1
|
Pandey KK, Mehta K, Kaur B, Dhar P. Curcumin alleviates arsenic trioxide-induced neural damage in the murine striatal region. Psychopharmacology (Berl) 2025; 242:497-520. [PMID: 39443330 DOI: 10.1007/s00213-024-06700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
RATIONALE Arsenic-induced neurotoxicity, with dose-dependent effects, is well-documented in rodents. Curcumin (CUR), a cost-effective plant polyphenol, shows neuroprotective effects by modulating oxidative stress, apoptosis, and neurochemistry. This study evaluates curcumin's neuroprotective potential against arsenic trioxide (As2O3) in the mouse striatal region. METHODS Healthy adult male mice were chronically administered with varying concentrations of As2O3 (2, 4 and 8 mg/kg bw) alone and along with CUR (100 mg/kg bw) orally for 45 days. Towards the end of the experimental period, the animals were subjected to behavioural paradigms including open field task, novel object recognition, rota-rod, and Morris water maze. Striatal tissues were freshly collected from the animals on day 46 for biochemical analyses (MDA, GPx, and GSH). Additionally, perfusion-fixed brains were processed for morphological observations. RESULTS Behavioural study showed an apparent decrease in certain cognitive functions (learning and memory) and locomotor activity in mice exposed to As2O3 compared to controls. Simultaneous treatment of As2O3 (2, 4 and 8 mg/kg bw) and curcumin (100 mg/kg bw) alleviated the As-induced locomotor and cognitive deficits. As2O3 alone exposure also exhibited a significant increase in oxidative stress marker (MDA) and a decrease in antioxidant enzyme levels (GPx, GSH). Morphological alterations were noted in mice subjected to elevated doses of As2O3 (4 and 8 mg/kg bw). However, these changes were reversed in mice who received As2O3 + CUR co-treatment. CONCLUSIONS Collectively, our findings indicate that curcumin offers neuroprotection to the striatal region against As2O3-induced behavioral deficits, as well as biochemical and morphological alterations.
Collapse
Affiliation(s)
- Kamlesh Kumar Pandey
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Kamakshi Mehta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Ophthalmology, University of Pittsburgh School of Medicine, UPMC Vision Institute, Pittsburgh, PA, 15219, USA.
| | - Balpreet Kaur
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Pushpa Dhar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
2
|
Wang C, Wang B, Wei Y, Li S, Ren J, Dai Y, Liu G. Effect of Gentianella acuta (Michx.) Hulten against the arsenic-induced development hindrance of mouse oocytes. Biometals 2024; 37:1411-1430. [PMID: 38814492 DOI: 10.1007/s10534-024-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The current study was designed to investigate the alleviative effect of Gentianella acuta (Michx.) Hulten (G. acuta) against the sodium arsenite (NaAsO2)-induced development hindrance of mouse oocytes. For this purpose, the in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs) was conducted in the presence of NaAsO2 and G. acuta, followed by the assessments of IVM efficiency including oocyte maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, redox regulation, epigenetic modification, DNA damage, and apoptosis. Subsequently, the alleviative effect of G. acuta intervention on the fertilization impairments of NaAsO2-exposed oocytes was confirmed by the assessment of in vitro fertilization (IVF). The results showed that the G. acuta intervention effectively ameliorated the decreased maturation potentials and fertilization deficiency of NaAsO2-exposed oocytes but also significantly inhibited the DNA damages, apoptosis, and altered H3K27me3 expression level in the NaAsO2-exposed oocytes. The effective effects of G. acuta intervention against redox dysregulation including mitochondrial dysfunctions, accumulated reactive oxygen species (ROS) generation, glutathione (GSH) deficiency, and decreased adenosine triphosphate (ATP) further confirmed that the ameliorative effects of G. acuta intervention against the development hindrance of mouse oocytes were positively related to the antioxidant capacity of G. acuta. Evidenced by these abovementioned results, the present study provided fundamental bases for the ameliorative effect of G. acuta intervention against the meiotic defects caused by the NaAsO2 exposure, benefiting the future application potentials of G. acuta intervention in these nutritional and therapeutic research for attenuating the outcomes of arseniasis.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
- Department of Environmental Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ying Wei
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, Hohhot, 010010, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
3
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
4
|
Foley KFW, Barnett D, Cory-Slechta DA, Xia H. Early Low-Level Arsenic Exposure Impacts Post-Synaptic Hippocampal Function in Juvenile Mice. TOXICS 2021; 9:206. [PMID: 34564357 PMCID: PMC8470588 DOI: 10.3390/toxics9090206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022]
Abstract
Arsenic is a well-established carcinogen known to increase mortality, but its effects on the central nervous system are less well understood. Epidemiological studies suggest that early life exposure is associated with learning deficits and behavioral changes. Studies in arsenic-exposed rodents have begun to shed light on potential mechanistic underpinnings, including changes in synaptic transmission and plasticity. However, previous studies relied on extended exposure into adulthood, and little is known about the effect of arsenic exposure in early development. Here, we studied the effects of early developmental arsenic exposure in juvenile mice on synaptic transmission and plasticity in the hippocampus. C57BL/6J females were exposed to arsenic (0, 50 ppb, 36 ppm) via drinking water two weeks prior to mating, with continued exposure throughout gestation and parturition. Electrophysiological recordings were then performed on juvenile offspring prior to weaning. In this paradigm, the offspring are exposed to arsenic indirectly, via the mother. We found that high (36 ppm) and relatively low (50 ppb) arsenic exposure both decreased basal synaptic transmission. A compensatory increase in pre-synaptic vesicular release was only observed in the high-exposure group. These results suggest that indirect, ecologically relevant arsenic exposure in early development impacts hippocampal synaptic transmission and plasticity that could underlie learning deficits reported in epidemiological studies.
Collapse
Affiliation(s)
- Karl F. W. Foley
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Daniel Barnett
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Houhui Xia
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Department of Pharmacology & Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| |
Collapse
|
5
|
Jing J, Zheng G, Liu M, Shen X, Zhao F, Wang J, Zhang J, Huang G, Dai P, Chen Y, Chen J, Luo W. Changes in the synaptic structure of hippocampal neurons and impairment of spatial memory in a rat model caused by chronic arsenite exposure. Neurotoxicology 2012; 33:1230-8. [PMID: 22824511 DOI: 10.1016/j.neuro.2012.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 06/23/2012] [Accepted: 07/13/2012] [Indexed: 11/25/2022]
Abstract
Many epidemiological studies and in vitro experiments have found that chronic arsenic exposure may influence memory formation. The goal of this study was to create an animal model of memory impairment induced by chronic arsenite exposure and to study the underlying mechanisms. Sixty male Sprague-Dawley (SD) male rats were randomly divided into a control group, a low-dose sodium arsenite exposure group and a high-dose sodium arsenite exposure group. Sodium arsenite was administered by adding it to drinking water for 3 months. Then, the spatial memory of the rats was examined with Morris water maze and Y maze. The concentration of arsenic in the blood and the brain was determined by an atomic fluorescence absorption spectrometer. The ultra-structure of hippocampal neurons was observed by an electron microscope. Timm staining was used for observing mossy fibers. We found that the concentration of arsenic in the blood and the brain increased in a dose-response manner (P<0.05). The performance of rats in the arsenite exposed group (15 mg/kg) was significantly impaired in the Morris water maze and Y maze tasks than those in the control group (P<0.05). Sodium arsenite exposure resulted in abnormal structural changes in the myelin sheaths of nerve fibers and decreases in the terminals of mossy fibers. Together, chronic sodium arsenite exposure through drinking water results in detrimental changes in the neuronal synapses, which may contribute to the arsenite-induced impairment of spatial memory.
Collapse
Affiliation(s)
- Jinfei Jing
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cremer CM, Cremer M, Escobar JL, Speckmann EJ, Zilles K. Fast, quantitative in situ hybridization of rare mRNAs using 14C-standards and phosphorus imaging. J Neurosci Methods 2009; 185:56-61. [PMID: 19761793 DOI: 10.1016/j.jneumeth.2009.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 09/04/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022]
Abstract
The use of radiolabelled probes for in situ hybridization (ISH) bears the advantage of high sensitivity and quantifiability. The crucial disadvantages are laborious hybridization protocols, exposition of hybridized sections to film for up to several weeks and the time consuming need to prepare tissue standards with relatively short-lived isotopes like (33)P or (35)S for each experiment. The quantification of rare mRNAs like those encoding for subunits of neurotransmitter receptors is therefore a challenge in ISH. Here, we describe a method for fast, quantitative in situ hybridization (qISH) of mRNAs using (33)P-labelled oligonucleotides together with (14)C-polymer standards (Microscales, Amersham Biosciences) and a phosphorus imaging system (BAS 5000 BioImage Analyzer, Raytest-Fuji). It enables a complete analysis of rare mRNAs by ISH. The preparation of short-lived (33)P-standards for each experiment was replaced by co-exposition and calibration of long-lived (14)C-standards together with (33)P-labelled brain paste standards. The use of a phosphorus imaging system allowed a reduction of exposition time following hybridization from several weeks to a few hours or days. We used this approach as an example for applications to quantify the expression of GluR1 and GluR2 subunit mRNAs of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor in the hippocampus of untreated rats, and after intraperitoneal application of the organo-arsenic compound dimethyl arsenic acid.
Collapse
Affiliation(s)
- Christian M Cremer
- Institute for Neuroscience and Medicine (INM-2), Research Center Jülich, Jülich, Germany.
| | | | | | | | | |
Collapse
|
7
|
Krüger K, Straub H, Hirner AV, Hippler J, Binding N, Musshoff U. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Toxicol Appl Pharmacol 2009; 236:115-23. [PMID: 19371632 DOI: 10.1016/j.taap.2008.12.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 12/03/2008] [Accepted: 12/22/2008] [Indexed: 11/27/2022]
Abstract
Arsenite and its metabolites, dimethylarsinic or dimethylarsinous acid, have previously been shown to disturb synaptic transmission in hippocampal slices of rats (Krüger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mubetahoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501, Krüger, K., Straub, H., Binding, N., Mubetahoff, U., 2006b. Effects of arsenite on long-term potentiation in hippocampal slices from adult and young rats. Toxicol. Lett. 165, 167-173, Krüger, K., Repges, H., Hippler, J., Hartmann, L.M., Hirner, A.V., Straub, H., Binding, N., Mubetahoff, U., 2007. Effects of dimethylarsinic and dimethylarsinous acid on evoked synaptic potentials in hippocampal slices of young and adult rats. Toxicol. Appl. Pharmacol. 225, 40-46). The present experiments investigate, whether the important arsenic metabolites monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) also influence the synaptic functions of the hippocampus. In hippocampal slices of young (14-21 days-old) and adult (2-4 months-old) rats, evoked synaptic field potentials from the Schaffer collateral-CA1 synapse were measured under control conditions and during and after 30 and 60 min of application of the arsenic compounds. MMA(V) had no effect on the synapse functions neither in slices of adult nor in those from young rats. However, MMA(III) strongly influenced the synaptic transmission: it totally depressed the amplitudes of fEPSPs at concentrations of 50 micromol/l (adult rats) and 25 micromol/l (young rats) and LTP amplitudes at concentrations of 25 micromol/l (adult rats) and 10 micromol/l (young rats), respectively. In contrast, application of 1 micromol/l MMA(III) led to an enhancement of the LTP amplitude in young rats, which is interpretable by an enhancing effect on NMDA receptors and a lack of the blocking effect on AMPA receptors at this concentration (Krüger, K., Gruner, J., Madeja, M., Hartmann, L.M., Hirner, A.V., Binding, N., Mubetahoff, U., 2006a. Blockade and enhancement of glutamate receptor responses in Xenopus oocytes by methylated arsenicals. Arch. Toxicol. 80, 492-501). These effects are probably not mediated by changes in cell excitability or in presynaptic glutamate release rates, since antidromically induced population spikes and paired-pulse facilitation failed to show any MMA(III) effect. The impairment of the excitatory CA1 synapse is more likely caused by the action of MMA(III) on postsynaptic glutamatergic receptors and may be jointly responsible for dysfunctions of cognitive effects in arsenic toxicity.
Collapse
Affiliation(s)
- Katharina Krüger
- Institut für Physiologie I, Universitätsklinikum Münster, Robert-Koch-Strabetae 27a, D-48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Bae ON, Lim EK, Lim KM, Noh JY, Chung SM, Lee MY, Yun YP, Kwon SC, Lee JH, Nah SY, Chung JH. Vascular smooth muscle dysfunction induced by monomethylarsonous acid (MMA III): a contributing factor to arsenic-associated cardiovascular diseases. ENVIRONMENTAL RESEARCH 2008; 108:300-8. [PMID: 18701095 DOI: 10.1016/j.envres.2008.06.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 06/03/2008] [Accepted: 06/26/2008] [Indexed: 05/04/2023]
Abstract
While arsenic in drinking water is known to cause various cardiovascular diseases in human, exact mechanism still remains elusive. Recently, trivalent-methylated arsenicals, the metabolites of inorganic arsenic, were shown to have higher cytotoxic potential than inorganic arsenic. To study the role of these metabolites in arsenic-induced cardiovascular diseases, we investigated the effect of monomethylarsonous acid (MMA III), a major trivalent-methylated arsenical, on vasomotor tone of blood vessels. In isolated rat thoracic aorta and small mesenteric arteries, MMA III irreversibly suppressed normal vasoconstriction induced by three distinct agonists of phenylephrine (PE), serotonin and endothelin-1. Inhibition of vasoconstriction was retained in aortic rings without endothelium, suggesting that MMA III directly impaired the contractile function of vascular smooth muscle. The effect of MMA III was mediated by inhibition of PE-induced Ca2+ increase as found in confocal microscopy and fluorimeter in-lined organ chamber technique. The attenuation of Ca2+ increase was from concomitant inhibition of release from intracellular store and extracellular Ca2+ influx via L-type Ca2+ channel, which was blocked by MMA III as shown in voltage-clamp assay in Xenopus oocytes. MMA III did not affect downstream process of Ca2+, as shown in permeabilized arterial strips. In in vivo rat model, MMA III attenuated PE-induced blood pressure increase indeed, supporting the clinical relevance of these in vitro findings. In conclusion, MMA III-induced smooth muscle dysfunction through disturbance of Ca2+ regulation, which results in impaired vasoconstriction and aberrant blood pressure change. This study will provide a new insight into the role of trivalent-methylated arsenicals in arsenic-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ok-Nam Bae
- College of Pharmacy, Seoul National University, Shinrim-dong San 56-1, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Krüger K, Höing T, Bensch W, Diepgrond V, Ahnefeld M, Madeja M, Binding N, Musshoff U. Effects of monomethyltin and dimethyltin compounds on heterologously expressed neuronal ion channels (Xenopus oocytes) and synaptic transmission (hippocampal slices). Neurotoxicology 2007; 28:114-25. [PMID: 16989903 DOI: 10.1016/j.neuro.2006.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 07/28/2006] [Accepted: 08/14/2006] [Indexed: 11/25/2022]
Abstract
The aim of this study was to investigate the effects of monomethyltin trichloride (MMT) and dimethyltin dichloride (DMT) on various neuronal ion channels heterologously expressed in Xenopus oocytes and on synaptic transmission in hippocampal slices of young (14-21 days old) and adult (2-4 months old) rats. The Xenopus oocyte expression system was chosen to allow direct assessment of the effects of MMT and DMT both on glutamate receptors sensitive to AMPA and NMDA and on various voltage-operated potassium and sodium channels. Hippocampal slices were used to analyze the effects of MMT and DMT on synaptic potentials generated by the important excitatory Schaffer collateral-CA1 synapse. In general, MMT and DMT were found to have no effect either on voltage-operated sodium and potassium channels or on the metabotropic glutamate receptor but they did differentially affect the functions of ionotropic glutamate receptors and glutamatergic synaptic transmission. MMT (100 microM) significantly reduced NMDA-mediated ion currents by up to 32%, but had no effect on ion currents through AMPA receptors. In slices of adult rats, MMT had no effect on the amplitudes of evoked fEPSPs and brought about a 35% reduction in the LTP amplitudes. In contrast, in slices of young rats MMT evoked a reversible 30% increase in the amplitudes of fEPSPs but had no effect on LTP induction. DMT (100 microM) reduced ion currents through NMDA-receptor ion channels by up to 29% and those through AMPA-receptor ion channels by up to 7%. In hippocampal slices 100 microM DMT reduced the amplitudes of fEPSPs (adults: 50%; young rats: 70%) and LTP (adults: 40%; young rats: 55%). Neither of the organotins affected the paired-pulse facilitation at this synapse, indicating that the organotins exert their effects at the postsynaptic site. The action of MMT and DMT may contribute to the organotin-induced impairment of behavior patterns in connection with learning and memory.
Collapse
Affiliation(s)
- K Krüger
- Institute of Physiology I, University of Münster, Robert-Koch-Str. 27a, D-48149 Münster, Germany.
| | | | | | | | | | | | | | | |
Collapse
|