1
|
Mrdjen M, Huang E, Pathak V, Bellar A, Welch N, Dasarathy J, Streem D, McClain CJ, Mitchell M, Radaeva S, Barton B, Szabo G, Dasarathy S, Wang Z, Hazen SL, Brown JM, Nagy LE. Dysregulated meta-organismal metabolism of aromatic amino acids in alcohol-associated liver disease. Hepatol Commun 2023; 7:e0284. [PMID: 37820283 PMCID: PMC10578770 DOI: 10.1097/hc9.0000000000000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Chronic alcohol consumption impairs gut barrier function and perturbs the gut microbiome. Although shifts in bacterial communities in patients with alcohol-associated liver disease (ALD) have been characterized, less is known about the interactions between host metabolism and circulating microbe-derived metabolites during the progression of ALD. METHODS A large panel of gut microbiome-derived metabolites of aromatic amino acids was quantified by stable isotope dilution liquid chromatography with online tandem mass spectrometry in plasma from healthy controls (n = 29), heavy drinkers (n = 10), patients with moderate (n = 16) or severe alcohol-associated hepatitis (n = 40), and alcohol-associated cirrhosis (n = 10). RESULTS The tryptophan metabolites, serotonin and indole-3-propionic acid, and tyrosine metabolites, p-cresol sulfate, and p-cresol glucuronide, were decreased in patients with ALD. Patients with severe alcohol-associated hepatitis and alcohol-associated cirrhosis had the largest decrease in concentrations of tryptophan and tyrosine-derived metabolites compared to healthy control. Western blot analysis and interrogation of bulk RNA sequencing data from patients with various liver pathologies revealed perturbations in hepatic expression of phase II metabolism enzymes involved in sulfonation and glucuronidation in patients with severe forms of ALD. CONCLUSIONS We identified several metabolites decreased in ALD and disruptions of hepatic phase II metabolism. These results indicate that patients with more advanced stages of ALD, including severe alcohol-associated hepatitis and alcohol-associated cirrhosis, had complex perturbations in metabolite concentrations that likely reflect both changes in the composition of the gut microbiome community and the ability of the host to enzymatically modify the gut-derived metabolites.
Collapse
Affiliation(s)
- Marko Mrdjen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emily Huang
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Vai Pathak
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Annette Bellar
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Welch
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaividhya Dasarathy
- Department of Family Medicine, Metro Health Medical Center, Cleveland, Ohio, USA
| | - David Streem
- Department of Psychiatry and Psychology, Cleveland Clinic Lutheran Hospital, Cleveland, Ohio, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mack Mitchell
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Bruce Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - J. Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Cancer Biology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E. Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
2
|
Miners JO, Polasek TM, Hulin JA, Rowland A, Meech R. Drug-drug interactions that alter the exposure of glucuronidated drugs: Scope, UDP-glucuronosyltransferase (UGT) enzyme selectivity, mechanisms (inhibition and induction), and clinical significance. Pharmacol Ther 2023:108459. [PMID: 37263383 DOI: 10.1016/j.pharmthera.2023.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Drug-drug interactions (DDIs) arising from the perturbation of drug metabolising enzyme activities represent both a clinical problem and a potential economic loss for the pharmaceutical industry. DDIs involving glucuronidated drugs have historically attracted little attention and there is a perception that interactions are of minor clinical relevance. This review critically examines the scope and aetiology of DDIs that result in altered exposure of glucuronidated drugs. Interaction mechanisms, namely inhibition and induction of UDP-glucuronosyltransferase (UGT) enzymes and the potential interplay with drug transporters, are reviewed in detail, as is the clinical significance of known DDIs. Altered victim drug exposure arising from modulation of UGT enzyme activities is relatively common and, notably, the incidence and importance of UGT induction as a DDI mechanism is greater than generally believed. Numerous DDIs are clinically relevant, resulting in either loss of efficacy or an increased risk of adverse effects, necessitating dose individualisation. Several generalisations relating to the likelihood of DDIs can be drawn from the known substrate and inhibitor selectivities of UGT enzymes, highlighting the importance of comprehensive reaction phenotyping studies at an early stage of drug development. Further, rigorous assessment of the DDI liability of new chemical entities that undergo glucuronidation to a significant extent has been recommended recently by regulatory guidance. Although evidence-based approaches exist for the in vitro characterisation of UGT enzyme inhibition and induction, the availability of drugs considered appropriate for use as 'probe' substrates in clinical DDI studies is limited and this should be research priority.
Collapse
Affiliation(s)
- John O Miners
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Thomas M Polasek
- Certara, Princeton, NJ, USA; Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Andrew Rowland
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders University, Adelaide, Australia
| |
Collapse
|
3
|
Granados JC, Falah K, Koo I, Morgan EW, Perdew GH, Patterson AD, Jamshidi N, Nigam SK. AHR is a master regulator of diverse pathways in endogenous metabolism. Sci Rep 2022; 12:16625. [PMID: 36198709 PMCID: PMC9534852 DOI: 10.1038/s41598-022-20572-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor with roles in detoxification, development, immune response, chronic kidney disease and other syndromes. It regulates the expression of drug transporters and drug metabolizing enzymes in a proposed Remote Sensing and Signaling Network involved in inter-organ communication via metabolites and signaling molecules. Here, we use integrated omics approaches to analyze its contributions to metabolism across multiple scales from the organ to the organelle. Global metabolomics analysis of Ahr-/- mice revealed the role of AHR in the regulation of 290 metabolites involved in many biochemical pathways affecting fatty acids, bile acids, gut microbiome products, antioxidants, choline derivatives, and uremic toxins. Chemoinformatics analysis suggest that AHR plays a role in determining the hydrophobicity of metabolites and perhaps their transporter-mediated movement into and out of tissues. Of known AHR ligands, indolepropionate was the only significantly altered molecule, and it activated AHR in both human and murine cells. To gain a deeper biological understanding of AHR, we employed genome scale metabolic reconstruction to integrate knockout transcriptomics and metabolomics data, which indicated a role for AHR in regulation of organic acids and redox state. Together, the results indicate a central role of AHR in metabolism and signaling between multiple organs and across multiple scales.
Collapse
Affiliation(s)
- Jeffry C Granados
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kian Falah
- Departments of Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan W Morgan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, 16801, USA
| | - Gary H Perdew
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Neema Jamshidi
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Sanjay K Nigam
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Department of Medicine (Nephrology), University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Neyton LPA, Zheng X, Skouras C, Doeschl-Wilson A, Gutmann MU, Uings I, Rao FV, Nicolas A, Marshall C, Wilson LM, Baillie JK, Mole DJ. Molecular Patterns in Acute Pancreatitis Reflect Generalizable Endotypes of the Host Response to Systemic Injury in Humans. Ann Surg 2022; 275:e453-e462. [PMID: 32487804 DOI: 10.1097/sla.0000000000003974] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Acute Pancreatitis (AP) is sudden onset pancreas inflammation that causes systemic injury with a wide and markedly heterogeneous range of clinical consequences. Here, we hypothesized that this observed clinical diversity corresponds to diversity in molecular subtypes that can be identified in clinical and multiomics data. SUMMARY BACKGROUND DATA Observational cohort study. n = 57 for the discovery cohort (clinical, transcriptomics, proteomics, and metabolomics data) and n = 312 for the validation cohort (clinical and metabolomics data). METHODS We integrated coincident transcriptomics, proteomics, and metabolomics data at serial time points between admission to hospital and up to 48 hours after recruitment from a cohort of patients presenting with acute pancreatitis. We systematically evaluated 4 different metrics for patient similarity using unbiased mathematical, biological, and clinical measures of internal and external validity.We next compared the AP molecular endotypes with previous descriptions of endotypes in a critically ill population with acute respiratory distress syndrome (ARDS). RESULTS Our results identify 4 distinct and stable AP molecular endotypes. We validated our findings in a second independent cohort of patients with AP.We observed that 2 endotypes in AP recapitulate disease endotypes previously reported in ARDS. CONCLUSIONS Our results show that molecular endotypes exist in AP and reflect biological patterns that are also present in ARDS, suggesting that generalizable patterns exist in diverse presentations of critical illness.
Collapse
Affiliation(s)
- Lucile P A Neyton
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Xiaozhong Zheng
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christos Skouras
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, UK
| | - Andrea Doeschl-Wilson
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | | | - Iain Uings
- GSK Discovery Partnerships with Academia, Exploratory Discovery, Future Pipeline Discovery, Medicines Research Centre, Stevenage, UK
| | - Francesco V Rao
- DC Biosciences Limited, James Lindsay Place, Dundee Technopole, Dundee, UK
| | - Armel Nicolas
- DC Biosciences Limited, James Lindsay Place, Dundee Technopole, Dundee, UK
| | - Craig Marshall
- Department of Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | | | - J Kenneth Baillie
- Division of Genetics and Genomics, The Roslin Institute, The University of Edinburgh, Edinburgh, UK
| | - Damian J Mole
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Landerer S, Kalthoff S, Strassburg CP. UDP-glucuronosyltransferases mediate coffee-associated reduction of liver fibrosis in bile duct ligated humanized transgenic UGT1A mice. Hepatobiliary Surg Nutr 2021; 10:766-781. [PMID: 35004944 DOI: 10.21037/hbsn-20-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Coffee consumption has been shown to reduce the risk of liver fibrosis and is capable of inducing human UDP-glucuronosyltransferase (UGT) 1A genes. UGT1A enzymes act as indirect antioxidants catalyzing the elimination of reactive metabolites, which in turn are potent initiators of profibrotic mechanisms. The aim of this study was to analyze the role of UGT1A genes as effectors of the protective properties of coffee in bile duct ligation (BDL) induced liver fibrosis. METHODS Fourteen days BDL with and without coffee pre- and co-treatment was performed in htgUGT1A-WT and htgUGT1A-SNP mice. Hepatic UGT1A mRNA expression levels, serum bilirubin and aminotransferase activities were determined. Liver fibrosis was assessed by collagen deposition, computational analysis of Sirius red tissue staining and expression of profibrotic marker genes. Oxidative stress was measured by hepatic peroxidase concentrations and immunofluorescence staining. RESULTS UGT1A transcription was differentially activated in the livers of htgUGT1A-WT mice after BDL, in contrast to a reduced or absent induction in the presence of SNPs. Co-treated (coffee + BDL) htgUGT1A-WT-mice showed significantly increased UGT1A expression and protein levels and a considerably higher induction compared to water drinking WT mice (BDL), whereas in co-treated htgUGT1A-SNP mice absolute expression levels remained below those observed in htgUGT1A-WT mice. Collagen deposition, oxidative stress and the expression of profibrotic markers inversely correlated with UGT1A expression levels in htgUGT1A-WT and SNP mice after BDL and coffee + BDL co-treatment. CONCLUSIONS Coffee exerts hepatoprotective and antioxidative effects via activation of UGT1A enzymes. Attenuated hepatic fibrosis as a result of coffee-mediated UGT1A induction during cholestasis was detected, while the protective action of coffee was lower in a common low-function UGT1A SNP haplotype present in 10% of the Caucasian population. This study suggests that coffee consumption might constitute a potential strategy to support the conventional treatment of cholestasis-related liver diseases.
Collapse
Affiliation(s)
- Steffen Landerer
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Sandra Kalthoff
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| | - Christian P Strassburg
- Department of Internal Medicine I, University Hospital Bonn, Venusberg-Campus 1, Bonn, Germany
| |
Collapse
|
6
|
Jarrar Y, Lee SJ. The Functionality of UDP-Glucuronosyltransferase Genetic Variants and their Association with Drug Responses and Human Diseases. J Pers Med 2021; 11:jpm11060554. [PMID: 34198586 PMCID: PMC8231948 DOI: 10.3390/jpm11060554] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that metabolize endogenous fatty acids such as arachidonic acid metabolites, as well as many prescription drugs, such as opioids, antiepileptics, and antiviral drugs. The UGT1A and 2B genes are highly polymorphic, and their genetic variants may affect the pharmacokinetics and hence the responses of many drugs and fatty acids. This study collected data and updated the current view of the molecular functionality of genetic variants on UGT genes that impact drug responses and the susceptibility to human diseases. The functional information of UGT genetic variants with clinical associations are essential to understand the inter-individual variation in drug responses and susceptibility to toxicity.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmacy, College of Pharmacy, Alzaytoonah University of Jordan, Amman 11733, Jordan;
| | - Su-Jun Lee
- Department of Pharmacology and Pharmacogenomics Research Center, College of Medicine, Inje University, Busan 50834, Korea
- Correspondence: ; Tel.: +82-051-890-5911; Fax: +82-050-4290-5739
| |
Collapse
|
7
|
Blank A, Meier K, Urban S, Haefeli WE, Weiss J. Drug-drug interaction potential of the HBV and HDV entry inhibitor myrcludex B assessed in vitro. Antivir Ther 2019; 23:267-275. [PMID: 29134945 DOI: 10.3851/imp3206] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myrcludex B is a first-in-class virus entry inhibitor for patients with chronic hepatitis B or B/D infections. In patients it will be coadministered with drugs needed for the disease or comorbidities. We aimed to define the risk of drug-drug interactions by characterizing the influence of myrcludex B on relevant drug transporting and metabolizing enzymes in vitro. METHODS Inhibition of P-glycoprotein (P-gp; ABCB1), breast cancer resistance protein (BCRP/ABCG2), and the organic anion transporting polypeptides 1B1 and 1B3 (OATP1B1/SLCO1B1 and OATP1B3/SLCO1B3) was measured in cells over-expressing the respective transporter using fluorogenic substrates. Inhibition of cytochrome P450 enzymes (CYPs) was assessed with commercially available kits. mRNA induction of drug transporting and metabolizing enzymes was measured in LS180 cells after 4 days of treatment by quantitative real-time PCR. Pregnane X receptor (PXR) activation was assessed using a reporter-gene assay. RESULTS Whereas activities of P-gp and BCRP were not influenced by myrcludex B, OATP1B1 and OATP1B3 were specifically inhibited with a 50% inhibitory concentration (IC50) of 0.5 and 8.7 µM, respectively. Myrcludex B weakly inhibited all CYPs tested at concentrations ≥10 µM except CYP2D6, which was not inhibited at concentrations up to 2 µM. Myrcludex B had no influence on mRNA expression of CYP1A1, CYP3A4, UGT1A3, ABCB1, ABCC2 and ABCG2, and on PXR activity. CONCLUSIONS Our in vitro study suggests that myrcludex B is not at major risk of acting as a perpetrator drug. A potential inhibition of the uptake transporters OATP1B1 and OATP1B3 and a previous clinical finding of potential CYP3A inhibition, requires further evaluation and should be carefully addressed in future trials.
Collapse
Affiliation(s)
- Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| | - Katrin Meier
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| | - Stephan Urban
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg Partner Site, Heidelberg, Germany
| |
Collapse
|
8
|
Minzaghi D, Pavel P, Dubrac S. Xenobiotic Receptors and Their Mates in Atopic Dermatitis. Int J Mol Sci 2019; 20:E4234. [PMID: 31470652 PMCID: PMC6747412 DOI: 10.3390/ijms20174234] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is the most common inflammatory skin disease worldwide. It is a chronic, relapsing and pruritic skin disorder which results from epidermal barrier abnormalities and immune dysregulation, both modulated by environmental factors. AD is strongly associated with asthma and allergic rhinitis in the so-called 'atopic march.' Xenobiotic receptors and their mates are ligand-activated transcription factors expressed in the skin where they control cellular detoxification pathways. Moreover, they regulate the expression of genes in pathways involved in AD in epithelial cells and immune cells. Activation or overexpression of xenobiotic receptors in the skin can be deleterious or beneficial, depending on context, ligand and activation duration. Moreover, their impact on skin might be amplified by crosstalk among xenobiotic receptors and their mates. Because they are activated by a broad range of endogenous molecules, drugs and pollutants owing to their promiscuous ligand affinity, they have recently crystalized the attention of researchers, including in dermatology and especially in the AD field. This review examines the putative roles of these receptors in AD by critically evaluating the conditions under which the proteins and their ligands have been studied. This information should provide new insights into AD pathogenesis and ways to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Deborah Minzaghi
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Petra Pavel
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
9
|
Emerging Roles of Aryl Hydrocarbon Receptors in the Altered Clearance of Drugs during Chronic Kidney Disease. Toxins (Basel) 2019; 11:toxins11040209. [PMID: 30959953 PMCID: PMC6521271 DOI: 10.3390/toxins11040209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a major public health problem, since 300,000,000 people in the world display a glomerular filtration rate (GFR) below 60 mL/min/1.73m². Patients with CKD have high rates of complications and comorbidities. Thus, they require the prescription of numerous medications, making the management of patients very complex. The prescription of numerous drugs associated with an altered renal- and non-renal clearance makes dose adjustment challenging in these patients, with frequent drug-related adverse events. However, the mechanisms involved in this abnormal drug clearance during CKD are not still well identified. We propose here that the transcription factor, aryl hydrocarbon receptor, which is the cellular receptor for indolic uremic toxins, could worsen the metabolism and the excretion of drugs in CKD patients.
Collapse
|
10
|
Meech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, Rowland A, Mackenzie PI. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiol Rev 2019; 99:1153-1222. [DOI: 10.1152/physrev.00058.2017] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UDP-glycosyltransferases (UGTs) catalyze the covalent addition of sugars to a broad range of lipophilic molecules. This biotransformation plays a critical role in elimination of a broad range of exogenous chemicals and by-products of endogenous metabolism, and also controls the levels and distribution of many endogenous signaling molecules. In mammals, the superfamily comprises four families: UGT1, UGT2, UGT3, and UGT8. UGT1 and UGT2 enzymes have important roles in pharmacology and toxicology including contributing to interindividual differences in drug disposition as well as to cancer risk. These UGTs are highly expressed in organs of detoxification (e.g., liver, kidney, intestine) and can be induced by pathways that sense demand for detoxification and for modulation of endobiotic signaling molecules. The functions of the UGT3 and UGT8 family enzymes have only been characterized relatively recently; these enzymes show different UDP-sugar preferences to that of UGT1 and UGT2 enzymes, and to date, their contributions to drug metabolism appear to be relatively minor. This review summarizes and provides critical analysis of the current state of research into all four families of UGT enzymes. Key areas discussed include the roles of UGTs in drug metabolism, cancer risk, and regulation of signaling, as well as the transcriptional and posttranscriptional control of UGT expression and function. The latter part of this review provides an in-depth analysis of the known and predicted functions of UGT3 and UGT8 enzymes, focused on their likely roles in modulation of levels of endogenous signaling pathways.
Collapse
Affiliation(s)
- Robyn Meech
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Ross A. McKinnon
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Siti Nurul Mubarokah
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Alex Z. Haines
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Pramod C. Nair
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Andrew Rowland
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Peter I. Mackenzie
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University College of Medicine and Public Health, Flinders Medical Centre, Bedford Park, South Australia, Australia
| |
Collapse
|
11
|
Xie H, Wu J, Liu D, Liu M, Zhang H, Huang S, Xiong Y, Xia C. In vitro inhibition of UGT1A3, UGT1A4 by ursolic acid and oleanolic acid and drug-drug interaction risk prediction. Xenobiotica 2017; 47:785-792. [PMID: 27600106 DOI: 10.1080/00498254.2016.1234087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/05/2016] [Accepted: 09/05/2016] [Indexed: 12/13/2022]
Abstract
1. Ursolic acid (UA) and oleanolic acid (OA) may have important activity relevant to health and disease prevention. Thus, we studied the activity of UA and OA on UDP-glucuronosyltransferases (UGTs) and used trifluoperazine as a probe substrate to test UGT1A4 activity. Recombinant UGT-catalyzed 4-methylumbelliferone (4-MU) glucuronidation was used as a probe reaction for other UGT isoforms. 2. UA and OA inhibited UGT1A3 and UGT1A4 activity but did not inhibit other tested UGT isoforms. 3. UA-mediated inhibition of UGT1A3 catalyzed 4-MU-β-d-glucuronidation was via competitive inhibition (IC50 0.391 ± 0.013 μM; Ki 0.185 ± 0.015 μM). UA also competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 2.651 ± 0.201 μM; Ki 1.334 ± 0.146 μM). 4. OA offered mixed inhibition of UGT1A3-mediated 4-MU-β-d-glucuronidation (IC50 0.336 ± 0.013 μM; Ki 0.176 ± 0.007 μM) and competitively inhibited UGT1A4-mediated trifluoperazine-N-glucuronidation (IC50 5.468 ± 0.697 μM; Ki 6.298 ± 0.891 μM). 5. Co-administering OA or UA with drugs or products that are substrates of UGT1A3 or UGT1A4 may produce drug-mediated side effects.
Collapse
Affiliation(s)
- Hongbo Xie
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Jie Wu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Dan Liu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Mingyi Liu
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Hong Zhang
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Shibo Huang
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Yuqing Xiong
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| | - Chunhua Xia
- a Clinical Pharmacology Institute, Nanchang University , Nanchang , P.R. China
| |
Collapse
|
12
|
Du Z, Wang G, Cao YF, Hu CM, Yang K, Liu YZ, Zhang CZ, Zhang WH, Zhu ZT, Sun HZ, Sun XY, Hong M, Fang ZZ. Everolimus-inhibited multiple isoforms of UDP-glucuronosyltransferases (UGTs). Xenobiotica 2017; 48:452-458. [DOI: 10.1080/00498254.2017.1335917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zuo Du
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China,
- National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, China
| | - Guang Wang
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China,
| | - Yun-Feng Cao
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China,
| | - Cui-Min Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China,
| | - Kun Yang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China,
- National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China,
- National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, China
| | - Chun-Ze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China,
| | - Wei-Hua Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China,
| | - Zhi-Tu Zhu
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China,
| | - Hong-Zhi Sun
- Key Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China,
| | | | - Mo Hong
- RSKT Biopharma Inc, Liaoning, China, and
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, China,
- National Demonstration Center for Experimental Preventive Medicine Education, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Weiss J, Gajek T, Köhler BC, Haefeli WE. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions. Pharmaceutics 2016; 8:5. [PMID: 26927160 PMCID: PMC4810081 DOI: 10.3390/pharmaceutics8010005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/16/2016] [Indexed: 01/15/2023] Open
Abstract
Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.
Collapse
Affiliation(s)
- Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Thomas Gajek
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | - Bruno Christian Köhler
- National Centre for Tumour Diseases, Department of Medical Oncology, Internal Medicine VI, University of Heidelberg, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| | - Walter Emil Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| |
Collapse
|
14
|
Liu X, Cao YF, Ran RX, Dong PP, Gonzalez FJ, Wu X, Huang T, Chen JX, Fu ZW, Li RS, Liu YZ, Sun HZ, Fang ZZ. New insights into the risk of phthalates: Inhibition of UDP-glucuronosyltransferases. CHEMOSPHERE 2016; 144:1966-72. [PMID: 26547877 PMCID: PMC6300982 DOI: 10.1016/j.chemosphere.2015.10.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 05/22/2023]
Abstract
Wide utilization of phthalates-containing products results in the significant exposure of humans to these compounds. Many adverse effects of phthalates have been documented in rodent models, but their effects in humans exposed to these chemicals remain unclear until more mechanistic studies on phthalate toxicities can be carried out. To provide new insights to predict the potential adverse effects of phthalates in humans, the recent study investigated the inhibition of representative phthalates di-n-octyl ortho-phthalate (DNOP) and diphenyl phthalate (DPhP) towards the important xenobiotic and endobiotic-metabolizing UDP-glucuronosyltransferases (UGTs). An in vitro UGTs incubation system was employed to study the inhibition of DNOP and DPhP towards UGT isoforms. DPhP and DNOP weakly inhibited the activities of UGT1A1, UGT1A7, and UGT1A8. 100 µM of DNOP inhibited the activities of UGT1A3, UGT1A9, and UGT2B7 by 41.8% (p < 0.01), 45.6% (p < 0.01), and 48.8% (p < 0.01), respectively. 100 µM of DPhP inhibited the activity of UGT1A3, UGT1A6, and UGT1A9 by 81.8 (p < 0.001), 49.1% (p < 0.05), and 76.4% (p < 0.001), respectively. In silico analysis was used to explain the stronger inhibition of DPhP than DNOP towards UGT1A3 activity. Kinetics studies were carried our to determine mechanism of inhibition of UGT1A3 by DPhP. Both Dixon and Lineweaver-Burk plots showed the competitive inhibition of DPhP towards UGT1A3. The inhibition kinetic parameter (Ki) was calculated to be 0.89 µM. Based on the [I]/Ki standard ([I]/Ki < 0.1, low possibility; 1>[I]/Ki > 0.1, medium possibility; [I]/Ki > 1, high possibility), these studies predicted in vivo drug-drug interaction might occur when the plasma concentration of DPhP was above 0.089 µM. Taken together, this study reveales the potential for adverse effects of phthalates DNOP and DPhP as a result of UGT inhibition.
Collapse
Affiliation(s)
- Xin Liu
- First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Yun-Feng Cao
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Rui-Xue Ran
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, China
| | - Pei-Pei Dong
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xue Wu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University, Dalian, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the Affiliated Zhongshan Hospital of Dalian University, Zhongshan, Dalian, China
| | - Ting Huang
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Jian-Xin Chen
- Key Laboratory of Contraceptives and Devices Research (NPFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
| | - Zhi-Wei Fu
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the First Affiliated Hospital of Liaoning Medical University, Dalian, China; Joint Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences and the Affiliated Zhongshan Hospital of Dalian University, Zhongshan, Dalian, China
| | - Rong-Shan Li
- School of Pharmacy, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, 300070, China
| | - Hong-Zhi Sun
- First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, China
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
15
|
Liu D, Wu J, Xie H, Liu M, Takau I, Zhang H, Xiong Y, Xia C. Inhibitory Effect of Hesperetin and Naringenin on Human UDP-Glucuronosyltransferase Enzymes: Implications for Herb–Drug Interactions. Biol Pharm Bull 2016; 39:2052-2059. [DOI: 10.1248/bpb.b16-00581] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Dan Liu
- Clinical Pharmacology Institute, Nanchang University
| | - Jie Wu
- Clinical Pharmacology Institute, Nanchang University
| | - Hongbo Xie
- Clinical Pharmacology Institute, Nanchang University
| | - Mingyi Liu
- Clinical Pharmacology Institute, Nanchang University
| | - Isaiah Takau
- Clinical Pharmacology Institute, Nanchang University
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University
| |
Collapse
|
16
|
Yao Z, Liu YZ, Ma AL, Wang SF, Lu D, Hu CM, Zhang YY, Wang H, Hu L, Deng J, Yang K, Fang ZZ. Chiral Inhibition of Rivaroxaban Derivatives Towards UDP-Glucuronosyltransferase (UGT) Isoforms. Chirality 2015; 27:936-43. [DOI: 10.1002/chir.22505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 04/24/2015] [Accepted: 07/19/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Zhuhua Yao
- Department of Cardiology; Tianjin Union Medicine Centre; 300121 Tianjin People's Republic of China
| | - Yong-Zhe Liu
- Department of Toxicology, School of Public Health; Tianjin Medical University; Tianjin People's Republic of China
| | - Ai-Lun Ma
- School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery & High-Efficiency; Tianjin University; Tianjin People's Republic of China
| | - Shu-Fen Wang
- Department of Toxicology, School of Public Health; Tianjin Medical University; Tianjin People's Republic of China
| | - Dan Lu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology; Tianjin Medical University; Tianjin People's Republic of China
| | - Cui-Min Hu
- Tianjin Life Science Research Center, Department of Microbiology, School of Basic Medical Sciences; Tianjin Medical University; Tianjin People's Republic of China
| | - Yan-Yan Zhang
- Joint Center for Translational Medicine, Dalian Institute of Chemical Physics; Chinese Academy of Sciences and First Affiliated Hospital of Liaoning Medical University; Dalian People's Republic of China
| | - Haina Wang
- College of Pharmaceutical Sciences; Shandong University; Jinan People's Republic of China
| | - Lingyun Hu
- Shandong Cancer Hospital and Institute; Shandong People's Republic of China
| | - Jun Deng
- School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery & High-Efficiency; Tianjin University; Tianjin People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin University; Tianjin People's Republic of China
| | - Kun Yang
- Department of Toxicology, School of Public Health; Tianjin Medical University; Tianjin People's Republic of China
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health; Tianjin Medical University; Tianjin People's Republic of China
| |
Collapse
|
17
|
Theile D, Allendorf D, Köhler BC, Jassowicz A, Weiss J. Obatoclax as a perpetrator in drug-drug interactions and its efficacy in multidrug resistance cell lines. ACTA ACUST UNITED AC 2015; 67:1575-84. [PMID: 26255619 DOI: 10.1111/jphp.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/17/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Obatoclax is a pan-Bcl-2 inhibitor with promising efficacy, especially when combined with other antineoplastic agents. Pharmacokinetic drug-drug interactions can occur systemically and at the level of the tumour cell. Thus, this study scrutinised the interaction potential of obatoclax in vitro. METHODS Obatoclax was screened for P-gp inhibition by calcein assay, for breast cancer resistance protein (BCRP) inhibition by pheophorbide A assay and for inhibition of cytochrome P450 isoenzymes (CYPs) by commercial kits. Induction of mRNA of drug-metabolising enzymes and drug transporters was quantified in LS180 cells via real-time polymerase chain reaction and involvement of nuclear receptors was assessed by reporter gene assays. Proliferation assays were used to assess whether obatoclax retains its efficacy in cell lines overexpressing BCRP, P-glycoprotein (P-gp) or multidrug resistance-associated protein 2 (MRP2). KEY FINDINGS Obatoclax induced the mRNA expression of several genes (e.g. CYP1A1, CYP1A2 and ABCG2 (five to seven-fold) through activation of the aryl hydrocarbon receptor in the nanomolar range. Obatoclax inhibits P-gp, BCRP and some CYPs at concentrations exceeding plasma levels. P-gp, MPR2 or BCRP overexpression did not influence the efficacy of obatoclax. CONCLUSIONS Obatoclax retains its efficacy in cells overexpressing P-gp, MRP2 or BCRP and might act as a perpetrator drug in interactions with drugs, for example being substrates of CYP1A2 or BCRP.
Collapse
Affiliation(s)
- Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - David Allendorf
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Bruno Christian Köhler
- National Centre for Tumour Diseases, Department of Medical Oncology, Internal Medicine VI, University of Heidelberg, Heidelberg, Germany
| | - Adam Jassowicz
- National Centre for Tumour Diseases, Department of Medical Oncology, Internal Medicine VI, University of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Oda S, Fukami T, Yokoi T, Nakajima M. A comprehensive review of UDP-glucuronosyltransferase and esterases for drug development. Drug Metab Pharmacokinet 2015; 30:30-51. [DOI: 10.1016/j.dmpk.2014.12.001] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 01/24/2023]
|
19
|
Hu DG, Meech R, McKinnon RA, Mackenzie PI. Transcriptional regulation of human UDP-glucuronosyltransferase genes. Drug Metab Rev 2014; 46:421-58. [PMID: 25336387 DOI: 10.3109/03602532.2014.973037] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucuronidation is an important metabolic pathway for many small endogenous and exogenous lipophilic compounds, including bilirubin, steroid hormones, bile acids, carcinogens and therapeutic drugs. Glucuronidation is primarily catalyzed by the UDP-glucuronosyltransferase (UGT) 1A and two subfamilies, including nine functional UGT1A enzymes (1A1, 1A3-1A10) and 10 functional UGT2 enzymes (2A1, 2A2, 2A3, 2B4, 2B7, 2B10, 2B11, 2B15, 2B17 and 2B28). Most UGTs are expressed in the liver and this expression relates to the major role of hepatic glucuronidation in systemic clearance of toxic lipophilic compounds. Hepatic glucuronidation activity protects the body from chemical insults and governs the therapeutic efficacy of drugs that are inactivated by UGTs. UGT mRNAs have also been detected in over 20 extrahepatic tissues with a unique complement of UGT mRNAs seen in almost every tissue. This extrahepatic glucuronidation activity helps to maintain homeostasis and hence regulates biological activity of endogenous molecules that are primarily inactivated by UGTs. Deciphering the molecular mechanisms underlying tissue-specific UGT expression has been the subject of a large number of studies over the last two decades. These studies have shown that the constitutive and inducible expression of UGTs is primarily regulated by tissue-specific and ligand-activated transcription factors (TFs) via their binding to cis-regulatory elements (CREs) in UGT promoters and enhancers. This review first briefly summarizes published UGT gene transcriptional studies and the experimental models and tools utilized in these studies, and then describes in detail the TFs and their respective CREs that have been identified in the promoters and/or enhancers of individual UGT genes.
Collapse
Affiliation(s)
- Dong Gui Hu
- Department of Clinical Pharmacology and Flinders Centre for Innovation in Cancer, Flinders University School of Medicine, Flinders Medical Centre , Bedford Park, SA , Australia
| | | | | | | |
Collapse
|
20
|
Bigo C, Caron S, Dallaire-Théroux A, Barbier O. Nuclear receptors and endobiotics glucuronidation: the good, the bad, and the UGT. Drug Metab Rev 2013; 45:34-47. [PMID: 23330540 DOI: 10.3109/03602532.2012.751992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recent progresses in molecular biology and pharmacology approaches allowed the characterization of a series of nuclear receptors (NRs) as efficient regulators of uridine diphosphate glucuronosyltransferase (UGT) genes activity. These regulatory processes ensure an optimized UGT expression in response to specific endo- and/or exogenous stimuli. Many of these NRs are activated by endobiotics that also are substrates for UGTs. Thus, by activating their receptors, these endogenous substances control their own conjugation, leading to the concept that glucuronidation is an important part of feed-forward/feedback mechanisms by which bioactive molecules control their own concentrations. On the other hand, numerous studies have established the pharmacological relevance of NR-UGT regulatory pathways in the response to therapeutic ligands. The present review article aims at providing a comprehensive view of the physiological and pharmacological importance of the NR regulation of the expression and activity of endobiotics-conjugating UGT enzymes. Selected examples will illustrate how the organism profits from the feed-forward/feedback mechanisms involving NR-UGT pathways, but also how such regulatory processes are involved in the initiation and/or progression of several pathological situations. Finally, we will discuss how the present pharmacopeia involves NR-dependent regulation of endobiotics glucuronidation, and whether the unexploited NR-UGT axes could serve as pharmacological targets for novel therapeutics to restore endobiotics homeostasis.
Collapse
Affiliation(s)
- Cyril Bigo
- Laboratory of Molecular Pharmacology, CHUQ Research Center and the Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | | | | | | |
Collapse
|
21
|
The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int J Biochem Cell Biol 2013; 45:1121-32. [DOI: 10.1016/j.biocel.2013.02.019] [Citation(s) in RCA: 508] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 01/17/2023]
|
22
|
Ehmer U, Kalthoff S, Fakundiny B, Pabst B, Freiberg N, Naumann R, Manns MP, Strassburg CP. Gilbert syndrome redefined: a complex genetic haplotype influences the regulation of glucuronidation. Hepatology 2012; 55:1912-21. [PMID: 22213127 DOI: 10.1002/hep.25561] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 12/03/2011] [Indexed: 01/02/2023]
Abstract
UNLABELLED Gilbert syndrome (GS) is characterized by intermittent unconjugated hyperbilirubinemia without structural liver damage, affecting about 10% of the white population. In GS the UGT1A1*28 variant reduces bilirubin conjugation by 70% and is associated with irinotecan and protease inhibitor side effects. The aim of this study was to characterize potential in vivo consequences of UGT1A gene variability in GS. Three hundred GS patients (UGT1A1*28 homozygous) and 249 healthy blood donors (HBD) were genotyped for UGT1A (UGT1A1*28, UGT1A3-66 T>C, UGT1A6*3a, UGT1A7*3) and transporter single nucleotide polymorphisms (SNPs) (SCLO1B1 p.V174A, SCLO1B1 p.N130D, ABCC2 p.I1324I, ABCC2-24 UTR) using TaqMan-5'-nuclease-assays. A humanized transgenic UGT1A-SNP and corresponding wildtype mouse model were established carrying the GS-associated UGT1A variant haplotype. UGT1A transcript and protein expression, and transcriptional activation were studied in vivo. Homozygous UGT1A1*28 GS individuals were simultaneously homozygous for UGT1A3-66 T>C (91%), UGT1A6*2a (77%), and UGT1A7*3 (77%). Seventy-six percent of GS and only 9% of HBD were homozygous for the variant haplotype spanning four UGT1A genes. SCLO1B1 and ABCC2 SNPs showed no differences. In transgenic humanized UGT1A SNP and wildtype mice this UGT1A haplotype led to lower UGT1A messenger RNA (mRNA) expression and UGT1A protein synthesis. UGT1A transcriptional activation by dioxin, phenobarbital, and endotoxin was significantly reduced in SNP mice. CONCLUSION Our data redefine the genetic basis behind GS. In vivo data studying the genotype present in 76% of GS individuals suggest that transcription and transcriptional activation of glucuronidation genes responsible for conjugation and detoxification is directly affected, leading to lower responsiveness. This study suggests that GS should be considered a potential risk factor for drug toxicity.
Collapse
Affiliation(s)
- Ursula Ehmer
- Department of Gastroenterology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The impact of pharmacogenetics of metabolic enzymes and transporters on the pharmacokinetics of telmisartan in healthy volunteers. Pharmacogenet Genomics 2011; 21:523-30. [DOI: 10.1097/fpc.0b013e3283482502] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Ginsberg G, Guyton K, Johns D, Schimek J, Angle K, Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Crit Rev Toxicol 2011; 40:575-619. [PMID: 20662711 DOI: 10.3109/10408441003742895] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic polymorphisms in xenobiotic metabolizing enzymes can have profound influence on enzyme function, with implications for chemical clearance and internal dose. The effects of polymorphisms have been evaluated for certain therapeutic drugs but there has been relatively little investigation with environmental toxicants. Polymorphisms can also affect the function of host defense mechanisms and thus modify the pharmacodynamic response. This review and analysis explores the feasibility of using polymorphism data in human health risk assessment for four enzymes, two involved in conjugation (uridine diphosphoglucuronosyltransferases [UGTs], sulfotransferases [SULTs]), and two involved in detoxification (microsomal epoxide hydrolase [EPHX1], NADPH quinone oxidoreductase I [NQO1]). This set of evaluations complements our previous analyses with oxidative and conjugating enzymes. Of the numerous UGT and SULT enzymes, the greatest likelihood for polymorphism effect on conjugation function are for SULT1A1 (*2 polymorphism), UGT1A1 (*6, *7, *28 polymorphisms), UGT1A7 (*3 polymorphism), UGT2B15 (*2 polymorphism), and UGT2B17 (null polymorphism). The null polymorphism in NQO1 has the potential to impair host defense. These highlighted polymorphisms are of sufficient frequency to be prioritized for consideration in chemical risk assessments. In contrast, SNPs in EPHX1 are not sufficiently influential or defined for inclusion in risk models. The current analysis is an important first step in bringing the highlighted polymorphisms into a physiologically based pharmacokinetic (PBPK) modeling framework.
Collapse
Affiliation(s)
- Gary Ginsberg
- Connecticut Department of Public Health, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Bolt HM, Hengstler JG. Most cited articles: metal toxicity, oxidative stress control and induction as well as inhibition of cytochrome P450 enzymes. Arch Toxicol 2010. [DOI: 10.1007/s00204-010-0624-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Kalthoff S, Ehmer U, Freiberg N, Manns MP, Strassburg CP. Coffee induces expression of glucuronosyltransferases by the aryl hydrocarbon receptor and Nrf2 in liver and stomach. Gastroenterology 2010; 139:1699-710, 1710.e1-2. [PMID: 20600030 DOI: 10.1053/j.gastro.2010.06.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/12/2010] [Accepted: 06/10/2010] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Coffee is one of the most widely consumed beverages worldwide. Epidemiologic data indicate that coffee consumption protects against the progression of chronic liver disease and development of hepatocellular carcinoma and diabetes, but the mechanisms are not clear. UDP glucuronosyltransferases (UGT1A) are proteins with indirect antioxidant, cytoprotective, and genoprotective capabilities; we examined UGT1A regulation in response to coffee in cultured cells and mice. METHODS HepG2 and CaCo2 cells were incubated with regular, metal- or paper-filtered, decaffeinated, or instant coffee; green or black tea; cocoa; or metabolic products of caffeine. The effects of UGT1A regulation were investigated with reporter gene assays, immunoblot, TaqMan polymerase chain reaction, mutagenesis, and short interfering (si)RNA analyses. We also studied the effects of coffee in humanized transgenic mice that express human UGT1A. RESULTS Incubation of cells with coffee induced transcription of UGT1A1 (5.4-fold), UGT1A3 (5.2-fold), UGT1A4 (4.8-fold), UGT1A7 (6.2-fold), UGT1A8 (5.2-fold), UGT1A9 (3.5-fold), and UGT1A10 (6.1-fold). Induction was independent of caffeine, methylxanthines, or the diterpenes cafestol and kahweol. Mutagenesis and short interfering RNA knockdown studies showed that UGT1A is regulated by the aryl hydrocarbon receptor (AhR) and the nuclear factor erythroid-related factor 2 (Nrf2) by cis-acting antioxidant and xenobiotic response elements (ARE/XRE). In transgenic UGT1A mice, administration of coffee resulted in a 10- and 14-fold induction of UGT1A transcription in liver and stomach, respectively. CONCLUSIONS UGT1A genes are induced in vitro and in vivo by coffee, independent of caffeine content, cafestol, or kahweol. Coffee up-regulates glucuronidation by AhR signaling and Nrf2 binding to the ARE/XRE. Glucuronidation could mediate the protective and antioxidant effects of coffee.
Collapse
Affiliation(s)
- Sandra Kalthoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
27
|
Li H, Wang H. Activation of xenobiotic receptors: driving into the nucleus. Expert Opin Drug Metab Toxicol 2010; 6:409-26. [PMID: 20113149 DOI: 10.1517/17425251003598886] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Xenobiotic receptors (XRs) play pivotal roles in regulating the expression of genes that determine the clearance and detoxification of xenobiotics, such as drugs and environmental chemicals. Recently, it has become increasingly evident that most XRs shuttle between the cytoplasm and nucleus, and activation of such receptors is directly associated with xenobiotic-induced nuclear import. AREAS COVERED IN THIS REVIEW The scope of this review covers research literature that discusses nuclear translocation and activation of XRs, as well as unpublished data generated from this laboratory. Specific emphasis is given to the constitutive androstane receptor (CAR), the pregnane X receptor and the aryl hydrocarbon receptor. WHAT THE READERS WILL GAIN A number of molecular chaperons presumably associated with cellular localization of XRs have been identified. Primary hepatocyte cultures have been established as a unique model retaining inactive CAR in the cytoplasm. Moreover, several splicing variants of human CAR exhibit altered cellular localization and chemical activation. TAKE HOME MESSAGE Nuclear accumulation is an essential step in the activation of XRs. Although great strides have been made, much remains to be understood concerning the mechanisms underlying intracellular localization and trafficking of XRs, which involve both direct ligand-binding and indirect pathways.
Collapse
Affiliation(s)
- Haishan Li
- University of Maryland School of Pharmacy, Department of Pharmaceutical Sciences, 20 Penn Street, Baltimore, MD 21201, USA
| | | |
Collapse
|
28
|
Ehmer U, Kalthoff S, Lankisch TO, Freiberg N, Manns MP, Strassburg CP. Shared regulation of UGT1A7 by hepatocyte nuclear factor (HNF) 1alpha and HNF4alpha. Drug Metab Dispos 2010; 38:1246-57. [PMID: 20406851 DOI: 10.1124/dmd.109.030403] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Substrates for glucuronidation include endogenous and xenobiotic compounds such as environmental carcinogens and drugs, as well as the chemotherapeutic agent irinotecan. The UDP-glucuronosyltransferase (UGT) 1A7 gene is expressed in the upper gastrointestinal tract and the lung but is not expressed in the liver. The transcriptional regulation of UGT1A7 and the putative influence of single nucleotide polymorphisms (SNPs) are incompletely characterized. UGT1A8, UGT1A9, and UGT1A10, which are highly homologous to UGT1A7, have been reported to be transcriptionally regulated by hepatocyte nuclear factors (HNFs). In this study, we show the activation of UGT1A7 by the aforementioned transcription factors. Sequence analyses, mutagenesis, reporter gene experiments, small interfering RNA silencing, chromatin immunoprecipitation, and electromobility shift assays identified five HNF binding sites in the proximal promoter region of UGT1A7 that were regulated by HNF1alpha and HNF4alpha. Activation by HNF1alpha was lower in the presence of the UGT1A7 -57G SNP. In contrast to liver-expressed UGT1A9, transcriptional activation of UGT1A7 by HNF4alpha was lower and dependent on higher HNF4alpha concentrations, which may contribute to the observed differences in tissue expression patterns. Therefore, a specific role of HNF in the transcriptional control of UGT1A7 is shown and characterized, which may contribute to its tissue specificity and function.
Collapse
Affiliation(s)
- Ursula Ehmer
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Mackenzie PI, Hu DG, Gardner-Stephen DA. The regulation of UDP-glucuronosyltransferase genes by tissue-specific and ligand-activated transcription factors. Drug Metab Rev 2010; 42:99-109. [PMID: 20070244 DOI: 10.3109/03602530903209544] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elucidation of the mechanisms regulating UGT genes is of prime importance if the adverse effects of interactions between drugs primarily eliminated by glucuronidation are to be minimized, and if UGT expression is to be manipulated for therapeutic effect. The factors controlling UGT gene expression in the liver include the liver-enriched transcription factors, HNF-1alpha and HNF-4alpha, several members of the nuclear-receptor family (CAR, PXR, FXR, LXR, and PPAR), the arylhydrocarbon receptor, and transcription factors involved in stress responses (Nrf2, Maf). HNF-1alpha, in concert with the intestine-specific transcription factor, Cdx2, and Sp1 regulate UGT gene expression in the gastrointestinal tract, whereas the genes for the major androgen-glucuronidating enzymes, UGT2B15 and UGT2B17, are upregulated by estrogens in breast cell lines and downregulated by androgens in prostate-derived cells. Despite this knowledge, the complex interactions between these transcription factors and their coregulators has not been determined, and the mechanisms regulating UGT gene expression in organs and tissues, other than the liver, gastrointestinal tract, breast, and prostate, remain to be elucidated.
Collapse
Affiliation(s)
- Peter I Mackenzie
- Department of Clinical Pharmacology, Flinders Medical Science and Technology, Flinders University, Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
30
|
Erichsen TJ, Aehlen A, Ehmer U, Kalthoff S, Manns MP, Strassburg CP. Regulation of the human bile acid UDP-glucuronosyltransferase 1A3 by the farnesoid X receptor and bile acids. J Hepatol 2010; 52:570-8. [PMID: 20189675 DOI: 10.1016/j.jhep.2010.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 10/09/2009] [Accepted: 10/11/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Cholestasis is a serious complication of many liver diseases leading to increased serum bile acids (BA) and their conjugates. Chenodeoxycholic (CDCA) acid is a substrate of the human hepatic UDP-glucuronosyltransferase (UGT) 1A3. UGT1A3 may, therefore, be a BA-inducible gene relevant to BA regulation. METHODS BA and human bile were used to induce UGT1A3 in HepG2 cells. Genomic DNA was analyzed by PCR amplification and sequencing. Transcriptional regulation was studied by DNA mutagenesis, RT-PCR, luciferase reporter gene constructs and electrophoretic mobility shift assays (EMSA). RESULTS CDCA differentially induced UGT1A3 but not UGT1A4 expression. Bile from ursodeoxycholic acid (UDCA)-treated and untreated patients differentially induced UGT1A3. A farnesoid X receptor (FXR) half-site DNA motif was identified in the UGT1A3 5' upstream region. The FXR inducer GW4064 activated UGT1A3 transcription, and electrophoretic mobility shift assays identified UGT1A3 as a FXR target gene. CONCLUSIONS Transcriptional regulation of the human bile acid and xenobiotic UGT1A3 by its substrate CDCA and FXR is shown. CDCA glucuronidation can be controlled by feed back inhibition proceeding via the glucuronidation of CDCA. UDCA does not induce UGT1A3 transcription. Since UGT1A3 is significantly induced by xenobiotics this physiologically links xenobiotic and bile acid metabolism to cholestasis.
Collapse
Affiliation(s)
- Thomas J Erichsen
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg Str. 1, Hannover, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Boyle JO, Gümüş ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, Yantiss RK, Hughes DB, Du B, Judson BL, Subbaramaiah K, Dannenberg AJ. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila) 2010; 3:266-78. [PMID: 20179299 PMCID: PMC2833216 DOI: 10.1158/1940-6207.capr-09-0192] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States, including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU133 Plus 2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers versus never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling, and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon-induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared with the bronchial mucosa. The observed changes in gene expression were compared with known chemical signatures using the Connectivity Map database and suggested that geldanamycin, a heat shock protein 90 inhibitor, might be an antimimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials, and illustrate the potential of computational biology to identify chemopreventive agents.
Collapse
Affiliation(s)
- Jay O. Boyle
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Zeynep H. Gümüş
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY
| | - Ashutosh Kacker
- Department of Otorhinolaryngology, Weill Medical College of Cornell University, New York, NY
| | - Vishal L. Choksi
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jennifer M. Bocker
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Xi Kathy Zhou
- Department of Public Health, Weill Medical College of Cornell University, New York, NY
| | - Rhonda K. Yantiss
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY
| | - Duncan B. Hughes
- Department of Surgery, Weill Medical College of Cornell University, New York, NY
| | - Baoheng Du
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Benjamin L. Judson
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
32
|
Kalthoff S, Ehmer U, Freiberg N, Manns MP, Strassburg CP. Interaction between oxidative stress sensor Nrf2 and xenobiotic-activated aryl hydrocarbon receptor in the regulation of the human phase II detoxifying UDP-glucuronosyltransferase 1A10. J Biol Chem 2010; 285:5993-6002. [PMID: 20053997 DOI: 10.1074/jbc.m109.075770] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The defense against oxidative stress is a critical feature that prevents cellular and DNA damage. UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of xenobiotics, mutagens, and reactive metabolites and thus act as indirect antioxidants. Aim of this study was to elucidate the regulation of UGTs expressed in the mucosa of the gastrointestinal tract by xenobiotics and the main mediator of antioxidant defense, Nrf2 (nuclear factor erythroid 2-related factor 2). Xenobiotic (XRE) and antioxidant (ARE) response elements were detected in the promoters of UGT1A8, UGT1A9, and UGT1A10. Reporter gene experiments demonstrated XRE-mediated induction by dioxin in addition to tert-butylhydroquinone (ARE)-mediated induction of UGT1A8 and UGT1A10, which are expressed in extrahepatic tissue in humans in vivo. The responsible XRE and ARE motifs were identified by mutagenesis. Small interfering RNA knockdown, electrophoretic mobility shifts, and supershifts identified a functional interaction of Nrf2 and the aryl hydrocarbon receptor (AhR). Induction of UGT1A8 and UGT1A10 requires Nrf2 and AhR. It proceeds by utilizing XRE- as well as ARE-binding motifs. In summary, we demonstrate the coordinated AhR- and Nrf2-dependent transcriptional regulation of human UGT1As. Cellular protection by glucuronidation is thus inducible by xenobiotics via AhR and by oxidative metabolites via Nrf2 linking glucuronidation to cellular protection and defense against oxidative stress.
Collapse
Affiliation(s)
- Sandra Kalthoff
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
33
|
|
34
|
Epoxide hydrolases are not only a molecular sponge sucking up genotoxic epoxides: new roles in control of blood pressure, inflammation as well as nociception and cell proliferation. Arch Toxicol 2009; 83:289-91. [PMID: 19333580 DOI: 10.1007/s00204-009-0422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|