1
|
Ma X, Ouyang Z, Luo H, Shang W, Ma H, Zhu M, Dong H, Guo Z, Dong X, Piao F, Shen S, Li X, Wang Y, Zhang T. Bacillus velezensis HR6-1 enhances salt tolerance in tomato by increasing endogenous cytokinin content and improving ROS scavenging. Microbiol Res 2025; 296:128143. [PMID: 40117839 DOI: 10.1016/j.micres.2025.128143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
The application of plant growth-promoting rhizobacteria (PGRP) is a promising and innovative strategy for alleviating salt stress in plants. However, the mechanism underlying PGRP-mediated alleviation of salt stress is currently unclear. In this study, we observed that the tomatoes inoculated with Bacillus velezensis HR6-1 exhibited better growth indicators and photosynthesis-related parameters than non-colonized tomatoes under salt stress. Physiological analysis showed that tomatoes inoculated with HR6-1 exhibited better Na+/K+ balance and lower ROS accumulation and oxidative damage, and higher activities of antioxidant enzymes compared with non-colonized tomatoes under salt stress. Transcriptome analysis revealed that under salt stress, HR6-1 treatment improved the expression of various transcription factors (especially WRKYs and ERFs) and many genes related to plant hormone signal transduction, the MAPK signaling pathway, the salt overly sensitive pathway, and detoxification in tomatoes. Moreover, HR6-1 inoculation increased the content of cZ- and tZ-type cytokinins in salt-treated tomato seedlings, which was consistent with the high expression of several cytokinin synthesis genes. Treatment with a cytokinin synthesis inhibitor prevented HR6-1-mediated improvement in salt tolerance in tomato seedlings, implying that HR6-1 stimulates cytokinin synthesis to enhance tomato resistance to salt stress. Our findings identify a potential biostimulant for improving tomato growth under salt stress and deepen our understanding of PGPR-mediated salinity alleviation in tomato seedlings.
Collapse
Affiliation(s)
- Xiaojing Ma
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Zhaopeng Ouyang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Hengbin Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Wenkai Shang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Haohao Ma
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Mengmeng Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Han Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xinzheng Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Yong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
2
|
Zhu XX, Shi LN, Shi HM, Ye JR. Characterization of the Priestia megaterium ZS-3 siderophore and studies on its growth-promoting effects. BMC Microbiol 2025; 25:133. [PMID: 40075263 PMCID: PMC11899797 DOI: 10.1186/s12866-024-03669-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 11/20/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The ability of plant growth-promoting rhizobacteria (PGPR) to alleviate iron deficiency-induced chlorosis in plants has been widely reported, but the role of siderophores in the re-greening process has rarely been investigated. In this study, the Priestia megaterium ZS-3 (ZS-3) siderophore was first characterized, and a 100-fold concentration of the crude extract of the siderophore was extracted by solid-phase extraction and used to inoculate Arabidopsis thaliana to investigate whether the ZS-3 siderophore could alleviate plant iron deficiency-induced chlorosis in the presence of an insoluble iron source and to determine how it promoted plant growth. RESULTS The results indicated that -Fe + Fe2O3 (Fe2O3) treatment induced a decrease in plant growth and iron nutritional status compared with those in the 1/2 MS (one-half-strength Murashige and Skoog medium). Expression levels of representative genes for chlorophyll synthesis, CHLM and CHLG, increased by 85.41% and 77.05% compared to Fe2O3 treatment; the IRT1 and FRO2 in Fe2O3 inoculated with the ZS-3 siderophore (T2 treatment) were upregulated by 88.1% and 87.20%, respectively. These results indicate that the ZS-3 siderophore upregulates the expressions of chlorophyll genes to increases photosynthesis and helps plants increase the transcription of iron and the activity of ferric-chelate reductase. Compared with the Fe2O3 treatment, the T2 group increased the soluble protein and chlorophyll contents by 2.64- and 3.47-fold, and improved the activities of ferric-chelate reductase and peroxidase (POD) by 3.69- and 2.9-fold, respectively, indicating that the ZS-3 siderophore maintained normal plant growth under Fe2O3 stress by increasing the activity of antioxidant enzymes. CONCLUSIONS This study revealed that the ZS-3 siderophore Ferrioxamine E [M + Fe-2 H] enhances plant iron uptake and transport activity at the transcriptional level, confirming the important role of the ZS-3 siderophore in plant iron deficiency status, and the results suggest that the ZS-3 siderophore helps plants acquire iron, alleviates plant chlorosis and promotes plant growth through mechanism I of plant iron acquisition. In this study, we closely linked the structural characterization and quantification of siderophores with Fe deficiency-induced chlorosis to elucidate the promotional mechanism of siderophores in Fe-deficient environments.
Collapse
Affiliation(s)
- Xiao-Xia Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Li-Na Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Hui-Min Shi
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Jian-Ren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
3
|
Elmeihy RM, Hewedy OA, Alhumaidi MS, Altammar KA, Hassan EO, El-Debaiky SA. Co-inoculation of Trichoderma viride with Azospirillum brasilense could suppress the development of Harpophora maydis-infected maize in Egypt. FRONTIERS IN PLANT SCIENCE 2025; 15:1486607. [PMID: 39980755 PMCID: PMC11839624 DOI: 10.3389/fpls.2024.1486607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/26/2024] [Indexed: 02/22/2025]
Abstract
Plant diseases caused by fungal pathogens are responsible for severe damage to strategic crops worldwide. Late wilt disease (LWD) is a vascular disease that occurs late in maize development. Harpophora maydis, the causative agent of maize LWD, is responsible for significant economic losses in Egypt. Therefore, the aim of this study was to control LWD of maize using an alternative approach to reduce the use of chemical pesticides. A combination of Trichoderma viride, a fungal biocontrol agent, and Azospirillum brasilense, a bacterial endophytic plant growth promoter, was applied in vitro and in planta. T. viride showed high mycoparasitic potential against H. maydis via various antagonistic activities, including the production of lytic enzymes, secondary metabolites, volatile compounds, and siderophores. A. brasilense and T. viride filtrates were also shown to suppress H. maydis growth, in addition to their ability to produce gibberellic and indole acetic acids. A significant change in the metabolites secreted by T. viride was observed using GC/MS in the presence of H. maydis. A field experiment was conducted on susceptible and resistant hybrids of maize to evaluate the antagonistic activity of T. viride combined with A. brasilense on LWD incidence as well as plant growth promotion under field conditions. The data revealed a significant decrease in both disease incidence and severity in maize plants treated with T. viride and/or A. brasilense. Further, there was a noticeable increase in all plant growth and yield parameters. An anatomical examination of the control and inoculated maize roots was also reflective of plant responses under biotic stress. Taken together, the obtained results provide successful eco-friendly management strategies against LWD in maize.
Collapse
Affiliation(s)
- Rasha M. Elmeihy
- Department of Agricultural Microbiology, Faculty of Agriculture, Benha University, Benha, Egypt
| | - Omar A. Hewedy
- Department of Genetics, Faculty of Agriculture, Menoufia University, Menoufia, Egypt
| | - Maryam S. Alhumaidi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Khadijah A. Altammar
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Eman O. Hassan
- Department of Plant Pathology, Faculty of Agriculture, Benha University, Benha, Egypt
| | | |
Collapse
|
4
|
Baloch FB, Zeng N, Gong H, Zhang Z, Zhang N, Baloch SB, Ali S, Li B. Rhizobacterial volatile organic compounds: Implications for agricultural ecosystems' nutrient cycling and soil health. Heliyon 2024; 10:e40522. [PMID: 39660212 PMCID: PMC11629272 DOI: 10.1016/j.heliyon.2024.e40522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) have emerged as key players in sustainable agriculture due to their ability to enhance plant growth, nutrient uptake, and disease resistance. A significant aspect of PGPR is the emission of volatile organic compounds (VOCs), which serve as signaling molecules that influence various physiological processes in plants. This review article explores the complex interactions between rhizobacterial VOCs and soil health, focusing particularly on their role in nutrient cycling within agricultural ecosystems. By investigating the mechanism of production and release of VOCs by rhizobacteria, along with impacts on soil properties and microbial communities. We aim to highlight the potential of rhizobacterial volatile organic compounds (VOCs) for sustainable agricultural management. Additionally, we discuss the role of rhizobacterial VOCs in promoting root growth, nutrient uptake, and enhancing nutrient cycling processes. By providing insights into these mechanisms, this review offers tailored strategies for exploring the potential of rhizobacterial VOCs to optimize nutrient availability, enhance soil fertility, and address environmental challenges in agriculture. Exploring the potential of rhizobacterial VOCs presents an opportunity to establish sustainable and resilient agricultural systems that significantly enhance global food security and promote environmental stewardship.
Collapse
Affiliation(s)
- Faryal Babar Baloch
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyang Gong
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhiyong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Sadia Babar Baloch
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 37005, Ceske Budejovice, Czech Republic
| | - Shahzaib Ali
- Faculty of Agriculture and Technology, University of South Bohemia in České Budějovice, Branišovská 1645/31a, 37005, Ceske Budejovice, Czech Republic
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
5
|
Hernández-Amador E, Montesdeoca-Flores DT, Abreu-Acosta N, Luis-Jorge JC. Effects of Rhizobacteria Strains on Plant Growth Promotion in Tomatoes ( Solanum lycopersicum). PLANTS (BASEL, SWITZERLAND) 2024; 13:3280. [PMID: 39683073 DOI: 10.3390/plants13233280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Numerous factors, such as soil fertility, climatic conditions, human activity, pests, and diseases, limit agricultural yields. Pesticides and fertilizers have become indispensable tools to satisfy the global food demand. However, its adverse environmental effects have led to the search for more sustainable and ethical techniques. Biofertilizers and biopesticides based on plant- growth-promoting rhizobacteria (PGPRs) are efficient and ecological treatments that promote plant growth and protection against pathogens and abiotic stresses. In this study, twelve rhizobacterial strains with plant-growth-promoting attributes were selected to evaluate their plant-growth-promoting effect on tomato plants (Solanum lycopersicum L. var Robin). Soil inoculation with these strains resulted in a significant increase in shoot length, up to 50% when compared with control plants. Regarding fresh biomass, rhizobacterial treatments significantly improved seedlings' fresh aerial weight with a maximum increase of 77%. Root biomass also demonstrated a substantial improvement, yielding 62.26% greater fresh root weight compared to the control. Finally, dry root weights exhibited the most remarkable enhancements, with values between 49 and 124%, when compared to the control plants. Concerning the nutritional status, the strains inoculation increased the macronutrients and micronutrients content in the aerial and root parts of the plants. All these findings suggest that rhizobacteria from different ecosystems and agriculture soils of the Canary Islands could be used as fertilizer inoculants to increase crop yield and promote more sustainable practices in modern agriculture.
Collapse
Affiliation(s)
- Eduardo Hernández-Amador
- Department of Botany, Ecology and Plant Physiology, Area of Plant Physiology, Science Faculty, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Nertalab S.L., C. José Rodríguez Moure 4, 38008 Santa Cruz de Tenerife, Tenerife, Spain
| | - David Tomás Montesdeoca-Flores
- Department of Botany, Ecology and Plant Physiology, Area of Plant Physiology, Science Faculty, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38200 San Cristóbal de La Laguna, Tenerife, Spain
- Nertalab S.L., C. José Rodríguez Moure 4, 38008 Santa Cruz de Tenerife, Tenerife, Spain
| | - Néstor Abreu-Acosta
- Nertalab S.L., C. José Rodríguez Moure 4, 38008 Santa Cruz de Tenerife, Tenerife, Spain
| | - Juan Cristo Luis-Jorge
- Department of Botany, Ecology and Plant Physiology, Area of Plant Physiology, Science Faculty, University of La Laguna, Avenida Astrofísico Francisco Sánchez s/n, 38200 San Cristóbal de La Laguna, Tenerife, Spain
| |
Collapse
|
6
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
7
|
Kabiraj A, Halder U, Bandopadhyay R. Isolation and Characterization of Arsenic-Tolerable Bacteria from Groundwater and Their Implementation on Rice Seedling's Shoot and Root Enhancement. Curr Microbiol 2024; 81:425. [PMID: 39448435 DOI: 10.1007/s00284-024-03951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Arsenic exerts detrimental impacts on primary metabolism in plants, leading to reduced crop yield. Some arsenic-resistant plant growth-promoting bacteria (PGPB) help plants by providing some plant hormones to sustain their growth and development under arsenic stress. Here, seven different species of Bacillus were isolated from arsenic-contaminated groundwater of West Bengal, India. Those species were capable of growing in the presence of > 3.12 g/L arsenate (AsV) and > 0.65 g/L arsenite (AsIII) salts and also resist different heavy metals like Cu2+, Fe2+, Co2+, Zn2+, Pb2+, etc. They were susceptible to multiple groups of antibiotics like beta-lactam, aminoglycosides, etc. All species were capable of detoxifying arsenite and influenced rice seedlings' growth in the presence of arsenic salts by their capabilities like nitrogen-fixing ability, phosphate solubilization, indole 3-acetic acid (IAA), gibberellic acid (GA), proline production, etc. Most species helped enhance root and shoot lengths under arsenic stress. These primary findings suggest that those Bacillus spp. could be used as potential bio-fertilizers in arsenic-contaminated agricultural fields.
Collapse
Affiliation(s)
- Ashutosh Kabiraj
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India
| | - Urmi Halder
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India
| | - Rajib Bandopadhyay
- Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal, 713104, India.
| |
Collapse
|
8
|
Bigatton ED, Verdenelli RA, Haro RJ, Ayoub I, Barbero FM, Martín MP, Dubini LE, Jorrín Novo JV, Lucini EI, Castillejo MÁ. Metagenomic Analysis to Assess the Impact of Plant Growth-Promoting Rhizobacteria on Peanut ( Arachis hypogaea L.) Crop Production and Soil Enzymes and Microbial Diversity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:22385-22397. [PMID: 39324627 PMCID: PMC11468012 DOI: 10.1021/acs.jafc.4c05687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Peanut production could be increased through plant growth-promoting rhizobacteria (PGPR). In this regard, the present field research aimed at elucidating the impact of PGPR on peanut yield, soil enzyme activity, microbial diversity, and structure. Three PGPR strains (Bacillus velezensis, RI3; Bacillus velezensis, SC6; Pseudomonas psychrophila, P10) were evaluated, along with Bradyrhizobium japonicum (BJ), taken as a control. PGPR increased seed yield by 8%, improving the radiation use efficiency (4-14%). PGPR modified soil enzymes (fluorescein diacetate activity by 17% and dehydrogenase activity by 28%) and microbial abundance (12%). However, PGPR did not significantly alter microbial diversity; nonetheless, it modified the relative abundance of key phyla (Actinobacteria > Proteobacteria > Firmicutes) and genera (Bacillus > Arthrobacter > Pseudomonas). PGPRs modified the relative abundance of genes associated with N-fixation and nitrification while increasing genes related to N-assimilation and N-availability. PGPR improved agronomic traits without altering rhizosphere diversity.
Collapse
Affiliation(s)
- Ezequiel D. Bigatton
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ciudad de Valparaíso
S/N, Córdoba X5016, Argentina
- Departamento
de Bioquímica y Biología Molecular-ETSIAM, AGR-164 Bioquímica,
Proteómica y Biología de Sistemas Vegetal y Agroforestal, Universidad de Córdoba, Autovía N−IV Km 396,
Campus Rabanales, Córdoba, Andalucía 14071, Spain
| | - Romina A. Verdenelli
- Instituto
Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos
(FCEFyN-UNC), Av. Vélez
Sarsfield 1666, Córdoba X5016, Argentina
| | - Ricardo J. Haro
- Estación
Experimental Agropecuaria INTA Manfredi, Instituto Nacional de Tecnología Agropecuaria (INTA), Ruta Nacional N°9 Km 636, Manfredi, Córdoba X5988, Argentina
| | - Ibrahim Ayoub
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Ciudad de Valparaíso
S/N, Córdoba X5016, Argentina
| | - Florencia M. Barbero
- Instituto
Multidisciplinario de Biología Vegetal (IMBIV-CONICET-UNC), Instituto de Ciencia y Tecnología de los Alimentos
(FCEFyN-UNC), Av. Vélez
Sarsfield 1666, Córdoba X5016, Argentina
| | - Maria Paula Martín
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
| | - Lucas E. Dubini
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
| | - Jesús V. Jorrín Novo
- Departamento
de Bioquímica y Biología Molecular-ETSIAM, AGR-164 Bioquímica,
Proteómica y Biología de Sistemas Vegetal y Agroforestal, Universidad de Córdoba, Autovía N−IV Km 396,
Campus Rabanales, Córdoba, Andalucía 14071, Spain
| | - Enrique I. Lucini
- Facultad
de Ciencias Agropecuarias, Microbiología Agrícola, Universidad Nacional de Córdoba, Ingeniero Agrónomo Félix
Aldo Marrone 746, Córdoba X5000, Argentina
| | - María Ángeles Castillejo
- Departamento
de Bioquímica y Biología Molecular-ETSIAM, AGR-164 Bioquímica,
Proteómica y Biología de Sistemas Vegetal y Agroforestal, Universidad de Córdoba, Autovía N−IV Km 396,
Campus Rabanales, Córdoba, Andalucía 14071, Spain
| |
Collapse
|
9
|
Sathya C, Karmegam N, Lalitha S. Mitigation of heavy metal toxicity in pigeon pea by plant growth promoting Pseudomonas alcaliphila strain PAS1 isolated from contaminated environment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:439. [PMID: 39316275 DOI: 10.1007/s10653-024-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
The risk of arsenic contamination is rising globally, and it has negative impacts on the physiological processes and growth of plants. Metal removal from contaminated soils can be accomplished affordably and effectively with plant growth promoting rhizobacteria (PGPR)-based microbial management. From this angle, this research evaluated the mitigation of arsenic toxicity using the bacteria isolated from contaminated site, Mettur, Salem district, South India. The newly isolated bacterial strain was screened for plant growth promotion potential and arsenic tolerance such as (100 ppm, 250 ppm, 500 ppm, 800 ppm and 1200 ppm). The metal tolerant rhizobacteria was identified using 16S rRNA gene sequence analysis as Pseudomonas alcaliphila strain PAS1 (GenBank accession number: OQ804624). Pigeon pea (Cajanus cajan) plants were used in pot culture experiments with varying concentrations of arsenic, (5 ppm, 10 ppm and 25 ppm) both with and without bacterial culture, for a period of 45 days. At the concentration of 25 ppm after the application of PAS1 enhanced the plant growth, protein and carbohydrate by 35.69%, 18.31% respectively. Interestingly, P. alcaliphila strain PAS1 significantly reduced the stress-induced elevated levels of proline, flavonoid, phenol and antioxidant enzyme in pigeon pea plants was 40%, 31.11%, 27.80% and 20.12%, respectively. Consequently, PAS1 may significantly reduce the adverse effects that arsenic causes to plant development in acidic soils, improve plant uptake of nutrients, and increase plant production. The findings of this study reveal that P. alcaliphila PAS1 is intrinsic for phytoremediation by reducing arsenic accumulation in the root and shoot.
Collapse
Affiliation(s)
- Chinnadurai Sathya
- Soil Biology and PGPR Lab, Department of Botany, School of Life Science, Periyar University, Salem, Tamil Nadu, 636 011, India
| | - Natchimuthu Karmegam
- PG and Research Department of Botany, Government Arts College (Autonomous), Salem, Tamil Nadu, 636 007, India
| | - Sundaram Lalitha
- Soil Biology and PGPR Lab, Department of Botany, School of Life Science, Periyar University, Salem, Tamil Nadu, 636 011, India.
| |
Collapse
|
10
|
Kumari R, Pandey E, Bushra S, Faizan S, Pandey S. Plant Growth Promoting Rhizobacteria (PGPR) induced protection: A plant immunity perspective. PHYSIOLOGIA PLANTARUM 2024; 176:e14495. [PMID: 39247988 DOI: 10.1111/ppl.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024]
Abstract
Plant-environment interactions, particularly biotic stress, are increasingly essential for global food security due to crop losses in the dynamic environment. Therefore, understanding plant responses to biotic stress is vital to mitigate damage. Beneficial microorganisms and their association with plants can reduce the damage associated with plant pathogens. One such group is PGPR (Plant growth-promoting rhizobacteria), which influences plant immunity significantly by interacting with biotic stress factors and plant signalling compounds. This review explores the types, metabolism, and mechanisms of action of PGPR, including their enzyme pathways and the signalling compounds secreted by PGPR that modulate gene and protein expression during plant defence. Furthermore, the review will delve into the crosstalk between PGPR and other plant growth regulators and signalling compounds, elucidating the physiological, biochemical, and molecular insights into PGPR's impact on plants under multiple biotic stresses, including interactions with fungi, bacteria, and viruses. Overall, the review comprehensively adds to our knowledge about PGPR's role in plant immunity and its application for agricultural resilience and food security.
Collapse
Affiliation(s)
- Rinkee Kumari
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Ekta Pandey
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Sayyada Bushra
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Shahla Faizan
- Environmental Physiology Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, (U.P.), India
| | - Saurabh Pandey
- Department of Agriculture, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
11
|
Riva F, Dechesne A, Eckert EM, Riva V, Borin S, Mapelli F, Smets BF, Crotti E. Conjugal plasmid transfer in the plant rhizosphere in the One Health context. Front Microbiol 2024; 15:1457854. [PMID: 39268528 PMCID: PMC11390587 DOI: 10.3389/fmicb.2024.1457854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) is one of the primary routes of antimicrobial resistance (AMR) dissemination. In the One Health context, tracking the spread of mobile genetic elements (MGEs) carrying ARGs in agri-food ecosystems is pivotal in understanding AMR diffusion and estimating potential risks for human health. So far, little attention has been devoted to plant niches; hence, this study aimed to evaluate the conjugal transfer of ARGs to the bacterial community associated with the plant rhizosphere, a hotspot for microbial abundance and activity in the soil. We simulated a source of AMR determinants that could enter the food chain via plants through irrigation. Methods Among the bacterial strains isolated from treated wastewater, the strain Klebsiella variicola EEF15 was selected as an ARG donor because of the relevance of Enterobacteriaceae in the AMR context and the One Health framework. The strain ability to recolonize lettuce, chosen as a model for vegetables that were consumed raw, was assessed by a rifampicin resistant mutant. K. variicola EEF15 was genetically manipulated to track the conjugal transfer of the broad host range plasmid pKJK5 containing a fluorescent marker gene to the natural rhizosphere microbiome obtained from lettuce plants. Transconjugants were sorted by fluorescent protein expression and identified through 16S rRNA gene amplicon sequencing. Results and discussion K. variicola EEF15 was able to colonize the lettuce rhizosphere and inhabit its leaf endosphere 7 days past bacterial administration. Fluorescence stereomicroscopy revealed plasmid transfer at a frequency of 10-3; cell sorting allowed the selection of the transconjugants. The conjugation rates and the strain's ability to colonize the plant rhizosphere and leaf endosphere make strain EEF15::lacIq-pLpp-mCherry-gmR with pKJK5::Plac::gfp an interesting candidate to study ARG spread in the agri-food ecosystem. Future studies taking advantage of additional environmental donor strains could provide a comprehensive snapshot of AMR spread in the One Health context.
Collapse
Affiliation(s)
- Francesco Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Arnaud Dechesne
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ester M Eckert
- CNR - IRSA Water Research Institute, Molecular Ecology Group (MEG), Verbania, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Valentina Riva
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Biological and Chemical Engineering, Center for Water Technology, Aarhus University, Aarhus, Denmark
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| |
Collapse
|
12
|
Alzate Zuluaga MY, Fattorini R, Cesco S, Pii Y. Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Front Microbiol 2024; 15:1440978. [PMID: 39176279 PMCID: PMC11338843 DOI: 10.3389/fmicb.2024.1440978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Biofertilizers based on plant growth promoting rhizobacteria (PGPR) are nowadays gaining increasingly attention as a modern tool for a more sustainable agriculture due to their ability in ameliorating root nutrient acquisition. For many years, most research was focused on the screening and characterization of PGPR functioning as nitrogen (N) or phosphorus (P) biofertilizers. However, with the increasing demand for food using far fewer chemical inputs, new investigations have been carried out to explore the potential use of such bacteria also as potassium (K), sulfur (S), zinc (Zn), or iron (Fe) biofertilizers. In this review, we update the use of PGPR as biofertilizers for a smarter and more sustainable crop production and deliberate the prospects of using microbiome engineering-based methods as potential tools to shed new light on the improvement of plant mineral nutrition. The current era of omics revolution has enabled the design of synthetic microbial communities (named SynComs), which are emerging as a promising tool that can allow the formulation of biofertilizers based on PGPR strains displaying multifarious and synergistic traits, thus leading to an increasingly efficient root acquisition of more than a single essential nutrient at the same time. Additionally, host-mediated microbiome engineering (HMME) leverages advanced omics techniques to reintroduce alleles coding for beneficial compounds, reinforcing positive plant-microbiome interactions and creating plants capable of producing their own biofertilizers. We also discusses the current use of PGPR-based biofertilizers and point out possible avenues of research for the future development of more efficient biofertilizers for a smarter and more precise crop fertilization. Furthermore, concerns have been raised about the effectiveness of PGPR-based biofertilizers in real field conditions, as their success in controlled experiments often contrasts with inconsistent field results. This discrepancy highlights the need for standardized protocols to ensure consistent application and reliable outcomes.
Collapse
|
13
|
Wani OA, Akhter F, Kumar SS, Kanth RH, Dar ZA, Babu S, Hussain N, Mahdi SS, Alataway A, Dewidar AZ, Mattar MA. Pyrolyzed and unpyrolyzed residues enhance maize yield under varying rates of application and fertilization regimes. PeerJ 2024; 12:e17513. [PMID: 38887617 PMCID: PMC11182025 DOI: 10.7717/peerj.17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Biochar is increasingly gaining popularity due to its extensive recommendation as a potential solution for addressing the concerns of food security and climate change in agroecosystems, with biochar application for increased carbon sequestration, enhanced soil fertility, improved soil health, and increased crop yield and quality. There have been multiple studies on crop yield utilizing various biochar types and application amounts; however, none have focused on the influence of diverse biochar types at various pyrolysis temperatures with different application amounts and the integration of fertilizer regimes in maize crops. Therefore, a two-year factorial field experiment was designed in a temperate Himalayan region of India (THRI) to evaluate the residual effect of different biochar on maize yield under different pyrolysis temperatures, various application rates and fertilizer regimes. The study included three factors viz., amendment type (factor 1), rate of application (factor 2) and fertilizer regime (factor 3). Amendment type included 7 treatments: No biochar- control (A1), apple biochar @ 400 °C pyrolysis temperature (A2), apple biochar @ 600 °C pyrolysis temperature (A3), apple residue biomass (A4), dal weed biochar @ 400 °C pyrolysis temperature (A5), dal weed biochar @ 600 °C pyrolysis temperatures (A6), and dal weed residue biomass (A7). The rate of application included 3 levels: Low (L- 1 t ha-1), medium (M- 2 t ha-1), and high (H- 3 t ha-1). At the same time, the fertilizer regimes included 2 treatments: No fertilizer (N) and recommended dose of fertilizer (F). The results revealed that among the various amendment type, rate of application and fertilizer regimes, the A3 amendment, H rate of application and F fertilizer regime gave the best maize growth and productivity outcome. Results revealed that among the different pyrolyzed residues used, the A3 amendment had the highest plant height (293.87 cm), most kernels cob-1 (535.75), highest soil plant analysis development (SPAD) value (58.10), greatest cob length (27.36 cm), maximum cob girth (18.18 cm), highest grain cob yield (1.40 Mg ha-1), highest grain yield (4.78 Mg ha-1), higher test weight (305.42 gm), and highest stover yield (2.50 Mg ha-1). The maximum dry weight in maize and the number of cobs plant-1 were recorded with amendments A4 (14.11 Mg ha-1) and A6 (1.77), respectively. The comparatively 2nd year of biochar application than the 1st year, the H level of the rate of application than the L rate and the application and integration of the recommended dose of fertilizer in maize results in significantly higher values of growth and productivity in maize. Overall, these findings suggest that the apple biochar @ 600 °C pyrolysis temperature (A3) at a high application rate with the addition of the recommended dose of fertilizer is the optimal biochar for enhancing the growth and productivity of maize in the THRI.
Collapse
Affiliation(s)
- Owais Ali Wani
- Division of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, India
| | - Farida Akhter
- Division of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, India
| | - Shamal Shasang Kumar
- Division of Soil Science and Agricultural Chemistry, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, India
| | - Raihana Habib Kanth
- Division of Agronomy, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, India
| | | | - Subhash Babu
- Division of Agronomy, ICAR - Indian Agricultural Research Institute, New Delhi, India
| | | | - Syed Sheraz Mahdi
- Division of Agronomy, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, India
| | - Abed Alataway
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Z. Dewidar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A. Mattar
- Prince Sultan Bin Abdulaziz International Prize for Water Chair, Prince Sultan Institute for Environmental, Water and Desert Research, King Saud University, Riyadh, Saudi Arabia
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Kanjanapokin C, Thiravetyan P, Chonjoho N, Dolphen R, Treesubsuntorn C. Light-emitting plants development by inoculating of Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema cochinchinense. Photochem Photobiol Sci 2024; 23:973-985. [PMID: 38622375 DOI: 10.1007/s43630-024-00568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
The concept of utilizing light-emitting plants (LEPs) as an alternative to traditional electricity-based lighting has garnered interest. However, challenges persist due to the need for genetic modification or chemical infusion in current LEPs. To address this, researchers have investigated the interaction between plants and luminous bacteria, specifically Vibrio campbellii, which can efficiently be translocated into Aglaonema cochinchinense tissues through the roots to produce LEPs. This study concentrated on examining light intensity and enhancing luminescence by growing plants and spraying them with various media substances. The results indicated that V. campbellii successfully translocated into the plant tissue via the root system and accumulated a high number of bacteria in the stems, approximately 8.46 × 104 CFU/g, resulting in a light-emitting intensity increase of 12.13-fold at 48 h, and then decreased after 30 h. Interestingly, luminescence stimulation by spraying the growth medium managed to induce the highest light emission, reaching 14.84-fold at 48 h, though it had some negative effects on the plant. Conversely, spraying plants with CaCl2 on the leaves prolonged light emission for a longer duration (42 h after spraying) and had a positive effect on plant health, it maintained ion homeostasis and reduced-MDA content. This study highlights the potential of using V. campbellii and CaCl2 spraying for the future development of practical light-emitting plants.
Collapse
Affiliation(s)
- Chutipa Kanjanapokin
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Paitip Thiravetyan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
- Research & Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Bangkok, 10330, Thailand.
| |
Collapse
|
15
|
Wójcik M, Koper P, Żebracki K, Marczak M, Mazur A. Genomic and Metabolic Characterization of Plant Growth-Promoting Rhizobacteria Isolated from Nodules of Clovers Grown in Non-Farmed Soil. Int J Mol Sci 2023; 24:16679. [PMID: 38069003 PMCID: PMC10706249 DOI: 10.3390/ijms242316679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The rhizosphere microbiota, which includes plant growth-promoting rhizobacteria (PGPR), is essential for nutrient acquisition, protection against pathogens, and abiotic stress tolerance in plants. However, agricultural practices affect the composition and functions of microbiota, reducing their beneficial effects on plant growth and health. Among PGPR, rhizobia form mutually beneficial symbiosis with legumes. In this study, we characterized 16 clover nodule isolates from non-farmed soil to explore their plant growth-promoting (PGP) potential, hypothesizing that these bacteria may possess unique, unaltered PGP traits, compared to those affected by common agricultural practices. Biolog profiling revealed their versatile metabolic capabilities, enabling them to utilize a wide range of carbon and energy sources. All isolates were effective phosphate solubilizers, and individual strains exhibited 1-aminocyclopropane-1-carboxylate deaminase and metal ion chelation activities. Metabolically active strains showed improved performance in symbiotic interactions with plants. Comparative genomics revealed that the genomes of five nodule isolates contained a significantly enriched fraction of unique genes associated with quorum sensing and aromatic compound degradation. As the potential of PGPR in agriculture grows, we emphasize the importance of the molecular and metabolic characterization of PGP traits as a fundamental step towards their subsequent application in the field as an alternative to chemical fertilizers and supplements.
Collapse
Affiliation(s)
| | | | | | | | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland; (M.W.); (P.K.); (K.Ż.); (M.M.)
| |
Collapse
|
16
|
Tang J, Han Y, Pei L, Gu W, Qiu R, Wang S, Ma Q, Gan Y, Tang M. Comparative analysis of the rhizosphere microbiome and medicinally active ingredients of Atractylodes lancea from different geographical origins. Open Life Sci 2023; 18:20220769. [PMID: 38027226 PMCID: PMC10668115 DOI: 10.1515/biol-2022-0769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
This study aimed to explore the important role of the rhizosphere microbiome in the quality of Atractylodes lancea (Thunb.) DC. (A. lancea). The rhizosphere microbial community of A. lancea at two sampling sites was studied using metagenomic technology. The results of α-diversity analysis showed that the rhizosphere microbial richness and diversity were higher in the Maoshan area. The higher abundance of core microorganisms of the rhizosphere, especially Penicillium and Streptomyces, in the Maoshan area compared with those in the Yingshan area might be an important factor affecting the yield of A. lancea. Redundancy analysis illustrated that the available phosphorus had a significant effect on the rhizosphere microbial community structure of A. lancea. We also showed that the plant-microbe and microbe-microbe interactions were closer in the Maoshan area than in the Yingshan area, and Streptomyces were the main contributors to the potential functional difference between the two regions. A. lancea in the Maoshan area had a high content of atractylodin and atractylon, which might be related to the enhanced abundance of Streptomyces, Candidatus-Solibacter, and Frankia. Taken together, this study provided theoretical insights into the interaction between medicinal plants and the rhizosphere microbiome and provides a valuable reference for studying beneficial microbes of A. lancea.
Collapse
Affiliation(s)
- Junjie Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Yun Han
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Lingfeng Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Wei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization,
Nanjing, 210023, China
| | - Rongli Qiu
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs, Beijng, 100700, China
| | - Qihan Ma
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215002, China
| | - Yifu Gan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| | - Min Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Jiangsu, Nanjing, 210023, China
| |
Collapse
|