1
|
Lewandowská Š, Vaňková Z, Beesley L, Cajthaml T, Wickramasinghe N, Vojar J, Vítková M, Tsang DCW, Ndungu K, Komárek M. Nano zerovalent Fe did not reduce metal(loid) leaching and ecotoxicity further than conventional Fe grit in contrasting smelter impacted soils: A 1-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171892. [PMID: 38531450 DOI: 10.1016/j.scitotenv.2024.171892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
The majority of the studies on nanoscale zero-valent iron (nZVI) are conducted at a laboratory-scale, while field-scale evidence is scarce. The objective of this study was to compare the metal(loid) immobilization efficiency of selected Fe-based materials under field conditions for a period of one year. Two contrasting metal(loid) (As, Cd, Pb, Zn) enriched soils from a smelter-contaminated area were amended with sulfidized nZVI (S-nZVI) solely or combined with thermally stabilized sewage sludge and compared to amendment with microscale iron grit. In the soil with higher pH (7.5) and organic matter content (TOC = 12.7 %), the application of amendments resulted in a moderate increase in pH and reduced As, Cd, Pb, and Zn leaching after 1-year, with S-nZVI and sludge combined being the most efficient, followed by iron grit and S-nZVI alone. However, the amendments had adverse impacts on microbial biomass quantity, S-nZVI being the least damaging. In the soil with a lower pH (6.0) and organic matter content (TOC = 2.3 %), the results were mixed; 0.01 M CaCl2 extraction data showed only S-nZVI with sludge as remaining effective in reducing extractable concentrations of metals; on the other hand, Cd and Zn concentrations were increased in the extracted soil pore water solutions, in contrast to the two conventional amendments. Despite that, S-nZVI with sludge enhanced the quantity of microbial biomass in this soil. Additional earthworm avoidance data indicated that they generally avoided soil treated with all Fe-based materials, but the presence of sludge impacted their preferences somewhat. In summary, no significant differences between S-nZVI and iron grit were observed for metal(loid) immobilization, though sludge significantly improved the performance of S-nZVI in terms of soil health indicators. Therefore, this study indicates that S-nZVI amendment of soils alone should be avoided, though further field evidence from a broader range of soils is now required.
Collapse
Affiliation(s)
- Šárka Lewandowská
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Zuzana Vaňková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Luke Beesley
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic; School of Science, Engineering and Environment, Peel Building, University of Salford, Manchester M5 4WT, UK
| | - Tomáš Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2, 128 01 Prague 2, Czech Republic
| | - Niluka Wickramasinghe
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Jiří Vojar
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Martina Vítková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Kuria Ndungu
- Norwegian Institute for Water Research (NIVA), Økernveien 94, NO-0579 Oslo, Norway
| | - Michael Komárek
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic.
| |
Collapse
|