1
|
You Y, Guo J, Jiang J. Insight into the performance and fouling characteristics of submerged ceramic membrane bioreactor in wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123900. [PMID: 39740463 DOI: 10.1016/j.jenvman.2024.123900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Submerged membrane bioreactor (SMBR) is a promising technology in municipal wastewater treatment, but the membrane fouling has restricted its development. In this study, an integrated submerged ceramic membrane bioreactor (C-SMBR) was constructed to treat domestic wastewater, and the characteristics of membrane fouling and the microbial community structure were investigated. The results showed that the average removal efficiencies of COD, TN, NH4+-N reached 94.97%, 61.69% and 71.61% respectively, under different ammonia nitrogen loading rate (NLR). The increase of soluble microbial products (SMP) and extracellular polymeric substances (EPS) in the suspension jointly accelerated the membrane fouling process, resulting in an increase in the trans-membrane pressure (TMP), which led to membrane fouling. Microbial community structure analysis showed that the dominant phylum bacteria were Patescibacteria, Proteobacteria, Actinobacteria, Bacteroidota and Chloroflexi, and the dominant class bacteria were Saccharimonadia, γ-proteobacteria, Actinobacteria, Bacteroidia, Anaerolineae, α-proteobacteria, etc. In summary, the conditions, microbial information and membrane fouling characteristics of wastewater treated by C-SMBR obtained in this study can provide reference and data support for further promotion and improvement of the application of C-SMBR and membrane fouling control.
Collapse
Affiliation(s)
- Yujing You
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Junyuan Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China.
| | - Jianying Jiang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| |
Collapse
|
2
|
Gamlin J, Caird R, Sachdeva N, Miao Y, Walecka-Hutchison C, Mahendra S, K De Long S. Developing a microbial community structure index (MCSI) as an approach to evaluate and optimize bioremediation performance. Biodegradation 2024; 35:993-1006. [PMID: 39017970 DOI: 10.1007/s10532-024-10093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/03/2024] [Indexed: 07/18/2024]
Abstract
Much attention is placed on organohalide-respiring bacteria (OHRB), such as Dehalococcoides, during the design and performance monitoring of chlorinated solvent bioremediation systems. However, many OHRB cannot function effectively without the support of a diverse group of other microbial community members (MCMs), who play key roles fermenting organic matter into more readily useable electron donors, producing corrinoids such as vitamin B12, or facilitating other important metabolic processes or biochemical reactions. While it is known that certain MCMs support dechlorination, a metric considering their contribution to bioremediation performance has yet to be proposed. Advances in molecular biology tools offer an opportunity to better understand the presence and activity of specific microbes, and their relation to bioremediation performance. In this paper, we test the hypothesis that a specific microbial consortium identified within 16S ribosomal ribonucleic acid (rRNA) gene next generation sequencing (NGS) data can be predictive of contaminant degradation rates. Field-based data from multiple contaminated sites indicate that increasing relative abundance of specific MCMs correlates with increasing first-order degradation rates. Based on these results, we present a framework for computing a simplified metric using NGS data, the Microbial Community Structure Index, to evaluate the adequacy of the microbial ecosystem during assessment of bioremediation performance.
Collapse
Affiliation(s)
- Jeff Gamlin
- GSI Environmental Inc, 13949 West Colfax Ave, Suite 210, Lakewood, CO, 80401, USA.
| | - Renee Caird
- Jacobs, 120 St. James Ave, Boston, MA, 02116, USA
| | - Neha Sachdeva
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| | - Yu Miao
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, 02115, USA
| | | | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, CO, 80523, USA
| |
Collapse
|
3
|
Qiao W, Li H, Zhang J, Liu X, Jin R, Li H. Comparing the Environmental Influences and Community Assembly of Protist Communities in Two Anthropogenic Coastal Areas. Microorganisms 2024; 12:1618. [PMID: 39203460 PMCID: PMC11356250 DOI: 10.3390/microorganisms12081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
Anthropogenic stresses are intensively affecting the structure and function of microbial communities in coastal ecosystems. Despite being essential components of coastal ecosystems, the environmental influences and assembly processes of protist communities remain largely unknown in areas with severe disturbance. Here, we used 18S rRNA gene high-throughput sequencing to compare the composition, assembly process, and functional structure of the protist communities from the coastal areas of the Northern Yellow Sea (NYS) and the Eastern Bohai Sea (EBS). These two areas are separated by the Liaodong Peninsula and experience different anthropogenic stresses due to varying degrees of urbanization. We detected significant differences between the protist communities of the two areas. Environmental and geographic factors both influenced the composition of protist communities, with environmental factors playing a greater role. The neutral community model indicated that the assembly of protist communities was governed by deterministic processes, with stochastic processes having a stronger influence in the EBS area compared to the NYS area. The phototrophic and consumer communities, influenced by different environmental factors, differed significantly between the two areas. Our results provide insights into the biogeography and assembly of protist communities in estuaries under anthropogenic stresses, which may inform future coastal management.
Collapse
Affiliation(s)
- Wenwen Qiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Hongbo Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Jinyong Zhang
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Xiaohan Liu
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China;
| | - Hongjun Li
- State Environmental Protection Key Laboratory of Coastal Ecosystem, National Marine Environmental Monitoring Center, Dalian 116023, China; (H.L.); (J.Z.); (X.L.)
| |
Collapse
|
4
|
Maqsood Q, Sumrin A, Waseem R, Hussain M, Imtiaz M, Hussain N. Bioengineered microbial strains for detoxification of toxic environmental pollutants. ENVIRONMENTAL RESEARCH 2023; 227:115665. [PMID: 36907340 DOI: 10.1016/j.envres.2023.115665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 05/08/2023]
Abstract
Industrialization and other anthropogenic human activities pose significant environmental risks. As a result of the hazardous pollution, numerous living organisms may suffer from undesirable diseases in their separate habitats. Bioremediation, which removes hazardous compounds from the environment using microbes or their biologically active metabolites, is one of the most successful remediation approaches. According to the United Nations Environment Program (UNEP), deteriorating soil health negatively impacts food security and human health over time. Soil health restoration is critical right now. Microbes are widely known for their importance in cleaning up toxins present in the soil, such as heavy metals, pesticides, and hydrocarbons. However, the capacity of local bacteria to digest these pollutants is limited, and the process takes an extended time. Genetically modified organisms (GMOs), whose altered metabolic pathways promote the over-secretion of a variety of proteins favorable to the bioremediation process, can speed up the breakdown process. The need for remediation procedures, degrees of soil contamination, site circumstances, broad adoptions, and numerous possibilities occurring at various cleaning stages are all studied in detail. Massive efforts to restore contaminated soils have also resulted in severe issues. This review focuses on the enzymatic removal of hazardous pollutants from the environment, such as pesticides, heavy metals, dyes, and plastics. There are also in-depth assessments of present discoveries and future plans for efficient enzymatic degradation of hazardous pollutants.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Aleena Sumrin
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rafia Waseem
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Maria Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Mehwish Imtiaz
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
5
|
Yu WX, Liang QY, Xuan XQ, Du ZJ, Mu DS. Gaoshiqia sediminis gen. nov., sp. nov., isolated from coastal sediment. Int J Syst Evol Microbiol 2023; 73. [PMID: 37133916 DOI: 10.1099/ijsem.0.005855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
A Gram-stain-negative, facultative anaerobic, motile, rod-shaped and orange bacterium, designated A06T, was obtained off the coast of Weihai, PR China. Cells were 0.4-0.5×0.6-1.0 µm in size. Strain A06T grew at 20-40 °C (optimum, 33 °C), at pH 6.0-8.0 (optimum, pH 6.5-7.0) and in the presence of 0-8 % NaCl (w/v) (optimum, 2 %). Cells were oxidase and catalase positive. Menaquinone-7 was detected as the major respiratory quinone. The dominant cellular fatty acids were identified as C15:0 2-OH, iso-C15:0, anteiso-C15:0 and iso-C15:1 ω6c. The DNA G+C content of strain A06T was 46.1 mol%. The polar lipids were phosphatidylethanolamine, one aminolipid, one glycolipid and three unidentified lipids. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A06T is a member of the family Prolixibacteraceae and exhibited the highest sequence similarity to Mangrovibacterium diazotrophicum DSM 27148T (94.3 %). Based on its phylogenetic and phenotypic characteristics, strain A06T is considered to represent a novel genus in the family Prolixibacteraceae, for which the name Gaoshiqia gen. nov. is proposed. The type species is Gaoshiqia sediminis sp. nov., with type strain A06T (=KCTC 92029T=MCCC 1H00491T). The identification and acquisition of microbial species and genes in sediments will help broaden the understanding of microbial resources and lay a foundation for its application in biotechnology. Strain A06T uses an enrichment method, so the isolation of strain A06T is of great significance to the enrichment of marine microbial resources.
Collapse
Affiliation(s)
- Wen-Xing Yu
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Qi-Yun Liang
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Xiao-Qi Xuan
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, PR China
| | - Da-Shuai Mu
- Marine College, Shandong University at Weihai, Weihai, 264209, PR China
- State key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, PR China
| |
Collapse
|
6
|
Anusha P, Ragavendran C, Kamaraj C, Sangeetha K, Thesai AS, Natarajan D, Malafaia G. Eco-friendly bioremediation of pollutants from contaminated sewage wastewater using special reference bacterial strain of Bacillus cereus SDN1 and their genotoxicological assessment in Allium cepa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160935. [PMID: 36527898 DOI: 10.1016/j.scitotenv.2022.160935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
The present study aimed to assess the Bacillus cereus SDN1 native bacterium's ability to clean up contaminated or polluted water. The isolated bacterium was identified by its morphological and biochemical characteristics, which were then confirmed at the genus level. Furthermore, the isolated B. cereus (NCBI accession No: MW828583) was identified genomically by PCR amplifying 16 s rDNA using a universal primer. The phylogenetic analysis of the rDNA sequence was analyzed to determine the taxonomic and evolutionary profile of the isolate of the previously identified Bacillus sp. Besides, B. cereus and the bacterial consortium were treated using sewage wastewater. After 15 days of treatment, the following pollutants or chemicals were reduced: total hardness particles removal varied from 63.33 % to 67.55 %, calcium removal varied from 90 % to 93.33 %, and total nitrate decreased range from 37.77 % to 22.22 %, respectively. Electrical conductivity ranged from 1809 mS/cm to 2500 mS/cm, and pH values ranged from 6.5 to 8.95. The outcome of in-situ remediation results suggested that B. cereus has a noticeable remediation efficiency to the suspended particles. A root tip test was also used to investigate the genotoxicity of treated and untreated sewage-contaminated waters on onion (Allium cepa) root cells. The highest chromosomal aberrations and mitotic inhibition were found in roots exposed to contaminated sewage water, and their results displayed chromosome abnormalities, including disorganized, sticky chain, disturbed metaphase, chromosomal displacement in anaphase, abnormal telophase, spindle disturbances, and binucleate cells observed in A. cepa exposed to untreated contaminated water. The study can thus be applied as a biomarker to detect the genotoxic impacts of sewage water pollution on biota. Furthermore, based on an identified bacterial consortium, this work offers a low-cost and eco-favorable method for treating household effluents.
Collapse
Affiliation(s)
- Ponniah Anusha
- Department of Science and Humanities, Kongunadu College of Engineering and Technology, Tholurpatti, Trichy 621 215, Tamil Nadu, India
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, India.
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Kanagaraj Sangeetha
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| | | | - Devarajan Natarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, Tamil Nadu, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil.; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil.; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil..
| |
Collapse
|
7
|
Sharma P, Bano A, Singh SP, Sharma S, Xia C, Nadda AK, Lam SS, Tong YW. Engineered microbes as effective tools for the remediation of polyaromatic aromatic hydrocarbons and heavy metals. CHEMOSPHERE 2022; 306:135538. [PMID: 35792210 DOI: 10.1016/j.chemosphere.2022.135538] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/04/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) have become a major concern to human health and the environment due to rapid industrialization and urbanization. Traditional treatment measures for removing toxic substances from the environment have largely failed, and thus development and advancement in newer remediation techniques are of utmost importance. Rising environmental pollution with HMs and PAHs prompted the research on microbes and the development of genetically engineered microbes (GEMs) for reducing pollution via the bioremediation process. The enzymes produced from a variety of microbes can effectively treat a range of pollutants, but evolutionary trends revealed that various emerging pollutants are resistant to microbial or enzymatic degradation. Naturally, existing microbes can be engineered using various techniques including, gene engineering, directed evolution, protein engineering, media engineering, strain engineering, cell wall modifications, rationale hybrid design, and encapsulation or immobilization process. The immobilization of microbes and enzymes using a variety of nanomaterials, membranes, and supports with high specificity toward the emerging pollutants is also an effective strategy to capture and treat the pollutants. The current review focuses on successful bioremediation techniques and approaches that make use of GEMs or engineered enzymes. Such engineered microbes are more potent than natural strains and have greater degradative capacities, as well as rapid adaptation to various pollutants as substrates or co-metabolizers. The future for the implementation of genetic engineering to produce such organisms for the benefit of the environment andpublic health is indeed long and valuable.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, UP, India
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208001, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Dehua Tubao New Decoration Material Co., Ltd., Huzhou, Zhejiang 313200, China
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India.
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
8
|
Sharma P, Parakh SK, Singh SP, Parra-Saldívar R, Kim SH, Varjani S, Tong YW. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155444. [PMID: 35461941 DOI: 10.1016/j.scitotenv.2022.155444] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/31/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Contamination of the environment through toxic pollutants poses a key risk to the environment due to irreversible environmental damage(s). Industrialization and urbanization produced harmful elements such as petrochemicals, agrochemicals, pharmaceuticals, nanomaterials, and herbicides that are intentionally or unintentionally released into the water system, threatening biodiversity, the health of animals, and humans. Heavy metals (HMs) in water, for example, can exist in a variety of forms that are inclined by climate features like the presence of various types of organic matter, pH, water system hardness, transformation, and bioavailability. Biological treatment is an important tool for removing toxic contaminants from the ecosystem, and it has piqued the concern of investigators over the centuries. In situ bioremediation such as biosparging, bioventing, biostimulation, bioaugmentation, and phytoremediation and ex-situ bioremediation includes composting, land farming, biopiles, and bioreactors. In the last few years, scientific understanding of microbial relations with particular chemicals has aided in the protection of the environment. Despite intensive studies being carried out on the mitigation of toxic pollutants, there have been limited efforts performed to discuss the solutions to tackle the limitations and approaches for the remediation of heavy metals holistically. This paper summarizes the risk assessment of HMs on aquatic creatures, the environment, humans, and animals. The content of this paper highlights the principles and limitations of microbial remediation to address the technological challenges. The coming prospect and tasks of evaluating the impact of different treatment skills for pollutant remediation have been reviewed in detail. Moreover, genetically engineered microbes have emerged as powerful bioremediation capabilities with significant potential for expelling toxic elements. With appropriate examples, current challenging issues and boundaries related to the deployment of genetically engineered microbes as bioremediation on polluted soils are emphasized.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur-208001, India
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias-Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382010, Gujarat, India.
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive, 117585, Singapore.
| |
Collapse
|
9
|
Crosstalk and gene expression in microorganisms under metals stress. Arch Microbiol 2022; 204:410. [PMID: 35729415 DOI: 10.1007/s00203-022-02978-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Contamination of the environment with heavy metals (HMs) has led to huge global environmental issues. Industrialization activities such as mining, manufacturing, and construction generate massive amounts of toxic waste, posing environmental risks. HMs soil pollution causes a variety of environmental issues and has a detrimental effect on both animals and plants. To remove HMs from the soil, traditional physico-chemical techniques such as immobilization, electro-remediation, stabilization, and chemical reduction are used. Moreover, the high energy, trained manpower, and hazardous chemicals required by these methods make them expensive and non-environmentally friendly. Bioremediation process, which involves microorganism-based and microorganism-associated-plant-based approaches, is an ecologically sound and cost-effective strategy for restoring HMs polluted soil. Microbes adjust their physiology to these conditions to live, which can involve significant variations in the expression of the genes. A set of genes are activated in response to toxic metals in microbes. They can also adapt by modifying their shape, fruiting bodies creating biofilms, filaments, or chemotactically migrating away from stress chemicals. Microbes including Bacillus sp., Pseudomonas sp., and Aspergillus sp. has been found to have high metals remediation and tolerance capacity of up to 98% whether isolated or in combination with plants like Helianthus annuus, Trifolium repens, and Vallisneria denseserrulata. Several of the regulatory systems that have been discovered are unique, but there is also a lot of "cross-talk" among networks. This review discusses the current state of knowledge regarding the microbial signaling responses, and the function of microbes in HMs stress resistance.
Collapse
|