1
|
Hagagy N, AbdElgawad H. The potential of Actinoplanes spp. for alleviating the oxidative stress induced by thallium toxicity in wheat plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108853. [PMID: 38901231 DOI: 10.1016/j.plaphy.2024.108853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
To reduce heavy metal toxicity, like that induced by thallium (TI) in plants, growth-promoting bacteria (GPB) are a widely used to enhance plant tolerance to heavy metals toxicity. In our study, we characterized seven GPB and identified Actinoplanes spp., as the most active strain. This bioactive strain was then applied to alleviate TI phytotoxicity. TI contamination (20 mg/kg soil) induced TI bioaccumulation, reducing wheat growth (biomass accumulation) and photosynthesis rate, by about 55% and 90%, respectively. TI stress also induced oxidative damages as indicated by increased oxidative markers (H2O2 and lipid peroxidation (MDA)). Interestingly, Actinoplanes spp. significantly reduced growth inhibition and oxidative stress by 20% and 70%, respectively. As a defense mechanism to mitigate the TI toxicity, wheat plants showed improved antioxidant and detoxification defense including increased phenolic and tocopherols levels as well as peroxidase (POX), catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) enzymes activities. These defense mechanisms were further induced by Actinoplanes spp. Additionally, Actinoplanes spp. increased the production of heavy metal-binding ligands such as metallothionein, phytochelatins, total glutathione, and glutathione S-transferase activity by 100%, 90%, 120%, and 100%, respectively. This study, therefore, elucidated the physiological and biochemical bases underlying TI-stress mitigation impact of Actinoplanes spp. Overall, Actinoplanes spp. holds promise as a valuable approach for ameliorating TI toxicity in plants. KEYBOARD: Actinobacteria, Bioaccumulation, Detoxification, Membrane damage, Redox regulation.
Collapse
Affiliation(s)
- Nashwa Hagagy
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah, 21959, Saudi Arabia; Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| |
Collapse
|
2
|
Hnini M, Aurag J. Prevalence, diversity and applications potential of nodules endophytic bacteria: a systematic review. Front Microbiol 2024; 15:1386742. [PMID: 38812696 PMCID: PMC11133547 DOI: 10.3389/fmicb.2024.1386742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
Legumes are renowned for their distinctive biological characteristic of forming symbiotic associations with soil bacteria, mostly belonging to the Rhizobiaceae familiy, leading to the establishment of symbiotic root nodules. Within these nodules, rhizobia play a pivotal role in converting atmospheric nitrogen into a plant-assimilable form. However, it has been discerned that root nodules of legumes are not exclusively inhabited by rhizobia; non-rhizobial endophytic bacteria also reside within them, yet their functions remain incompletely elucidated. This comprehensive review synthesizes available data, revealing that Bacillus and Pseudomonas are the most prevalent genera of nodule endophytic bacteria, succeeded by Paenibacillus, Enterobacter, Pantoea, Agrobacterium, and Microbacterium. To date, the bibliographic data available show that Glycine max followed by Vigna radiata, Phaseolus vulgaris and Lens culinaris are the main hosts for nodule endophytic bacteria. Clustering analysis consistently supports the prevalence of Bacillus and Pseudomonas as the most abundant nodule endophytic bacteria, alongside Paenibacillus, Agrobacterium, and Enterobacter. Although non-rhizobial populations within nodules do not induce nodule formation, their presence is associated with various plant growth-promoting properties (PGPs). These properties are known to mediate important mechanisms such as phytostimulation, biofertilization, biocontrol, and stress tolerance, emphasizing the multifaceted roles of nodule endophytes. Importantly, interactions between non-rhizobia and rhizobia within nodules may exert influence on their leguminous host plants. This is particularly shown by co-inoculation of legumes with both types of bacteria, in which synergistic effects on plant growth, yield, and nodulation are often measured. Moreover these effects are pronounced under both stress and non-stress conditions, surpassing the impact of single inoculations with rhizobia alone.
Collapse
Affiliation(s)
| | - Jamal Aurag
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnology, Biodiversity and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Al-Shuaibi BK, Kazerooni EA, Hussain S, Velazhahan R, Al-Sadi AM. Plant-Disease-Suppressive and Growth-Promoting Activities of Endophytic and Rhizobacterial Isolates Associated with Citrullus colocynthis. Pathogens 2023; 12:1275. [PMID: 38003740 PMCID: PMC10674396 DOI: 10.3390/pathogens12111275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
This study was conducted to investigate the antagonistic potential of endophytic and rhizospheric bacterial isolates obtained from Citrullus colocynthis in suppressing Fusarium solani and Pythium aphanidermatum and promoting the growth of cucumber. Molecular identification of bacterial strains associated with C. colocynthis confirmed that these strains belong to the Achromobacter, Pantoea, Pseudomonas, Rhizobium, Sphingobacterium, Bacillus, Sinorhizobium, Staphylococcus, Cupriavidus, and Exiguobacterium genera. A dual culture assay showed that nine of the bacterial strains exhibited antifungal activity, four of which were effective against both pathogens. Strains B27 (Pantoea dispersa) and B28 (Exiguobacterium indicum) caused the highest percentage of inhibition towards F. solani (48.5% and 48.1%, respectively). P. aphanidermatum growth was impeded by the B21 (Bacillus cereus, 44.7%) and B28 (Exiguobacterium indicum, 51.1%) strains. Scanning electron microscopy showed that the strains caused abnormality in phytopathogens' mycelia. All of the selected bacterial strains showed good IAA production (>500 ppm). A paper towel experiment demonstrated that these strains improved the seed germination, root/shoot growth, and vigor index of cucumber seedlings. Our findings suggest that the bacterial strains from C. colocynthis are suppressive to F. solani and P. aphanidermatum and can promote cucumber growth. This appears to be the first study to report the efficacy of these bacterial strains from C. colocynthis against F. solani and P. aphanidermatum.
Collapse
Affiliation(s)
| | | | | | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123, Oman; (B.K.A.-S.); (E.A.K.); (S.H.)
| |
Collapse
|
4
|
Hossain MS, Frith C, Bhattacharyya SS, DeLaune PB, Gentry TJ. Isolation and Characterization of Bacterial Endophytes from Small Nodules of Field-Grown Peanut. Microorganisms 2023; 11:1941. [PMID: 37630501 PMCID: PMC10458822 DOI: 10.3390/microorganisms11081941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
It is evident that legume root nodules can accommodate rhizobial and non-rhizobial bacterial endophytes. Our recent nodule microbiome study in peanuts described that small nodules can harbor diverse bacterial endophytes. To understand their functional role, we isolated 87 indigenous endophytes from small nodules of field-grown peanut roots and characterized them at molecular, biochemical, and physiological levels. The amplified 16S rRNA genes and phylogenetic analysis of these isolates revealed a wide variety of microorganisms related to the genera Bacillus, Burkholderia, Enterobacter, Herbaspirillum, Mistsuaria, Pantoea, Pseudomonas, and Rhizobia. It was observed that 37% (100% identity) and 56% (>99% identity) of the isolates matched with the amplified sequence variants (ASVs) from our previous microbiome study. All of these isolates were tested for stress tolerance (high temperature, salinity, acidic pH) and phosphate (P) solubilization along with ammonia (NH3), indole-3-acetic acid (IAA), 1-aminocyclopropane-1-carboxylate deaminase (ACCD), and siderophore production. The majority (78%) of the isolates were found to be halotolerant, thermotolerant, and acidophilic, and a few of them showed a significant positive response to the production of IAA, NH3, siderophore, ACCD, and P-solubilization. To evaluate the plant growth promotion (PGP) activity, plant and nodulation assays were performed in the growth chamber conditions for the selected isolates from both the non-rhizobial and rhizobial groups. However, these isolates appeared to be non-nodulating in the tested conditions. Nonetheless, the isolates 2 (Pantoea), 17 (Burkholderia), 21 (Herbaspirillum), 33o (Pseudomonas), and 77 (Rhizobium sp.) showed significant PGP activity in terms of biomass production. Our findings indicate that these isolates have potential for future biotechnological applications through the development of biologicals for sustainable crop improvement.
Collapse
Affiliation(s)
- Md Shakhawat Hossain
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | - Christine Frith
- Department of Geosciences, Texas A&M University, College Station, TX 77843, USA
| | - Siddhartha Shankar Bhattacharyya
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| | | | - Terry J. Gentry
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
- Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
5
|
Tshikhudo PP, Ntushelo K, Mudau FN. Sustainable Applications of Endophytic Bacteria and Their Physiological/Biochemical Roles on Medicinal and Herbal Plants: Review. Microorganisms 2023; 11:microorganisms11020453. [PMID: 36838418 PMCID: PMC9967847 DOI: 10.3390/microorganisms11020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Bacterial endophytes reside within the tissues of living plant species without causing any harm or disease to their hosts. These endophytes can be isolated, identified, characterized, and used as biofertilizers. Moreover, bacterial endophytes increase the plants' resistance against diseases, pests, and parasites, and are a promising source of pharmaceutically important bioactives. For instance, the production of antibiotics, auxins, biosurfactants, cytokinin's, ethylene, enzymes, gibberellins, nitric oxide organic acids, osmolytes, and siderophores is accredited to the existence of various bacterial strains. Thus, this manuscript intends to review the sustainable applications of endophytic bacteria to promote the growth, development, and chemical integrity of medicinal and herbal plants, as well as their role in plant physiology. The study of the importance of bacterial endophytes in the suppression of diseases in medicinal and herbal plants is crucial and a promising area of future investigation.
Collapse
Affiliation(s)
- Phumudzo Patrick Tshikhudo
- Department of Agriculture, Land Reform and Rural Development, Directorate Plant Health, Division Pest Risk Analysis, Arcadia, Pretoria 0001, South Africa
- Correspondence:
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1710, South Africa
| | - Fhatuwani Nixwell Mudau
- School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
6
|
Tsalgatidou PC, Thomloudi EE, Nifakos K, Delis C, Venieraki A, Katinakis P. Calendula officinalis-A Great Source of Plant Growth Promoting Endophytic Bacteria (PGPEB) and Biological Control Agents (BCA). Microorganisms 2023; 11:microorganisms11010206. [PMID: 36677498 PMCID: PMC9865722 DOI: 10.3390/microorganisms11010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The application of beneficial bacteria may present an alternative approach to chemical plant protection and fertilization products as they enhance growth and resistance to biotic and abiotic stresses. Plant growth-promoting bacteria are found in the rhizosphere, epiphytically or endophytically (Plant Growth Promoting Endophytic Bacteria, PGPEB). In the present study, 36 out of 119 isolated endophytic bacterial strains from roots, leaves and flowers of the pharmaceutical plant Calendula officinalis were further identified and classified into Bacillus, Pseudomonas, Pantoea, Stenotrophomonas and Rhizobium genera. Selected endophytes were evaluated depending on positive reaction to different plant growth promoting (PGP) traits, motility, survival rate and inhibition of phytopathogenic fungi in vitro and ex vivo (tomato fruit). Bacteria were further assessed for their plant growth effect on Arabidopsis thaliana seedlings and on seed bio-primed tomato plantlets, in vitro. Our results indicated that many bacterial endophytes increased seed germination, promoted plant growth and changed root structure by increasing lateral root density and length and root hair formation. The most promising antagonistic PGPEB strains (Cal.r.29, Cal.l.30, Cal.f.4, Cal.l.11, Cal.f.2.1, Cal.r.19 and Cal.r.11) are indicated as effective biological control agents (BCA) against Botrytis cinerea on detached tomato fruits. Results underlie the utility of beneficial endophytic bacteria for sustainable and efficient crop production and disease control.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Kallimachos Nifakos
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Costas Delis
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (P.C.T.); (A.V.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
7
|
Almuhayawi MS, Abdel-Mawgoud M, Al Jaouni SK, Almuhayawi SM, Alruhaili MH, Selim S, AbdElgawad H. Bacterial Endophytes as a Promising Approach to Enhance the Growth and Accumulation of Bioactive Metabolites of Three Species of Chenopodium Sprouts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122745. [PMID: 34961218 PMCID: PMC8704246 DOI: 10.3390/plants10122745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 05/29/2023]
Abstract
Sprouts are regarded as an untapped source of bioactive components that display various biological properties. Endophytic bacterium inoculation can enhance plant chemical composition and improve its nutritional quality. Herein, six endophytes (Endo 1 to Endo 6) were isolated from Chenopodium plants and morphologically and biochemically identified. Then, the most active isolate Endo 2 (strain JSA11) was employed to enhance the growth and nutritive value of the sprouts of three Chenopodium species, i.e., C. ambrosoides, C. ficifolium, and C. botrys. Endo 2 (strain JSA11) induced photosynthesis and the mineral uptake, which can explain the high biomass accumulation. Endo 2 (strain JSA11) improved the nutritive values of the treated sprouts through bioactive metabolite (antioxidants, vitamins, unsaturated fatty acid, and essential amino acids) accumulation. These increases were correlated with increased amino acid levels and phenolic metabolism. Consequently, the antioxidant activity of the Endo 2 (strain JSA11)-treated Chenopodium sprouts was enhanced. Moreover, Endo 2 (strain JSA11) increased the antibacterial activity against several pathogenic bacteria and the anti-inflammatory activities as evidenced by the reduced activity of cyclooxygenase and lipoxygenase. Overall, the Endo 2 (strain JSA11) treatment is a successful technique to enhance the bioactive contents and biological properties of Chenopodium sprouts.
Collapse
Affiliation(s)
- Mohammed S. Almuhayawi
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohamed Abdel-Mawgoud
- Department of Medicinal and Aromatic Plants, Desert Research Centre, Cairo 11753, Egypt
| | - Soad K. Al Jaouni
- Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Saad M. Almuhayawi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mohammed H. Alruhaili
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hamada AbdElgawad
- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| |
Collapse
|
8
|
Aeron A, Dubey RC, Maheshwari DK. Next-generation biofertilizers and novel biostimulants: documentation and validation of mechanism of endophytic plant growth-promoting rhizobacteria in tomato. Arch Microbiol 2021; 203:3715-3726. [PMID: 33914091 DOI: 10.1007/s00203-021-02344-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
A study was conducted to determine the suitability of the endophytes as probable next-generation biofertilizers and novel biostimulants. Enterobacter turicensis RCT5 and Stenotrophomonas maltophilia RCT31 showed a zone of solubilization, of phosphate, potassium, silicate, and zinc, produced phytase. Among the three media used for phosphate solubilization, the rhizospheric medium turned out to be the best-producing results in less than 24 h, while others took a longer time to give the same results. The strains exhibited differential ability to produce organic acids in the plate assay and eight of these were profuse producers of exopolysaccharides. We were able to partially elucidate the mechanism of solubilization of insoluble salts that included organic acids and protein activity in the cell-free culture filtrates of endophytes. All the root nodule endophytes showed potential as novel biostimulants and next-generation biofertilizers as found in the germination assay of tomato, a non-host crop using different methodologies. It proved that the endophytes have different mechanism of expressions of their plant growth-promoting traits as well as can promote the growth of tomato plant irrespective of the method used.
Collapse
Affiliation(s)
- Abhinav Aeron
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri Vishwavidhyalaya, Haridwar, Uttarakhand, 249 404, India.
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri Vishwavidhyalaya, Haridwar, Uttarakhand, 249 404, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Faculty of Life Sciences, Gurukula Kangri Vishwavidhyalaya, Haridwar, Uttarakhand, 249 404, India
| |
Collapse
|
9
|
Aeron A, Dubey RC, Maheshwari DK. Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (Stenotrophomonas maltophilia) from the root nodules of Mucuna utilis var. capitata L. (Safed Kaunch). Can J Microbiol 2020; 66:670-677. [DOI: 10.1139/cjm-2020-0196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nonrhizobial root nodule endophytic bacteria are known to have beneficial effects on host plants and are also considered contaminants or opportunists. They grow either individually or as a co-occupant of the root nodules of legumes. In this study, a nonrhizobial endophytic bacterial strain was isolated from the root nodules of the medicinal legume Mucuna utilis var. capitata L.; phenotypic, genotypic, and agricultural characterization was performed using a HiMedia kit and 16S rRNA sequencing. This strain showed tremendous seedling growth potential (30%), compared with the control, as well as a strong antagonistic nature against the plant pathogenic fungus Fusarium udum when plant growth parameters were analyzed. The strain, identified by 16S rRNA as Stenotrophomonas maltophilia, showed a multitude of plant-growth-promoting attributes both direct (IAA, phosphate solubilization) and indirect (ACC deaminase, siderophore) and enhanced the growth of host plant in field trials. This is the first report of the plant-growth-promoting potential of this endophytic bacterium from the nodules of M. utilis var. capitata L.; hence, it has potential for use in various biotechnological applications in various industries.
Collapse
Affiliation(s)
- Abhinav Aeron
- Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand 249404, India
- Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand 249404, India
| | - Ramesh Chandra Dubey
- Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand 249404, India
- Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand 249404, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand 249404, India
- Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand 249404, India
| |
Collapse
|
10
|
Zhang Y, Ren J, Wang W, Chen B, Li E, Chen S. Siderophore and indolic acid production by Paenibacillus triticisoli BJ-18 and their plant growth-promoting and antimicrobe abilities. PeerJ 2020; 8:e9403. [PMID: 32742769 PMCID: PMC7367057 DOI: 10.7717/peerj.9403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/01/2020] [Indexed: 12/22/2022] Open
Abstract
Paenibacillus triticisoli BJ-18, a N2-fixing bacterium, is able to promote plant growth, but the secondary metabolites that may play a role in promoting plant growth have never been characterized. In this study, untargeted metabolomics profiling of P. triticisoli BJ-18 indicated the existence of 101 known compounds, including N2-acetyl ornithine, which is the precursor of siderophores, plant growth regulators such as trehalose 6-phosphate, betaine and trigonelline, and other bioactive molecules such as oxymatrine, diosmetin, luotonin A, (-)-caryophyllene oxide and tetrahydrocurcumin. In addition, six compounds were also isolated from P. triticisoli BJ-18 using a combination of silica gel chromatography, sephadex LH-20, octadecyl silane (ODS), and high-performance liquid chromatography (HPLC). The compound structures were further analyzed by Nuclear Magnetic Resonance (NMR), Mass Spectrometry (MS), and Electronic Circular Dichroism (ECD). The six compounds included three classical siderophore fusarinines identified as deshydroxylferritriacetylfusigen, desferritriacetylfusigen, and triacetylfusigen, and three indolic acids identified as paenibacillic acid A, 3-indoleacetic acid (IAA), and 3-indolepropionic acid (IPA). Both deshydroxylferritriacetylfusigen and paenibacillic acid A have new structures. Fusarinines, which normally occur in fungi, were isolated from bacterium for the first time in this study. Both siderophores (compounds 1 and 2) showed antimicrobial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis, but did not show obvious inhibitory activity against yeast Candida albicans, whereas triacetylfusigen (compound 3) showed no antibiosis activity against these test microorganisms. Paenibacillic acid A, IAA, and IPA were shown to promote the growth of plant shoots and roots, and paenibacillic acid A also showed antimicrobial activity against S. aureus. Our study demonstrates that siderophores and indolic acids may play an important role in plant growth promotion by P. triticisoli BJ-18.
Collapse
Affiliation(s)
- Yunzhi Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| | - Jinwei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Erwei Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Cueva-Yesquén LG, Goulart MC, Attili de Angelis D, Nopper Alves M, Fantinatti-Garboggini F. Multiple Plant Growth-Promotion Traits in Endophytic Bacteria Retrieved in the Vegetative Stage From Passionflower. FRONTIERS IN PLANT SCIENCE 2020; 11:621740. [PMID: 33537051 PMCID: PMC7847900 DOI: 10.3389/fpls.2020.621740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 05/17/2023]
Abstract
Bacteria exhibiting beneficial traits like increasing the bioavailability of essential nutrients and modulating hormone levels in plants are known as plant growth promoting (PGP) bacteria. The occurrence of this specific group of bacteria in the endophytic environment may reflect the decisive role they play in a particular condition. This study aimed to determine the taxonomical diversity of the culturable bacterial endophytes, isolated in the vegetative stage of passionflower (Passiflora incarnata), and assess its potential to promote plant growth by phenotypic and genotypic approaches. The sequencing and phylogenetic analysis of the 16S rRNA gene allowed us to classify 58 bacterial endophytes into nine genera. Bacillus (70.7%) was the most dominant genus, followed by Pseudomonas (8.6%) and Pantoea (6.9%). A few isolates belonged to Rhodococcus and Paenibacillus, whereas the genera Lysinibacillus, Microvirga, Xanthomonas, and Leclercia were represented by only one isolate. The strains were tested for nitrogen fixation, phosphate solubilization, indole-acetic-acid synthesis, and siderophore production. Moreover, PGP related genes (nifH, ipdC, asb, and AcPho) were detected by PCR-based screening. Most of the isolates (94.8%) displayed a potential for at least one of the PGP traits tested by biochemical assays or PCR-based screening. Nine strains were selected based on results from both approaches and were evaluated for boosting the Cape gooseberry (Physalis peruviana) germination and growth. All tested isolates improved germination in vitro, and the majority (78%) increased growth parameters in vivo. The results suggested that most of culturable bacteria inhabiting P. incarnata in the vegetative stage could be used as probiotics for agricultural systems. Besides, their occurrence may be associated with specific physiological needs typical of this development stage.
Collapse
Affiliation(s)
- Luis Gabriel Cueva-Yesquén
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
- *Correspondence: Luis Gabriel Cueva-Yesquén,
| | - Marcela Cristina Goulart
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Derlene Attili de Angelis
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Marcos Nopper Alves
- Division of Agrotechnology, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| | - Fabiana Fantinatti-Garboggini
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), University of Campinas, Paulínia, Brazil
| |
Collapse
|