1
|
Song Y, Wu Y, Chen L, Ruan L, Wan M, Liu B, He J, Zhang B. Paenibacillus mesotrionivorans sp. nov., a Mesotrione-Degrading Strain Isolated from Soil. Curr Microbiol 2025; 82:108. [PMID: 39890653 DOI: 10.1007/s00284-025-04086-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/19/2025] [Indexed: 02/03/2025]
Abstract
A Gram-stain-positive, facultatively anaerobic, motile with peritrichous flagella, and rod-shaped bacterium, designated as P15T, was isolated from an agricultural soil sample collected in Jiangxi Province, PR China. Strain P15T completely degraded 100 mg/L of mesotrione, a herbicide, within 48 h of incubation. Strain P15T grew at 15-42 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0), and 0-4.0% (w/v) NaCl (optimum 1.0%). Strain P15T exhibited less than 93.3% 16S rRNA gene sequence similarity with type strains of genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene sequences, strain P15T was clustered in genus Paenibacillus and formed a subclade with P. cavernae C4-5T, P. contaminans CKOBP-6T, and P. doosanensis CAU 1005T. The major cellular fatty acids (≥ 5% of the total) were anteiso-C15:0, iso-C16:0, C14:0, C16:0, and iso-C14:0. The predominant respiratory quinone was MK-7. The major polar lipids were diphosphatidylglycerol, phosphatidylglycero, phosphatidylethanolamine, one unidentified glycolipid, one unidentified aminophosphoglycolipid, two unidentified aminophospholipids, two unidentified phospholipid, and two unidentified lipids. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid. The DNA G + C content was 53.9 mol%. Based on the phylogenetic, phenotypic, and chemotaxonomic characteristics, strain P15T represents a novel species within genus Paenibacillus, for which the name Paenibacillus mesotrionivorans sp. nov is proposed, with strain P15T (= MCCC 1K09191T = KCTC 43705T) as the type strain.
Collapse
Affiliation(s)
- Ye Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yan Wu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Leyao Chen
- School of Stomatology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Luyao Ruan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Minglai Wan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bin Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Jian He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, Jiangsu, 210095, People's Republic of China.
- National Collection of Agricultural Environmental Microbes (Jiangsu), Nanjing, Jiangsu, 210095, People's Republic of China.
| | - Baolong Zhang
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
2
|
Xu Q, Liu B, Wan Y, Jiang X, Chen L, Mao D, Chen G, Cheng D, He J, Shen Q. Paenibacillus lacisoli sp. nov., a mesotrione-degrading strain isolated from lakeside soil. Antonie Van Leeuwenhoek 2024; 117:32. [PMID: 38329631 DOI: 10.1007/s10482-023-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/27/2023] [Indexed: 02/09/2024]
Abstract
A Gram-stain-positive, facultatively anaerobic, rod-shaped bacterium, designated JX-17T, was isolated from a soil sample collected in Jiangxi Province, PR China. Growth was observed at 15-48 °C (optimum 37 °C), at pH 5.0-9.0 (optimum pH 7.0) and with 0-6.0% (w/v) NaCl (optimum 1.0%). Strain JX-17T could degrade approximately 50% of 50 mg/L mesotrione within 2 days of incubation, but could not use mesotrione as sole carbon source for growth. Strain JX-17T showed less than 95.3% 16S rRNA gene sequence similarity with type strains of the genus Paenibacillus. In the phylogenetic tree based on 16S rRNA gene and genome sequences, strain JX-17T formed a distinct lineage within the genus Paenibacillus. The ANI values between JX-17T and the most closely related type strains P. lentus CMG1240T and P. farraposensis UY79T were 70.1% and 71.4%, respectively, and the dDDH values between them were 19.0% and 23.3%, respectively. The major cellular fatty acids were anteiso-C15:0, iso-C16:0, anteiso-C17:0 and C16:0, the predominant respiratory quinone was MK-7, the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid, an aminophospholipid and a phosphatidylinositol. The diagnostic diamino acid of the peptidoglycan was meso-diaminopimelic acid, and the DNA G + C content was 50.1 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characteristics, strain JX-17T represents a novel species within the genus Paenibacillus, for which the name Paenibacillus lacisoli sp. nov is proposed, with strain JX-17T (= GDMCC 1.3962T = KCTC 43568T) as the type strain.
Collapse
Affiliation(s)
- Qimiao Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Bin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Yingying Wan
- College of Life Sciences, Jiangxi Normal University, Nanchang, 330022, Jiangxi, China
| | - Xueting Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Le Chen
- Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, People's Republic of China
| | - Dongmei Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Gang Chen
- Anhui Neotec Co., Ltd., Huaibei, 235100, Anhui, People's Republic of China
| | - Dan Cheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
| | - Jian He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Qirong Shen
- Agricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu Province, Nanjing, 210095, Jiangsu, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Wang Q, Han XL, Shen JQ, Lai JD, Zhang CL, Fang ZQ, Lu T. Paenibacillus baimaensis sp. nov., a bacterium isolated from mountain soil in the habitat of Rhinopithecus bieti. Int J Syst Evol Microbiol 2024; 74. [PMID: 38334269 DOI: 10.1099/ijsem.0.006260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
A novel Gram-positive strain WQ 127069T that was isolated from the soil of Baima Snow Mountain, a habitat of highly endangered Yunnan snub-nosed monkeys (Rhinopithecus bieti), was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate belongs to the genus Paenibacillus, showing 98.4 and 96.08 % sequence similarity to the type strains Paenibacillus periandrae PM10T and Paenibacillus foliorum LMG 31456T, respectively. The G+C content of the genomic DNA of strain WQ127069T was 45.6 mol%. The predominant isoprenoid quinone was MK-7, and meso-diaminopimelic acid was present in peptidoglycan. The major cellular fatty acids were antiiso-C15 : 0, iso-C15 : 0 and C16 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and phosphatidylmonomethylethanolamine. The whole genome average nucleotide identity and digital DNA-DNA hybridization values between strain WQ 127069T and strain PM10T were 93.2 and 52.5 %, respectively. Growth occurred at 5-40 °C (optimally at 20-35 °C), pH 6-8 (optimally at pH7.0) and with 0.5-2 % (w/v) NaCl (optimally at 0.5 %). On the basis of the taxonomic evidence, a novel species, Paenibacillus baimaensis sp. nov., is proposed. The type strain is WQ 127069T (=KCTC 43480T=CCTCC AB 2022381T).
Collapse
Affiliation(s)
- Qiong Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
- Present address: Center for Pharmaceutical Sciences, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiu-Lin Han
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Jian-Qiang Shen
- Weixi Sub-bureau, Baima Snow Mountain National Nature Reserve, Diqing, Yunnan 674400, PR China
| | - Jian-Dong Lai
- Wildlife Rescue and Rehabilitation Station, Baima Snow Mountain National Nature Reserve, Diqing, Yunnan 674400, PR China
| | - Chen-Lu Zhang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Zhi-Qin Fang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| | - Tao Lu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650500, PR China
| |
Collapse
|