sulfur and nitrogen metabolites are the major factors affecting the farmed aquatic animal species and deteriorate the receiving environments causing ecological damage. The present study reports the development of microbial enrichments from the nitrifying microbial consortia and the environment. The enrichments used thiosulfate or thiocyanate as an energy source and simultaneously removed sulfur, ammonia, and nitrite in spiked medium (125 mg/l ammonia; 145 mg/l nitrite). Further, the microbes in the enrichments could grow up to 30 g/l salinity. Metagenomic studies revealed limited microbial diversity suggesting the enrichment of highly specialized taxa, and co-occurrence network analysis showed the formation of three micro-niches with multiple interactions at different taxonomic levels. CONCLUSIONS The ability of the enrichments to grow in both organic and inorganic medium and simultaneous removal of sulfide, ammonia, and nitrite under varied salinities suggests their potential application in sulfur, nitrogen, and organic matter-rich aquaculture pond environments and other industrial effluents.
Collapse
Affiliation(s)
- Prasanna Kumar Patil
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Vinay Tharabenahalli Nagaraju
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Viswanathan Baskaran
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Satheesha Avunje
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Rajesh Rameshbabu
- ICAR-Aquatic Animal Health and Environment Division, Central Institute of Brackishwater Aquaculture, Chennai-600028, India
| | - Sudeep D Ghate
- Center for Bioinformatics, NITTE (Deemed to be University), Mangalore-575022, India
| | - Haresh G Solanki
- College of Fisheries, Kamdhenu University, Gandhinagar-382010, India
| |
Collapse
|
4
|
Konrad R, Vergara-Barros P, Alcorta J, Alcamán-Arias ME, Levicán G, Ridley C, Díez B. Distribution and Activity of Sulfur-Metabolizing Bacteria along the Temperature Gradient in Phototrophic Mats of the Chilean Hot Spring Porcelana. Microorganisms 2023; 11:1803. [PMID: 37512975 PMCID: PMC10385741 DOI: 10.3390/microorganisms11071803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
In terrestrial hot springs, some members of the microbial mat community utilize sulfur chemical species for reduction and oxidization metabolism. In this study, the diversity and activity of sulfur-metabolizing bacteria were evaluated along a temperature gradient (48-69 °C) in non-acidic phototrophic mats of the Porcelana hot spring (Northern Patagonia, Chile) using complementary meta-omic methodologies and specific amplification of the aprA (APS reductase) and soxB (thiosulfohydrolase) genes. Overall, the key players in sulfur metabolism varied mostly in abundance along the temperature gradient, which is relevant for evaluating the possible implications of microorganisms associated with sulfur cycling under the current global climate change scenario. Our results strongly suggest that sulfate reduction occurs throughout the whole temperature gradient, being supported by different taxa depending on temperature. Assimilative sulfate reduction is the most relevant pathway in terms of taxonomic abundance and activity, whereas the sulfur-oxidizing system (Sox) is likely to be more diverse at low rather than at high temperatures. Members of the phylum Chloroflexota showed higher sulfur cycle-related transcriptional activity at 66 °C, with a potential contribution to sulfate reduction and oxidation to thiosulfate. In contrast, at the lowest temperature (48 °C), Burkholderiales and Acetobacterales (both Pseudomonadota, also known as Proteobacteria) showed a higher contribution to dissimilative sulfate reduction/oxidation as well as to thiosulfate metabolism. Cyanobacteriota and Planctomycetota were especially active in assimilatory sulfate reduction. Analysis of the aprA and soxB genes pointed to members of the order Burkholderiales (Gammaproteobacteria) as the most dominant and active along the temperature gradient for these genes. Changes in the diversity and activity of different sulfur-metabolizing bacteria in photoautotrophic microbial mats along a temperature gradient revealed their important role in hot spring environments, especially the main primary producers (Chloroflexota/Cyanobacteriota) and diazotrophs (Cyanobacteriota), showing that carbon, nitrogen, and sulfur cycles are highly linked in these extreme systems.
Collapse
Affiliation(s)
- Ricardo Konrad
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - María E Alcamán-Arias
- Department of Oceanography, University of Concepcion, Concepcion 4030000, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
- Escuela de Medicina, Universidad Espíritu Santo, Guayaquil 0901952, Ecuador
| | - Gloria Levicán
- Biology Department, Chemistry and Biology Faculty, University of Santiago of Chile, Santiago 9170022, Chile
| | - Christina Ridley
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
5
|
Schwarz A, Gaete M, Nancucheo I, Villa-Gomez D, Aybar M, Sbárbaro D. High-Rate Sulfate Removal Coupled to Elemental Sulfur Production in Mining Process Waters Based on Membrane-Biofilm Technology. Front Bioeng Biotechnol 2022; 10:805712. [PMID: 35340841 PMCID: PMC8942777 DOI: 10.3389/fbioe.2022.805712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
It is anticipated that copper mining output will significantly increase over the next 20 years because of the more intensive use of copper in electricity-related technologies such as for transport and clean power generation, leading to a significant increase in the impacts on water resources if stricter regulations and as a result cleaner mining and processing technologies are not implemented. A key concern of discarded copper production process water is sulfate. In this study we aim to transform sulfate into sulfur in real mining process water. For that, we operate a sequential 2-step membrane biofilm reactor (MBfR) system. We coupled a hydrogenotrophic MBfR (H2-MBfR) for sulfate reduction to an oxidizing MBfR (O2-MBfR) for oxidation of sulfide to elemental sulfur. A key process improvement of the H2-MBfR was online pH control, which led to stable high-rate sulfate removal not limited by biomass accumulation and with H2 supply that was on demand. The H2-MBfR easily adapted to increasing sulfate loads, but the O2-MBfR was difficult to adjust to the varying H2-MBfR outputs, requiring better coupling control. The H2-MBfR achieved high average volumetric sulfate reduction performances of 1.7-3.74 g S/m3-d at 92-97% efficiencies, comparable to current high-rate technologies, but without requiring gas recycling and recompression and by minimizing the H2 off-gassing risk. On the other hand, the O2-MBfR reached average volumetric sulfur production rates of 0.7-2.66 g S/m3-d at efficiencies of 48-78%. The O2-MBfR needs further optimization by automatizing the gas feed, evaluating the controlled removal of excess biomass and S0 particles accumulating in the biofilm, and achieving better coupling control between both reactors. Finally, an economic/sustainability evaluation shows that MBfR technology can benefit from the green production of H2 and O2 at operating costs which compare favorably with membrane filtration, without generating residual streams, and with the recovery of valuable elemental sulfur.
Collapse
Affiliation(s)
- Alex Schwarz
- Civil Engineering Department, Universidad de Concepción, Concepción, Chile
| | - María Gaete
- Civil Engineering Department, Universidad de Concepción, Concepción, Chile
| | - Iván Nancucheo
- Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Concepción, Chile
| | - Denys Villa-Gomez
- School of Civil Engineering, The University of Queensland, Brisbane, QLD, Australia
| | - Marcelo Aybar
- Civil Engineering Department, Universidad de Concepción, Concepción, Chile
| | - Daniel Sbárbaro
- Electrical Engineering Department, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Ni’matuzahroh, Affandi M, Fatimah, Trikurniadewi N, Khiftiyah AM, Sari SK, Abidin AZ, Ibrahim SNMM. Comparative study of gut microbiota from decomposer fauna in household composter using metataxonomic approach. Arch Microbiol 2022; 204:210. [DOI: 10.1007/s00203-022-02785-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/20/2022]
|
7
|
Raggi L, García-Guevara F, Godoy-Lozano EE, Martínez-Santana A, Escobar-Zepeda A, Gutierrez-Rios RM, Loza A, Merino E, Sanchez-Flores A, Licea-Navarro A, Pardo-Lopez L, Segovia L, Juarez K. Metagenomic Profiling and Microbial Metabolic Potential of Perdido Fold Belt (NW) and Campeche Knolls (SE) in the Gulf of Mexico. Front Microbiol 2020; 11:1825. [PMID: 32903729 PMCID: PMC7438803 DOI: 10.3389/fmicb.2020.01825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/10/2020] [Indexed: 01/04/2023] Open
Abstract
The Gulf of Mexico (GoM) is a particular environment that is continuously exposed to hydrocarbon compounds that may influence the microbial community composition. We carried out a metagenomic assessment of the bacterial community to get an overall view of this geographical zone. We analyzed both taxonomic and metabolic markers profiles to explain how the indigenous GoM microorganims participate in the biogeochemical cycling. Two geographically distant regions in the GoM, one in the north-west (NW) and one in the south-east (SE) of the GoM were analyzed and showed differences in their microbial composition and metabolic potential. These differences provide evidence the delicate equilibrium that sustains microbial communities and biogeochemical cycles. Based on the taxonomy and gene groups, the NW are more oxic sediments than SE ones, which have anaerobic conditions. Both water and sediments show the expected sulfur, nitrogen, and hydrocarbon metabolism genes, with particularly high diversity of the hydrocarbon-degrading ones. Accordingly, many of the assigned genera were associated with hydrocarbon degradation processes, Nitrospira and Sva0081 were the most abundant in sediments, while Vibrio, Alteromonas, and Alcanivorax were mostly detected in water samples. This basal-state analysis presents the GoM as a potential source of aerobic and anaerobic hydrocarbon degradation genes important for the ecological dynamics of hydrocarbons and the potential use for water and sediment bioremediation processes.
Collapse
Affiliation(s)
- Luciana Raggi
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- CONACYT-Laboratorio de Biotecnología Acuícola, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | - E. Ernestina Godoy-Lozano
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
- Centro de Investigación Sobre Enfermedades Infecciosas, Departamento de Bioinformática en Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | | | | | | | - Antonio Loza
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Merino
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Alexei Licea-Navarro
- Laboratorio de Inmunología Molecular y Biotoxinas, Departamento de Innovación Biomedica, CICESE, Ensenada, Mexico
| | - Liliana Pardo-Lopez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lorenzo Segovia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juarez
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|