1
|
Carvalho RPR, Carvalho IRD, Costa RVD, Guimarães-Ervilha LO, Machado-Neves M. The effects of eugenol on histological, enzymatic, and oxidative parameters in the major salivary glands and pancreas of healthy male Wistar rats. Arch Oral Biol 2023; 154:105764. [PMID: 37454526 DOI: 10.1016/j.archoralbio.2023.105764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE We evaluated the effects of eugenol on histological, enzymatic, and oxidative parameters in the pancreas, parotid, submandibular, and sublingual glands of healthy male rats. DESIGN Twenty-four adult Wistar rats were assigned into four groups (n = 6/group). Control rats received 2% Tween-20 (eugenol vehicle), whereas the other animals received 10, 20, and 40 mg kg-1 eugenol through gavage daily for 60 d. Major salivary and pancreatic glands were weighed and preserved fixed for microscopic analysis and frozen for in vitro assays. RESULTS Eugenol did not alter glands' weight and serum amylase activity regardless of the concentration. The highest dose of eugenol caused an increase in pancreatic amylase activity and a reduction of lipase activity from serum and pancreas. Eugenol at 40 mg kg-1 diminished the activity of SOD and FRAP in the submandibular gland and CAT and FRAP in the sublingual gland. However, it did not exert any effect on GST regardless of the gland. Additionally, 40 mg kg-1 eugenol increased MDA levels in pancreatic, parotid, and submandibular glands and NO levels in the sublingual. The concentrations of eugenol induced distinct responses in the glands regarding the activity of Na+/K+, Mg2+, and total ATPase activity. They also affected histomorphometrical and histochemistrical parameters in the submandibular gland only. CONCLUSIONS Results indicated that 40 mg kg-1 eugenol altered most of the biochemical and oxidatived parameters of digestive glands. Only submandibular glands presented histological changes after eugenol exposure suggesting potential implications for its function.
Collapse
Affiliation(s)
| | | | - Rosiany Vieira da Costa
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Mariana Machado-Neves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Sánchez-Alarcón J, Milić M, Bustamante-Montes LP, Isaac-Olivé K, Valencia-Quintana R, Ramírez-Durán N. Genotoxicity of Mercury and Its Derivatives Demonstrated In Vitro and In Vivo in Human Populations Studies. Systematic Review. TOXICS 2021; 9:326. [PMID: 34941760 PMCID: PMC8704886 DOI: 10.3390/toxics9120326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
Beside partial coverage in three reviews so far (1994, 2009, 2019), there is no review on genotoxic studies dealing with mercury (Hg) and human exposure using the most usual genotoxic assays: sister chromatid exchanges (SCE), chromosomal aberrations (CA), cytochalasin B blocked micronucleus assay (CBMN), and single-cell gel electrophoresis (SCGE or alkaline comet assay). Fifty years from the first Hg genotoxicity study and with the Minamata Convention in force, the genotoxic potential of Hg and its derivatives is still controversial. Considering these antecedents, we present this first systematic literature overview of genotoxic studies dealing with Hg and human exposure that used the standard genotoxic assays. To date, there is not sufficient evidence for Hg human carcinogen classification, so the new data collections can be of great help. A review was made of the studies available (those published before the end of October 2021 on PubMed or Web of Science in English or Spanish language) in the scientific literature dealing with genotoxic assays and human sample exposure ex vivo, in vivo, and in vitro. Results from a total of 66 articles selected are presented. Organic (o)Hg compounds were more toxic than inorganic and/or elemental ones, without ruling out that all represent a risk. The most studied inorganic (i)Hg compounds in populations exposed accidentally, occupationally, or iatrogenically, and/or in human cells, were Hg chloride and Hg nitrate and of the organic compounds, were methylmercury, thimerosal, methylmercury chloride, phenylmercuric acetate, and methylmercury hydroxide.
Collapse
Affiliation(s)
- Juana Sánchez-Alarcón
- Doctorado en Ciencias de la Salud, Facultad de Ciencias de la Conducta, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico;
- Cuerpo Académico Ambiente y Genética UATLX-CA-223, Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco 90120, Tlaxcala, Mexico;
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia; or
| | | | - Keila Isaac-Olivé
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico;
| | - Rafael Valencia-Quintana
- Cuerpo Académico Ambiente y Genética UATLX-CA-223, Laboratorio “Rafael Villalobos-Pietrini” de Toxicología Genómica y Química Ambiental, Facultad de Agrobiología, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco 90120, Tlaxcala, Mexico;
| | - Ninfa Ramírez-Durán
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Estado de México, Mexico;
| |
Collapse
|
3
|
Effects of Gintonin-Enriched Fraction on Methylmercury-Induced Neurotoxicity and Organ Methylmercury Elimination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030838. [PMID: 32013120 PMCID: PMC7038146 DOI: 10.3390/ijerph17030838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 01/09/2023]
Abstract
Gintonin is a newly discovered ingredient of ginseng and plays an exogenous ligand for G protein-coupled lysophosphatidic acid receptors. We previously showed that gintonin exhibits diverse effects from neurotransmitter release to improvement of Alzheimer’s disease-related cognitive dysfunctions. However, previous studies did not show whether gintonin has protective effects against environmental heavy metal. We investigated the effects of gintonin-enriched fraction (GEF) on methylmercury (MeHg)-induced neurotoxicity and learning and memory dysfunction and on organ MeHg elimination. Using hippocampal neural progenitor cells (hNPCs) and mice we examined the effects of GEF on MeHg-induced hippocampal NPC neurotoxicity, on formation of reactive oxygen species (ROS), and on in vivo learning and memory functions after acute MeHg exposure. Treatment of GEF to hNPCs attenuated MeHg-induced neurotoxicity with concentration- and time-dependent manner. GEF treatment inhibited MeHg- and ROS inducer-induced ROS formations. Long-term treatment of GEF also improved MeHg-induced learning and memory dysfunctions. Oral administration of GEF decreased the concentrations of MeHg in blood, brain, liver, and kidney. This is the first report that GEF attenuated MeHg-induced in vitro and in vivo neurotoxicities through LPA (lysophosphatidic acids) receptor-independent manner and increased organ MeHg elimination. GEF-mediated neuroprotection might achieve via inhibition of ROS formation and facilitation of MeHg elimination from body.
Collapse
|
4
|
Patel TA, Rao MV. Antigenotoxic effect of melatonin against mercuric chloride in human peripheral blood lymphocytes. Toxicol Ind Health 2018; 34:778-786. [PMID: 30278831 DOI: 10.1177/0748233718795747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melatonin (MLT) is an extraordinary antioxidant, which plays an important role in reducing reactive oxygen species (ROS) by scavenging them directly or indirectly. Mercury (Hg) is a heavy metal, which induces cytogenetic alterations via various mechanisms, leading to genotoxicity. It induces genotoxicity by enhancing the ROS chiefly. In the present study, the antigenotoxic effect of MLT was evaluated against mercuric chloride (HgCl2). All experiments were conducted in vitro in peripheral blood lymphocytes. Blood cultures were exposed to various concentrations of HgCl2 (2.63, 6.57, and 10.52 microM) for 24 h to study a range of genotoxic parameters. MLT (0.2 mM) supplementation, alone and in combination with the high concentration of Hg, was administered to blood cultures for 24 h. Genotoxic parameters, such as chromosomal aberrations (CAs; structural aberrations (chromatid gaps and breaks, chromosomal gaps and breaks) and numerical aberrations), micronuclei (MNs), and comet assay, were evaluated and analyzed using suitable statistical analysis. Hg treatment revealed a significant increase in CAs, MNs, and comet length. Co-supplementation of MLT along with Hg showed marked protection of these genotoxic end points in treated cultures. In conclusion, our findings suggest that MLT protects against Hg-induced augmentation in genotoxic indices because of its antioxidant property.
Collapse
Affiliation(s)
- Tapan A Patel
- 1 Department of Biology, Center of Education, Indian Institute of Teacher Education (IITE), Gandhinagar 382016, Gujarat, India
| | - Mandava V Rao
- 2 Department of Zoology, School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
5
|
Lima LADO, Bittencourt LO, Puty B, Fernandes RM, Nascimento PC, Silva MCF, Alves-Junior SM, Pinheiro JDJV, Lima RR. Methylmercury Intoxication Promotes Metallothionein Response and Cell Damage in Salivary Glands of Rats. Biol Trace Elem Res 2018; 185:135-142. [PMID: 29332268 DOI: 10.1007/s12011-017-1230-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022]
Abstract
Environmental and occupational mercury exposure is considered a major public health issue. Despite being well known that MeHg exposure causes adverse effects in several physiologic functions, MeHg effects on salivary glands still not completely elucidated. Here, we investigated the cellular MeHg-induced damage in the three major salivary glands (parotid, submandibular, and sublingual) of adult rats after chronic, systemic and low doses of MeHg exposure. Rats were exposed by 0.04 mg/kg/day over 60 days. After that, animals were euthanized and all three glands were collected. We evaluated total Hg accumulation, metallothionein I/II (MT I/II), α-smooth muscle actin (α-SMA), and cytokeratin 18 (CK18) immune expression. Our results have showed that MeHg is able to disrupt gland tissue and to induce a protective mechanism by MT I/II expression. We also showed that cell MT production is not enough to protect gland tissue against cellular structural damage seen by reducing marking of cytoskeletal proteins as CK18 and α-SMA. Our data suggest that chronic MeHg exposure in low-daily doses is able to induce cellular damage in rat salivary glands.
Collapse
Affiliation(s)
- Leidiane Alencar de Oliveira Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Rafael Monteiro Fernandes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil
| | | | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Street Augusto Correa N. 01, Guamá, Belém, Para, 66075-900, Brazil.
| |
Collapse
|
6
|
Aragão WAB, da Costa NMM, Fagundes NCF, Silva MCF, Alves-Junior SM, Pinheiro JJV, Amado LL, Crespo-López ME, Maia CSF, Lima RR. Chronic exposure to inorganic mercury induces biochemical and morphological changes in the salivary glands of rats. Metallomics 2018; 9:1271-1278. [PMID: 28795724 DOI: 10.1039/c7mt00123a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mercury exposure is considered to be a public health problem due to the generation of toxic effects on human health as a result of environmental and occupational conditions. The inorganic form of mercury (HgCl2) can cause several biological changes in cells and tissues through its cumulative toxic potential, but little has been experimentally proven about the effects of inorganic mercury on salivary glands, an important modulator organ of oral health. This study analyzes the effects of prolonged low dose exposure to HgCl2 on the salivary glands of rats. Adult animals received a dose of 0.375 mg kg-1 day-1 over a period of 45 days. The parotid and submandibular glands were collected for analysis of the mercury levels and evaluation of oxidative stress, histological parameters and immunomodulation for metallothionein I and II (MT-I/II). In this investigation, biochemical and tissue changes in the salivary glands were verified due to the mercury levels, causing reduction in antioxidant capacity against peroxyl radicals, with consequent cellular lipid peroxidation and an increase in nitrite levels, volumetric changes and cytoskeletal damage in the submandibular glands, with less severe damage to the parotid glands. The results also have shown the occurrence of a cytoprotection mechanism due to increased MT-I/II expression, but not enough to avoid the morphology and oxidative damage. This evidence highlights, for the first time, that inorganic mercury is able to alter the morphology and oxidative biochemistry in salivary glands when exposed for a long time in low doses.
Collapse
Affiliation(s)
- W A B Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Street Augusto Corrêa 1, Guamá, 66075-900, Belém, Pará, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
García-Medina S, Galar-Martínez M, Gómez-Oliván LM, Ruiz-Lara K, Islas-Flores H, Gasca-Pérez E. Relationship between genotoxicity and oxidative stress induced by mercury on common carp (Cyprinus carpio) tissues. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:207-215. [PMID: 28982072 DOI: 10.1016/j.aquatox.2017.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Mercury is one of the most toxic metals in aquatic systems since it is able to induce neurobehavioral disorders as well as renal and gastrointestinal tract damage. The common carp Cyprinus carpio is an important species from both an ecological and economic viewpoint as it is consumed in many countries, the top producers being Mexico, China, India and Japan. The present study aimed to evaluate the relation between Hg-induced oxidative stress and genotoxicity in diverse tissues of C. carpio. Specimens were exposed to 0.01mgHg/L (the maximum permissible limit for aquatic life protection), and lipid peroxidation, protein carbonyl content and the activity of antioxidant enzymes were evaluated at 96h. Micronuclei frequency and DNA damage by comet assay were determined at 12, 24, 48, 72 and 96h. Hg induced oxidative stress and genotoxicity on exposed fish, since inhibition of antioxidant enzymes activity and increases in lipid peroxidation, DNA damage and micronuclei frequency occurred. Blood, gill and liver were more susceptible to oxidative stress, while blood were more sensitive to genotoxicity. In conclusion, Hg at concentrations equal to the maximum permissible limit for aquatic life protection induced oxidative stress and genotoxicity on C. carpio, and these two effects prove to be correlated.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., México.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., México.
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Karina Ruiz-Lara
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., México
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120 Toluca, Estado de México, México
| | - Eloy Gasca-Pérez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Plan de Ayala y Carpio s/n, 11340 México D.F., México
| |
Collapse
|
8
|
Oxidative Biochemistry Disbalance and Changes on Proteomic Profile in Salivary Glands of Rats Induced by Chronic Exposure to Methylmercury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5653291. [PMID: 28811865 PMCID: PMC5546058 DOI: 10.1155/2017/5653291] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022]
Abstract
Methylmercury (MeHg) is one of the most toxic mercury species, which can cause many systemic damages, but little is known about its effect in the salivary glands. This study aimed to analyze the mercury levels, oxidative stress, and proteomic profile in parotid, submandibular, and sublingual salivary glands of rats, after chronic MeHg intoxication. Two groups of twenty male Wistar rats (90 days of age) were used on the experiment. MeHg group was intoxicated by intragastric gavage with MeHg at a dose of 0.04 mg/kg/day for 60 days, while the control group received only oil. After the period of intoxication, the glands were collected for evaluation of total mercury levels, proteomic profile, and oxidative balance by analyzing the antioxidant capacity against peroxyl radicals (ACAP), lipid peroxidation (LPO), and nitrite levels. Our results have showed that mercury levels were significant in all three glands compared to the respective control. It also showed lower levels of ACAP, as well as higher LPO and nitrite levels. The proteomic profile presented impairments on structural components of cytoskeleton, metabolic pathways, and oxidative biochemistry. Thus, the exposure to MeHg was able to generate oxidative stress that could be associated with changes in the proteomic profile of salivary glands.
Collapse
|
9
|
Patel TA, Rao MV. Ameliorative effect of certain antioxidants against mercury induced genotoxicity in peripheral blood lymphocytes. Drug Chem Toxicol 2015; 38:408-14. [DOI: 10.3109/01480545.2014.975354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Marcon A, Fracasso ME, Marchetti P, Doria D, Girardi P, Guarda L, Pesce G, Pironi V, Ricci P, de Marco R. Outdoor formaldehyde and NO2 exposures and markers of genotoxicity in children living near chipboard industries. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:639-45. [PMID: 24694350 PMCID: PMC4050513 DOI: 10.1289/ehp.1307259] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 03/31/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Industrial air pollution is a public health hazard. Previous evidence documented increased respiratory symptoms and hospitalizations in children who live near the factories in the largest chipboard manufacturing district in Italy (Viadana). OBJECTIVES We evaluated the association of outdoor exposure to formaldehyde and nitrogen dioxide (NO2) with markers of early genotoxic damage in oral mucosa cells of randomly selected children (6-12 years of age) living in Viadana. METHODS In 2010-2011, DNA strand breaks and nuclear abnormalities were evaluated in exfoliated buccal cells by the comet and micronucleus assays, respectively, and formaldehyde and NO2 were monitored by passive sampling. Annual exposure estimates to pollutants were assigned to children's houses by spatial interpolation. RESULTS Of 656 children, 413 (63%) participated. Children living near (< 2 km) the chipboard industries had the highest average exposure to formaldehyde and NO2 (p < 0.001). A 1-SD increase in formaldehyde (0.20 μg/m(3)) was associated with a 0.13% (95% CI: 0.03, 0.22%) higher comet tail intensity, a 0.007 (95% CI: 0.001, 0.012) higher tail moment, and a 12% relative increase [relative risk (RR) = 1.12; 95% CI: 1.02, 1.23] in nuclear buds. A 1-SD NO2 increase (2.13 μg/m(3)) was associated with a 0.13% (95% CI: 0.07, 0.19%) increase in binucleated cells and a 16% relative increase (RR = 1.16; 95% CI: 1.06, 1.26) in nuclear buds. CONCLUSIONS Exposure to pollutants was associated with markers of genotoxicity in exfoliated buccal cells of children living in a region with chipboard industries. These findings, combined with previously reported associations between chipboard industrial activities and respiratory outcomes in children, add to concerns about potential adverse effects of industry-related exposures in the Viadana district.
Collapse
Affiliation(s)
- Alessandro Marcon
- Unit of Epidemiology and Medical Statistics, Department of Public Health and Community Medicine, University of Verona, Verona, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Barcelos GRM, Angeli JPF, Serpeloni JM, Grotto D, Rocha BA, Bastos JK, Knasmüller S, Júnior FB. Quercetin protects human-derived liver cells against mercury-induced DNA-damage and alterations of the redox status. Mutat Res 2011; 726:109-15. [PMID: 21820078 DOI: 10.1016/j.mrgentox.2011.05.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 04/20/2011] [Accepted: 05/23/2011] [Indexed: 02/05/2023]
Abstract
Aim of this study was to investigate the cytotoxic and genotoxic properties of inorganic and organic mercury compounds, i.e., HgCl(2) and methylmercury (MeHg). In addition, the DNA-protective and antioxidant effects of the flavonoid quercetin (QC) were studied. All experiments were conducted with human-derived liver cells (HepG2), which possess antioxidant and drug-metabolizing enzymes in an inducible form. 8-Hydroxydeoxyguanosine (8-OHdG) and comet formation were monitored as endpoints of DNA damage. The impact of the metal compounds on the redox status was also investigated, since it is assumed that their toxic effects are due to oxidative damage. A number of biochemical parameters related to oxidative stress, namely glutathione, malondialdehyde, protein carbonyl and formation of reactive oxygen species (ROS) were measured after treatment of the cells with the mercury compounds in the presence and absence of quercetin. To elucidate the mechanisms that underlie the effects of QC, three protocols (pre-, simultaneous and post-treatment) were used. Both mercury compounds (range 0.1-5.0μM) caused induction of DNA migration and formation of 8-OHdG. In combination with the flavonoid (range 0.1-5.0μM), DNA-protective effects of QC were observed after pre- and simultaneous treatment but not when the flavonoid was added after treatment with the metal compounds. Exposure to the metal compounds led also to substantial changes of all parameters of the redox status and co-treatment experiments with QC showed that these alterations are reversed by the flavonoid. Taken together, the results of our experiments indicate that these two mercury compounds cause DNA damage and oxidative stress in human-derived liver cells and that the flavonoid reduces these effects. Since the concentrations of the metals and of the flavonoids used in the present work reflect human exposure, our findings can be taken as an indication that QC may protect humans against the adverse effects caused by the metal.
Collapse
|
12
|
Jose S, Jayesh P, Mohandas A, Philip R, Bright Singh IS. Application of primary haemocyte culture of Penaeus monodon in the assessment of cytotoxicity and genotoxicity of heavy metals and pesticides. MARINE ENVIRONMENTAL RESEARCH 2011; 71:169-177. [PMID: 21281964 DOI: 10.1016/j.marenvres.2010.12.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/23/2010] [Accepted: 12/26/2010] [Indexed: 05/30/2023]
Abstract
Lack of shrimp cell lines has hindered the study of pollutants which adversely affects shrimp health and its export value. In this context a primary haemocyte culture developed from Penaeus monodon was employed for assessing the cytotoxicity and genotoxicity of two heavy metal compounds, cadmium chloride and mercuric chloride and two organophosphate insecticides, malathion and monocrotophos. Using MTT assay 12 h IC(50) values calculated were 31.09 ± 16.27 μM and 5.52 ± 1.16 μM for cadmium chloride and mercuric chloride and 59.94 ± 52.30 mg l(-1) and 186.76 ± 77.00 mg l(-1) for malathion and monocrotophos respectively. Employing Comet assay, DNA damage inflicted by these pollutants on haemocytes were evaluated and the pollutants induced DNA damage in >60% of the cells. The study suggested that haemocyte culture could be used as a tool for quantifying cytotoxicity and genotoxicity of aquaculture drugs, management chemicals and pollutants.
Collapse
Affiliation(s)
- Seena Jose
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi 682016, India
| | | | | | | | | |
Collapse
|
13
|
Mutter J. Is dental amalgam safe for humans? The opinion of the scientific committee of the European Commission. J Occup Med Toxicol 2011; 6:2. [PMID: 21232090 PMCID: PMC3025977 DOI: 10.1186/1745-6673-6-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 01/13/2011] [Indexed: 01/06/2023] Open
Abstract
It was claimed by the Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR)) in a report to the EU-Commission that "....no risks of adverse systemic effects exist and the current use of dental amalgam does not pose a risk of systemic disease..." [1, available from: http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_016.pdf].SCENIHR disregarded the toxicology of mercury and did not include most important scientific studies in their review. But the real scientific data show that:(a) Dental amalgam is by far the main source of human total mercury body burden. This is proven by autopsy studies which found 2-12 times more mercury in body tissues of individuals with dental amalgam. Autopsy studies are the most valuable and most important studies for examining the amalgam-caused mercury body burden.(b) These autopsy studies have shown consistently that many individuals with amalgam have toxic levels of mercury in their brains or kidneys.(c) There is no correlation between mercury levels in blood or urine, and the levels in body tissues or the severity of clinical symptoms. SCENIHR only relied on levels in urine or blood.(d) The half-life of mercury in the brain can last from several years to decades, thus mercury accumulates over time of amalgam exposure in body tissues to toxic levels. However, SCENIHR state that the half-life of mercury in the body is only "20-90 days".(e) Mercury vapor is about ten times more toxic than lead on human neurons and with synergistic toxicity to other metals.(f) Most studies cited by SCENIHR which conclude that amalgam fillings are safe have severe methodical flaws.
Collapse
Affiliation(s)
- Joachim Mutter
- Department of Environmental and integrative medicine Lohnerhofstraße 2, 78467 Constance/Germany.
| |
Collapse
|
14
|
Comparative study of quercetin and its two glycoside derivatives quercitrin and rutin against methylmercury (MeHg)-induced ROS production in rat brain slices. Arch Toxicol 2009; 84:89-97. [DOI: 10.1007/s00204-009-0482-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 10/15/2009] [Indexed: 12/14/2022]
|
15
|
Yadav KK, Trivedi SP. Chromosomal aberrations in a fish, Channa punctata after in vivo exposure to three heavy metals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 678:7-12. [DOI: 10.1016/j.mrgentox.2009.05.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 04/29/2009] [Accepted: 05/29/2009] [Indexed: 10/20/2022]
|
16
|
Mechanisms of telomere maintenance and attrition: linking cancer and ageing. Arch Toxicol 2009; 83:405-6. [PMID: 19390840 DOI: 10.1007/s00204-009-0428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Loss of DNA damage checkpoint genes: switch from preferential induction of point mutations to chromosomal damage precedes the transition towards an aggressive cancer type. Arch Toxicol 2008; 82:341-2. [DOI: 10.1007/s00204-008-0295-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|