1
|
Hill JD, Papoutsakis ET. Species-specific ribosomal RNA-FISH identifies interspecies cellular-material exchange, active-cell population dynamics and cellular localization of translation machinery in clostridial cultures and co-cultures. mSystems 2024; 9:e0057224. [PMID: 39254339 PMCID: PMC11495018 DOI: 10.1128/msystems.00572-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The development of synthetic microbial consortia in recent years has revealed that complex interspecies interactions, notably the exchange of cytoplasmic material, exist even among organisms that originate from different ecological niches. Although morphogenetic characteristics, viable RNA and protein dyes, and fluorescent reporter proteins have played an essential role in exploring such interactions, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to further investigate interactions in synthetic or semisynthetic consortia. Despite its maturity, several challenges exist in using rRNA-FISH as a tool to quantify individual species population dynamics and interspecies interactions using high-throughput instrumentation such as flow cytometry. In this work, we resolve such challenges and apply rRNA-FISH to double and triple co-cultures of Clostridium acetobutylicum, Clostridium ljungdahlii, and Clostridium kluyveri. In pursuing our goal to capture each organism's population dynamics, we demonstrate dynamic rRNA, and thus ribosome, exchange between the three species leading to the formation of hybrid cells. We also characterize the localization patterns of the translation machinery in the three species, identifying distinct, dynamic localization patterns among them. Our data also support the use of rRNA-FISH to assess the culture's health and expansion potential, and, here again, our data find surprising differences among the three species examined. Taken together, our study argues for rRNA-FISH as a valuable and accessible tool for quantitative exploration of interspecies interactions, especially in organisms which cannot be genetically engineered or in consortia where selective pressures to maintain recombinant species cannot be used. IMPORTANCE Though dyes and fluorescent reporter proteins have played an essential role in identifying microbial species in co-cultures, we hypothesized that ribosomal RNA-fluorescence in situ hybridization (rRNA-FISH) could be adapted and applied to quantitatively probe complex interactions between organisms in synthetic consortia. Despite its maturity, several challenges existed before rRNA-FISH could be used to study Clostridium co-cultures of interest. First, species-specific probes for Clostridium acetobutylicum and Clostridium ljungdahlii had not been developed. Second, "state-of-the-art" labeling protocols were tedious and often resulted in sample loss. Third, it was unclear if FISH was compatible with existing fluorescent reporter proteins. We resolved these key challenges and applied the technique to co-cultures of C. acetobutylicum, C. ljungdahlii, and Clostridium kluyveri. We demonstrate that rRNA-FISH is capable of identifying rRNA/ribosome exchange between the three organisms and characterized rRNA localization patterns in each. In combination with flow cytometry, rRNA-FISH can capture sub-population dynamics in co-cultures.
Collapse
Affiliation(s)
- John D. Hill
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T. Papoutsakis
- Department of Chemical and Biomolecular Engineering, The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
2
|
Namiot ED, Zembatov GM, Tregub PP. Insights into brain tumor diagnosis: exploring in situ hybridization techniques. Front Neurol 2024; 15:1393572. [PMID: 39022728 PMCID: PMC11252041 DOI: 10.3389/fneur.2024.1393572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Diagnosing brain tumors is critical due to their complex nature. This review explores the potential of in situ hybridization for diagnosing brain neoplasms, examining their attributes and applications in neurology and oncology. Methods The review surveys literature and cross-references findings with the OMIM database, examining 513 records. It pinpoints mutations suitable for in situ hybridization and identifies common chromosomal and gene anomalies in brain tumors. Emphasis is placed on mutations' clinical implications, including prognosis and drug sensitivity. Results Amplifications in EGFR, MDM2, and MDM4, along with Y chromosome loss, chromosome 7 polysomy, and deletions of PTEN, CDKN2/p16, TP53, and DMBT1, correlate with poor prognosis in glioma patients. Protective genetic changes in glioma include increased expression of ADGRB3/1, IL12B, DYRKA1, VEGFC, LRRC4, and BMP4. Elevated MMP24 expression worsens prognosis in glioma, oligodendroglioma, and meningioma patients. Meningioma exhibits common chromosomal anomalies like loss of chromosomes 1, 9, 17, and 22, with specific genes implicated in their development. Main occurrences in medulloblastoma include the formation of isochromosome 17q and SHH signaling pathway disruption. Increased expression of BARHL1 is associated with prolonged survival. Adenomas mutations were reviewed with a focus on adenoma-carcinoma transition and different subtypes, with MMP9 identified as the main metalloprotease implicated in tumor progression. Discussion Molecular-genetic diagnostics for common brain tumors involve diverse genetic anomalies. In situ hybridization shows promise for diagnosing and prognosticating tumors. Detecting tumor-specific alterations is vital for prognosis and treatment. However, many mutations require other methods, hindering in situ hybridization from becoming the primary diagnostic method.
Collapse
Affiliation(s)
- E. D. Namiot
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - G. M. Zembatov
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - P. P. Tregub
- Department of Pathophysiology, First Moscow State Medical University (Sechenov University), Moscow, Russia
- Brain Research Department, Federal State Scientific Center of Neurology, Moscow, Russia
- Scientific and Educational Resource Center, Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis, Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
3
|
Martins ACS, Medeiros GKVDV, de Oliveira SPA, de Albuquerque TMR, Sampaio KB, Dos Santos Lima M, do Nascimento YM, da Silva EF, Tavares JF, da Silva MS, de Souza EL, de Oliveira MEG. Unrevealing the in vitro impacts of Cereus jacamaru DC. cladodes flour on potentially probiotic strains, selected bacterial populations, and metabolic activity of human intestinal microbiota. Food Res Int 2023; 174:113658. [PMID: 37981375 DOI: 10.1016/j.foodres.2023.113658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the potential impacts of the flour from Cereus jamacaru cactus cladodes (CJF), a cactus native to the Brazilian Caatinga biome, on the growth and metabolism of different potentially probiotic strains, as well as on the abundance of selected intestinal bacterial populations and microbial metabolic activity during in vitro colonic fermentation with a pooled human fecal inoculum. Cultivation of the probiotics in a medium with C. jamacaru cladodes flour (20 g/L) resulted in viable cell counts of up to 9.8 log CFU/mL, positive prebiotic activity scores (0.73-0.91), decreased pH and sugar contents, and increased lactic, acetic, and propionic acid production over time, indicating enhanced probiotic growth and metabolic activity. CJF overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (2.12-3.29%) and Bifidobacterium spp. (4.08-4.32%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (8.35-6.81%), Clostridium histolyticum (6.91-3.59%), and Eubacterium rectale/Clostridium coccoides (7.70-3.95%) during 48 h of an in vitro colonic fermentation using a pooled human fecal inoculum. CJF stimulated the microbial metabolic activity, with decreased pH, sugar consumption, lactic and short-chain fatty acid production, alterations in overall metabolic profiling and phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. These results show that CJF stimulated the growth and metabolic activity of distinct potential probiotics, increased the relative abundance of beneficial intestinal bacterial groups, and stimulated microbial metabolism during in vitro colonic fermentation. Further studies using advanced molecular technologies and in vivo experimental models could forward the investigation of the potential prebiotic properties of CJF.
Collapse
Affiliation(s)
- Ana Cristina Silveira Martins
- Post-Graduate Program in Food Science and Technology, Department of Food Engineering, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | | | | | | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE 56302-100, Brazil
| | - Yuri Mangueira do Nascimento
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Evandro Ferreira da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Josean Fechine Tavares
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Institute for Research in Drugs and Medicines - IPeFarM, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa, PB 58051-900, Brazil
| | | |
Collapse
|
4
|
Li XH, Luo MM, Wang ZX, Wang Q, Xu B. The role of fungi in the diagnosis of colorectal cancer. Mycology 2023; 15:17-29. [PMID: 38558845 PMCID: PMC10977015 DOI: 10.1080/21501203.2023.2249492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/14/2023] [Indexed: 04/04/2024] Open
Abstract
Colorectal cancer (CRC) is a prevalent tumour with high morbidity rates worldwide, and its incidence among younger populations is rising. Early diagnosis of CRC can help control the associated mortality. Fungi are common microorganisms in nature. Recent studies have shown that fungi may have a similar association with tumours as bacteria do. As an increasing number of tumour-associated fungi are discovered, this provides new ideas for the diagnosis and prognosis of tumours. The relationship between fungi and colorectal tumours has also been recently identified by scientists. Therefore, this paper describes the limitations and prospects of the application of fungi in diagnosing CRC and predicting CRC prognosis.
Collapse
Affiliation(s)
- Xu-Huan Li
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming-Ming Luo
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Zu-Xiu Wang
- Department of General Practice, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Wang
- Department of Health Statistics, School of PubliHealth and Health Management, Gannan Medical University, Ganzhou, China
| | - Bin Xu
- Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, China
| |
Collapse
|
5
|
de Oliveira SPA, de Albuquerque TMR, Massa NML, Rodrigues NPA, Sampaio KB, do Nascimento HMA, Dos Santos Lima M, da Conceição ML, de Souza EL. Investigating the effects of conventional and unconventional edible parts of red beet (Beta vulgaris L.) on target bacterial groups and metabolic activity of human colonic microbiota to produce novel and sustainable prebiotic ingredients. Food Res Int 2023; 171:112998. [PMID: 37330844 DOI: 10.1016/j.foodres.2023.112998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the effects of freeze-dried red beet root (FDBR) and freeze-dried red beet stem and leaves (FDBSL) on target bacterial groups and metabolic activity of human colonic microbiota in vitro. The capability of FDBR and FDBSL to cause alterations in the relative abundance of different selected bacterial groups found as part of human intestinal microbiota, as well as in pH values, sugar, short-chain fatty acid, phenolic compounds, and antioxidant capacity were evaluated during 48 h of in vitro colonic fermentation. FDBR and FDBSL were submitted to simulated gastrointestinal digestion and freeze-dried prior to use in colonic fermentation. FDBR and FDBSL overall increased the relative abundance of Lactobacillus spp./Enterococcus spp. (3.64-7.60%) and Bifidobacterium spp. (2.76-5.78%) and decreased the relative abundance of Bacteroides spp./Prevotella spp. (9.56-4.18%), Clostridium histolyticum (1.62-1.15%), and Eubacterium rectale/Clostridium coccoides (2.33-1.49%) during 48 h of colonic fermentation. FDBR and FDBSL had high positive prebiotic indexes (>3.61) during colonic fermentation, indicating selective stimulatory effects on beneficial intestinal bacterial groups. FDBR and FDBSL increased the metabolic activity of human colonic microbiota, evidenced by decreased pH, sugar consumption, short-chain fatty acid production, alterations in phenolic compound contents, and maintenance of high antioxidant capacity during colonic fermentation. The results indicate that FDBR and FDBSL could induce beneficial alterations in the composition and metabolic activity of human intestinal microbiota, as well as that conventional and unconventional red beet edible parts are candidates to use as novel and sustainable prebiotic ingredients.
Collapse
Affiliation(s)
| | | | - Nayara Moreira Lacerda Massa
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Karoliny Brito Sampaio
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marcos Dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina, PE, Brazil
| | - Maria Lúcia da Conceição
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa, PB, Brazil.
| |
Collapse
|