1
|
Maerten A, Callewaert E, Sanz-Serrano J, Devisscher L, Vinken M. Effects of per- and polyfluoroalkyl substances on the liver: Human-relevant mechanisms of toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176717. [PMID: 39383969 DOI: 10.1016/j.scitotenv.2024.176717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are abundantly used in a plethora of products with applications in daily life. As a result, PFAS are widely distributed in the environment, thus providing a source of exposure to humans. The majority of human exposure to PFAS is attributed to the human diet, which encompasses drinking water. Their chemical nature grants persistent, accumulative and toxic properties, which are currently raising concerns. Over the past few years, adverse effects of PFAS on different organs have been repeatedly documented. Numerous epidemiological studies established a clear link between PFAS exposure and liver toxicity. Likewise, effects of PFAS on liver homeostasis, lipid metabolism, bile acid metabolism and hepatocarcinogenesis have been reported in various in vitro and in vivo studies. This review discusses the role of PFAS in liver toxicity with special attention paid to human relevance as well as to the mechanisms underlying the hepatotoxic effects of PFAS. Future perspectives and remaining knowledge gaps were identified to enhance future PFAS risk assessment.
Collapse
Affiliation(s)
- Amy Maerten
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ellen Callewaert
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julen Sanz-Serrano
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lindsey Devisscher
- Gut-Liver Immunopharmacology Unit, Department of Basic and Applied Sciences, Universiteit Gent, Gent, Belgium; Liver Research Center Ghent, Universiteit Gent, University Hospital Ghent, Gent, Belgium
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
2
|
Du X, Wu Y, Tao G, Xu J, Du Z, Wu M, Gu T, Xiong J, Xiao S, Wei X, Ruan Y, Xiao P, Zhang L, Zheng W. Association between PFAS exposure and thyroid health: A systematic review and meta-analysis for adolescents, pregnant women, adults and toxicological evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175958. [PMID: 39233077 DOI: 10.1016/j.scitotenv.2024.175958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
A burgeoning body of epidemiological and toxicological evidence suggests that thyroid health may be significantly impacted by exposure to both long- and short-chain perfluoroalkyl substances (PFAS) compounds. We conducted a meta-analysis to examine the association between 16 PFAS compounds and five thyroid hormones (TSH, TT3, TT4, FT3, and FT4) in the serum of a pregnant women, adolescents, and adults. The dose-response relationship between some PFAS and thyroid hormones in different population subpopulation was found and the model was fitted. We also amalgamated data from 18 animal experiments with previously published in vitro studies to elucidate the toxicological mechanisms underlying the impact of PFAS on the thyroid gland. The results of the study showed that (a) both conventional and emerging PFAS compounds were identified in human samples and exhibited associations with thyroid health outcomes; (b) in animal studies, PFAS have been found to impact thyroid gland health through two primary mechanisms: by influencing the hypothalamic-pituitary-thyroid axis and by binding to thyroid receptors. This study provides a systematic description of the health effects and risk assessment associated with PFAS exposure on the thyroid gland. Furthermore, dose-response relationships were established through the Hill model in python.
Collapse
Affiliation(s)
- Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yitian Wu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Gonghua Tao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jun Xu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Minjuan Wu
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
| | - Tianmin Gu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiasheng Xiong
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yuanyuan Ruan
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Ling Zhang
- Department of Surgery, Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Vujic E, Ferguson SS, Brouwer KLR. Effects of PFAS on human liver transporters: implications for health outcomes. Toxicol Sci 2024; 200:213-227. [PMID: 38724241 DOI: 10.1093/toxsci/kfae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become internationally recognized over the past three decades as persistent organic pollutants used in the production of various consumer and industrial goods. Research efforts continue to gauge the risk that historically used, and newly produced, PFAS may cause to human health. Numerous studies report toxic effects of PFAS on the human liver as well as increased serum cholesterol levels in adults. A major concern with PFAS, also dubbed "forever chemicals," is that they accumulate in the liver and kidney and persist in serum. The mechanisms responsible for their disposition and excretion in humans are poorly understood. A better understanding of the interaction of PFAS with liver transporters, as it pertains to the disposition of PFAS and other xenobiotics, could provide mechanistic insight into human health effects and guide efforts toward risk assessment of compounds in development. This review summarizes the current state of the literature on the emerging relationships (eg, substrates, inhibitors, modulators of gene expression) between PFAS and specific hepatic transporters. The adaptive and toxicological responses of hepatocytes to PFAS that reveal linkages to pathologies and epidemiological findings are highlighted. The evidence suggests that our understanding of the molecular landscape of PFAS must improve to determine their impact on the expression and function of hepatocyte transporters that play a key role in PFAS or other xenobiotic disposition. From here, we can assess what role these changes may have in documented human health outcomes.
Collapse
Affiliation(s)
- Ena Vujic
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen S Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Curriculum in Toxicology & Environmental Medicine, School of Medicine, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Degitz SJ, Olker JH, Denny JS, Degoey PP, Hartig PC, Cardon MC, Eytcheson SA, Haselman JT, Mayasich SA, Hornung MW. In vitro screening of per- and polyfluorinated substances (PFAS) for interference with seven thyroid hormone system targets across nine assays. Toxicol In Vitro 2024; 95:105762. [PMID: 38072180 PMCID: PMC11081714 DOI: 10.1016/j.tiv.2023.105762] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays. The potential MIE targets investigated are Human Iodothyronine Deiodinase 1 (hDIO1), Human Iodothyronine Deiodinase 2 (hDIO2), Human Iodothyronine Deiodinase 3 (hDIO3), Xenopus Iodothyronine Deiodinase (xDIO3); Human Iodotyrosine Deiodinase (hIYD), Xenopus Iodotyrosine Deiodinase (xIYD), Human Thyroid Peroxidase (hTPO); and the serum binding proteins Human Transthyretin (hTTR) and Human Thyroxine Binding Globulin (hTBG). Of the 136 PFAS chemicals tested, 85 had sufficient activity to produce a half-maximal effect concentration (EC50) in at least one of the nine assays. In general, most of these PFAS chemicals did not have strong potency towards the seven MIEs examined, apart from transthyretin binding, for which several PFAS had potency similar to the respective model inhibitor. These data sets identify potentially active PFAS chemicals to prioritize for further testing in orthogonal in vitro assays and at higher levels of biological organization to evaluate their capacity for altering the thyroid hormone system and causing potential adverse health and ecological effects.
Collapse
Affiliation(s)
- Sigmund J Degitz
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA.
| | - Jennifer H Olker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Jeffery S Denny
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Philip P Degoey
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Phillip C Hartig
- US Environmental Protection Agency, Office of Research and Development Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27709, USA
| | - Mary C Cardon
- US Environmental Protection Agency, Office of Research and Development Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27709, USA
| | - Stephanie A Eytcheson
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Jonathan T Haselman
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Sally A Mayasich
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Michael W Hornung
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| |
Collapse
|
5
|
Davidsen N, Ramhøj L, Ballegaard ASR, Rosenmai AK, Henriksen CS, Svingen T. Perfluorooctanesulfonic acid (PFOS) disrupts cadherin-16 in the developing rat thyroid gland. Curr Res Toxicol 2024; 6:100154. [PMID: 38352163 PMCID: PMC10861841 DOI: 10.1016/j.crtox.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Perfluorooctanesulfonic acid (PFOS) can disrupt the thyroid hormone (TH) system in rodents, potentially affecting perinatal growth and neurodevelopment. Some studies also suggest that gestational exposure to PFOS can lead to lower TH levels throughout life, indicating that PFOS may compromise thyroid gland development. To address this question, we utilized a rat thyroid gland ex vivo culture system to study direct effects of PFOS on the developing thyroid. No significant changes to follicular structure or size were observed with 1 µM or 10 µM PFOS exposure. However, the transcription factor Foxe1, together with Tpo and Lrp2, were upregulated, whereas the key transcription factor Pax8 and its downstream target gene Cdh16 were significantly downregulated at the transcript level, observed with both RT-qPCR and RNAscope. Notably, Cdh16 expression was not uniformly downregulated across Cdh16-postive cells, but instead displayed a patchy expression pattern across the thyroid gland. This is a significant change in expression pattern compared to control thyroids where Cdh16 is expressed relatively uniformly. The disrupted expression pattern was also seen at the protein level. This suggests that PFOS exposure can impact follicular growth and structure. Compromised follicle integrity, if irreversible, could help explain reduced TH synthesis postnatally. This view is supported by observed changes to Tpo and Lrp2 expression, two factors that play a role in TH synthesis.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
6
|
Li T, Jiang L, Zheng S, Qiu C, Zhao N, Lin X, Ren H, Huang J, Wang H, Qiu L. Organic anion transporting polypeptide 3a1 is a novel influx pump for Perfluorooctane sulfonate in Sertoli cells and contributes to its reproductive toxicity. CHEMOSPHERE 2023; 345:140428. [PMID: 37858765 DOI: 10.1016/j.chemosphere.2023.140428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/10/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Persistent organic pollutant perfluorooctane sulfonate (PFOS) is strongly associated with male reproductive disorders, but the related mechanisms are still not fully understood. In this study, we used in vivo and in vitro models to explore the role of organic anion transporting polypeptide 3a1 (Oatp3a1) on PFOS-induced male reproductive injury. Thirty male C57BL/6 (B6) mice were orally given PFOS (0-10 mg/kg/bw) for 28 days. Body weight, organ index, sperm count, histology, and blood-testis barrier (BTB) integrity were evaluated. Primary Sertoli cells were used to describe the related molecular mechanisms of male reproductive injury caused by PFOS. Our results showed that PFOS induced a decrease in sperm count, morphological damage to testicular Sertoli cells, and disruption of BTB. In the in vitro model, exposure to PFOS significantly increased Oatp3a1 mRNA and protein levels and decreased miR-23a-3p expression in Sertoli cells, accompanied by reduced trans-epithelial electrical resistance (TEER) value. By performing the 14C-PFOS uptake experiment, we showed that 14C-PFOS uptake in HEK293-Oatp3a1 cells was apparently higher than in HEK293-MOCK cells. Meanwhile, treating Sertoli cells with Oatp3a1 siRNA significantly decreased Oatp3a1 expression and rescued PFOS-induced decreases in TEER value. As such, the present study highlights that Oatp3a1 may play an important role in the toxic effect of PFOS on Sertoli cells, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
Affiliation(s)
- Ting Li
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianlian Jiang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Shaokai Zheng
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Chong Qiu
- Medical School, Nantong University, 19 Qixiu Rd., Nantong, 226001, PR China
| | - Nannan Zhao
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Xiaojun Lin
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hang Ren
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Jiyan Huang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Hongxia Wang
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China
| | - Lianglin Qiu
- School of Public Health, Nantong University, 9 Seyuan Rd., Nantong, 226019, PR China.
| |
Collapse
|
7
|
Rodríguez-Carrillo A, Salamanca-Fernández E, den Hond E, Verheyen VJ, Fábelová L, Murinova LP, Pedraza-Díaz S, Castaño A, García-Lario JV, Remy S, Govarts E, Schoeters G, Olea N, Freire C, Fernández MF. Association of exposure to perfluoroalkyl substances (PFAS) and phthalates with thyroid hormones in adolescents from HBM4EU aligned studies. ENVIRONMENTAL RESEARCH 2023; 237:116897. [PMID: 37598845 DOI: 10.1016/j.envres.2023.116897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/24/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) and phthalates are synthetic chemicals widely used in various types of consumer products. There is epidemiological and experimental evidence that PFAS and phthalates may alter thyroid hormone levels; however, studies in children and adolescents are limited. AIM To investigate the association of exposure to PFAS and phthalate with serum levels of thyroid hormones in European adolescents. METHODS A cross-sectional study was conducted in 406 female and 327 male adolescents (14-17 years) from Belgium, Slovakia, and Spain participating in the Aligned Studies of the HBM4EU Project (FLEHS IV, PCB cohort, and BEA, respectively). Concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH) were measured in sera from study participants, and urinary metabolites of six phthalates (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and the non-phthalate plasticizer DINCH® were quantified in spot urine samples. Associations were assessed with linear regression and g-computational models for mixtures. Effect modification by sex was examined. RESULTS In females, serum PFOA and the PFAS mixture concentrations were associated with lower FT4 and higher FT3 levels; MEP and the sums of DEHP, DiNP, and DINCH® metabolites (∑DEHP, ∑DiNP, and ∑DINCH) were associated with higher FT4; ∑DEHP with lower FT3; and the phthalate/DINCH® metabolite mixture with higher FT4 and lower FT3. In males, PFOA was associated with lower FT4 and the PFAS mixture with higher TSH levels and lower FT4/TSH ratio; MEP and ∑DiNP were associated with higher FT4; and MBzP, ∑DEHP, and the phthalate/DINCH® metabolite mixture with lower TSH and higher FT4/TSH. PFOA, mono-(2-ethyl-5-hydroxyhexyl) phthalate (OH-MEHP), mono-(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP), and monocarboxyoctyl phthalate (MCOP) made the greatest contribution to the mixture effect. CONCLUSIONS Results suggest that exposure to PFAS and phthalates is associated with sex-specific differences in thyroid hormone levels in adolescents.
Collapse
Affiliation(s)
- Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium; Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610, Wilrijk, Belgium
| | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | | | - Veerle J Verheyen
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400, Mol, Belgium
| | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Legal Medicine, Toxicology and Physical Anthropology, University of Granada, 18071, Granada, Spain.
| | - Mariana F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
8
|
Freire C, Vela-Soria F, Castiello F, Salamanca-Fernández E, Quesada-Jiménez R, López-Alados MC, Fernández M, Olea N. Exposure to perfluoroalkyl substances (PFAS) and association with thyroid hormones in adolescent males. Int J Hyg Environ Health 2023; 252:114219. [PMID: 37451108 DOI: 10.1016/j.ijheh.2023.114219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Perfluoroalkyl substances (PFAS) are found in a wide range of consumer products. Exposure to PFAS in children and adolescents may be associated with alterations in thyroid hormones, which have critical roles in brain function. OBJECTIVE This study investigated the association between plasma concentrations of PFAS and serum levels of total triiodothyronine (T3), free thyroxine (T4), and thyroid-stimulating hormone (TSH) in adolescent males. METHODS In 2017-2019, 151 boys from the Environment and Childhood (INMA)-Granada birth cohort, Spain, participated in a clinical follow up visit at the age of 15-17 years. Plasma concentrations of ten PFAS (PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTrDA, PFOS, and PFHxS) and serum thyroid hormones were measured in 129 of these boys. Linear regression analysis was performed to determine associations of individual PFAS with total T3, free T4, TSH, and free T4/TSH ratio, and quantile g-computation models were performed to assess the mixture effect. Additional models considered iodine status as effect modifier. RESULTS PFOS was the most abundant PFAS in plasma (median = 2.22 μg/L), followed by PFOA (median = 1.00 μg/L), PFNA (median = 0.41 μg/L), and PFHxS (median = 0.40 μg/L). When adjusted by confounders (including age, maternal schooling, and fish intake), PFOA and PFUnDA were associated with an increase in free T4 (β [95% CI] = 0.72 [0.06; 1.38] and 0.36 [0.04; 0.68] pmol/L, respectively, per two-fold increase in plasma concentrations), with no change in TSH. PFOS, the sum of PFOA, PFNA, PFOS, and PFHxS, and the sum of long-chain PFAS were marginally associated with increases in free T4. Associations with higher free T4 and/or total T3 were seen for several PFAS in boys with lower iodine intake (<108 μ/day) alone. Moreover, the PFAS mixture was association with an increase in free T4 levels in boys with lower iodine intake (% change [95% CI] = 6.47 [-0.69; 14.11] per each quartile increase in the mixture concentration). CONCLUSIONS Exposure to PFAS, considered individually or as a mixture, was associated with an increase in free T4 levels in boys with lower iodine intake. However, given the small sample size, the extent of these alterations remains uncertain.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain.
| | | | - Elena Salamanca-Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| | - Raquel Quesada-Jiménez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain.
| | | | - Marieta Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), Spain; Department of Radiology and Physical Medicine, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
9
|
Bonefeld-Jørgensen EC, Boesen SAH, Wielsøe M, Henriksen TB, Bech BH, Halldórsson ÞI, Long M. Exposure to persistent organic pollutants in Danish pregnant women: Hormone levels and fetal growth indices. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 99:104108. [PMID: 36921699 DOI: 10.1016/j.etap.2023.104108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
This study examines possible associations of maternal Persistent Organic Pollutants (POP) exposure during pregnancy, maternal hormone levels and fetal growth indices (FGI). During 1st trimester, we measured maternal thyroids, androgens and estrogens, lipophilic POP and perfluorinated-alkyl-acid (PFAA) levels in serum from nulliparous women. Adjusted multivariate-linear regression models assessed associations between exposure and outcomes. Maternal characteristics and POP exposures associated with maternal hormone levels. Lipophilic POP elicited inverse association with androgen and estrogen levels but no strong association with thyroids. Higher level of PFAA was associated with higher thyroid and androgen levels. The PFAA did not associate with estrogens. Higher thyroid-peroxidase-antibody (TPO-Ab) and estradiol level associated with higher birth weight and length in sons. For daughters, the TPO-Ab associations were the opposite being inversely associated with birth weight and length, and higher TPO-Ab and estradiol associated with lower gestational age. Mediation analyses suggested that TPO-Ab mediates the association of PFAA with FGI.
Collapse
Affiliation(s)
- Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark; Greenland Centre for Health Research, University of Greenland, Nuuk, Greenland.
| | - Sophie Amalie H Boesen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| | - Tine Brink Henriksen
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark; Perinatal Research Unit, Clinical Institute, Aarhus University, Aarhus, Denmark
| | - Bodil Hammer Bech
- Research Unit for Epidemiology, Department of Public Health, Aarhus University, Aarhus, Denmark
| | | | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Denmark
| |
Collapse
|
10
|
Gundacker C, Audouze K, Widhalm R, Granitzer S, Forsthuber M, Jornod F, Wielsøe M, Long M, Halldórsson TI, Uhl M, Bonefeld-Jørgensen EC. Reduced Birth Weight and Exposure to Per- and Polyfluoroalkyl Substances: A Review of Possible Underlying Mechanisms Using the AOP-HelpFinder. TOXICS 2022; 10:toxics10110684. [PMID: 36422892 PMCID: PMC9699222 DOI: 10.3390/toxics10110684] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 05/14/2023]
Abstract
Prenatal exposure to per- and polyfluorinated substances (PFAS) may impair fetal growth. Our knowledge of the underlying mechanisms is incomplete. We used the Adverse Outcome Pathway (AOP)-helpFinder tool to search PubMed for studies published until March 2021 that examined PFAS exposure in relation to birth weight, oxidative stress, hormones/hormone receptors, or growth signaling pathways. Of these 1880 articles, 106 experimental studies remained after abstract screening. One clear finding is that PFAS are associated with oxidative stress in in vivo animal studies and in vitro studies. It appears that PFAS-induced reactive-oxygen species (ROS) generation triggers increased peroxisome proliferator-activated receptor (PPAR)γ expression and activation of growth signaling pathways, leading to hyperdifferentiation of pre-adipocytes. Fewer proliferating pre-adipocytes result in lower adipose tissue weight and in this way may reduce birth weight. PFAS may also impair fetal growth through endocrine effects. Estrogenic effects have been noted in in vivo and in vitro studies. Overall, data suggest thyroid-damaging effects of PFAS affecting thyroid hormones, thyroid hormone gene expression, and histology that are associated in animal studies with decreased body and organ weight. The effects of PFAS on the complex relationships between oxidative stress, endocrine system function, adipogenesis, and fetal growth should be further explored.
Collapse
Affiliation(s)
- Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40160-56503
| | - Karine Audouze
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Raimund Widhalm
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Sebastian Granitzer
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Forsthuber
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Florence Jornod
- Unit T3S, Université Paris Cité, Inserm U1124, 75006 Paris, France
| | - Maria Wielsøe
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Manhai Long
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
| | - Thórhallur Ingi Halldórsson
- Faculty of Food Science and Nutrition, University of Iceland, 102 Reykjavík, Iceland
- Department of Epidemiology Research, Statens Serum Institut, 2300 Copenhagen, Denmark
| | - Maria Uhl
- Environment Agency Austria, 1090 Vienna, Austria
| | - Eva Cecilie Bonefeld-Jørgensen
- Department of Public Health, Aarhus University, 8000 Aarhus, Denmark
- Greenland Center for Health Research, Greenland University, Nuuk 3905, Greenland
| |
Collapse
|
11
|
Perfluorooctane sulfonate (PFOS) disrupts testosterone biosynthesis via CREB/CRTC2/StAR signaling pathway in Leydig cells. Toxicology 2020; 449:152663. [PMID: 33359577 DOI: 10.1016/j.tox.2020.152663] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a stable end-product of perfluorinated compounds (PFCs), is associated with male reproductive disorders, but its underlying mechanisms are still unclear. We used in vivo and in vitro models to investigate the effects of PFOS on testosterone biosynthesis and related mechanisms. First, male ICR mice were orally administered PFOS (0-10 mg/kg/bw) for 4 weeks. Bodyweight, sperm count, reproductive hormones, mRNA expression of the genes related to testosterone biosynthesis, and the protein expression of protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), cAMP-response element binding protein (CREB), CREB regulated transcription coactivator 2 (CRTC2) and steroidogenic acute regulatory protein (StAR) were evaluated. Furthermore, mouse primary Leydig cells were used to delineate the molecular mechanisms that mediate the effects of PFOS on testosterone biosynthesis. Our results demonstrated that PFOS dose-dependently decreased sperm count, testosterone level, CRTC2/StAR expression, and damaged testicular interstitium morphology, paralleled by increase in phosphorylated PKA, CREB and p38 in testes. Additionally, similar to the in vivo results, PFOS significantly decreased testosterone secretion, CRTC2/StAR expression, interaction between CREB and CRTC2 and binding of CREB/CRTC2 to StAR promoter region, paralleled by increase in phosphorylated-p38, PKA, and CREB expression. Meanwhile, inhibition of p38 by SB203580, or inhibition of PKA by H89 can significantly alleviate the above PFOS-induced effects. As such, the present study highlights a role of the CREB/CRTC2/StAR signaling pathway in PFOS-induced suppression of testosterone biosynthesis, advancing our understanding of molecular mechanisms for PFOS-induced male reproductive disorders.
Collapse
|
12
|
van Gerwen M, Alpert N, Alsen M, Ziadkhanpour K, Taioli E, Genden E. The Impact of Smoking on the Association between Perfluoroalkyl Acids (PFAS) and Thyroid Hormones: A National Health and Nutrition Examination Survey Analysis. TOXICS 2020; 8:toxics8040116. [PMID: 33316920 PMCID: PMC7768414 DOI: 10.3390/toxics8040116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023]
Abstract
Perfluoroalkyl acids (PFAS) are known endocrine disrupting chemicals, potentially affecting thyroid function. Smoking has been associated with PFAS levels as well as with thyroid function. The impact of smoking on the association between PFAS and thyroid function remains to be elucidated, so the objective was to assess the effect of PFAS exposure on thyroid function in the general population, stratified by smoking status, using the National Health and Nutrition Examination Survey (NHANES). NHANES adult participants who were part of the 2011–2012 laboratory subsample and had PFAS and thyroid function measured were included (n = 1325). Adjusted linear regression models and stratified analyses were performed. There was a significant positive association between perfluorooctanesulfonic acid (PFOS) (p = 0.003), perfluorononanoic acid (PFNA) (p = 0.014), total PFAS (p = 0.004) concentrations and free T4 (FT4). No significant associations were found between perfluorooctanoic acid (PFOA), PFOS, perfluorohexane sulfonate (PFHxS), PFNA, total PFAS and total T4 (TT4) or thyroid stimulating hormone (TSH). In non-smokers, a significant positive association was found between PFOS (p = 0.003), PFHxS (p = 0.034), PFNA (p = 0.012), total PFAS (p = 0.003) and FT4 while no significant associations were found in smokers. The present study showed that increased PFAS exposure was associated with increased FT4 in non-smokers, while no association was found in smokers. These results confirm that smoking modifies the association between PFAS exposure and thyroid function.
Collapse
Affiliation(s)
- Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (E.G.)
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.A.); (E.T.)
- Correspondence: ; Tel.: +1-212-659-9620; Fax: +1-212-423-2998
| | - Naomi Alpert
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.A.); (E.T.)
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (E.G.)
| | - Kimia Ziadkhanpour
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Emanuela Taioli
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (N.A.); (E.T.)
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (M.A.); (E.G.)
| |
Collapse
|
13
|
Liang H, Wang Z, Miao M, Tian Y, Zhou Y, Wen S, Chen Y, Sun X, Yuan W. Prenatal exposure to perfluoroalkyl substances and thyroid hormone concentrations in cord plasma in a Chinese birth cohort. Environ Health 2020; 19:127. [PMID: 33243245 PMCID: PMC7690128 DOI: 10.1186/s12940-020-00679-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/13/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Evidence of associations between prenatal exposure to perfluoroalkyl substances (PFASs) and fetal thyroid hormones (THs) is controversial, and few studies have estimated the associations, while addressing the high correlations among multiple PFASs. We aimed to examine the associations between prenatal PFAS exposure and thyroid hormone concentrations in cord blood. METHODS A total of 300 mother-infant pairs from the Shanghai-Minhang Birth Cohort Study were included. We measured the concentrations of eight PFASs in maternal plasma samples collected at 12-16 gestational weeks, as well as those of total thyroxine (T4), free T4 (FT4), total triiodothyronine (T3), free T3 (FT3), and thyroid stimulating hormone (TSH) in cord plasma. We estimated the associations between maternal PFAS concentrations and TH concentrations using linear regression and Bayesian kernel machine regression (BKMR) models. RESULTS In BKMR models, higher PFAS mixture concentrations were associated with increased T3 concentrations, and there were suggestive associations with increased FT3 concentrations. For single-exposure effects in BKMR models, a change in PFDA, PFUdA, and PFOA concentrations from the 25th to 75th percentile was associated with a 0.04 (95%CrI: - 0.01, 0.09), 0.02 (95%CrI: - 0.03, 0.07), and 0.03 (95%CrI: - 0.001, 0.06) nmol/L increase in T3 concentrations, respectively. PFOA, PFNA, and PFDA were the predominant compounds in PFASs-FT3 associations, and the corresponding estimates were 0.11 (95% CrI: 0.02, 0.19), - 0.17 (95% CrI: - 0.28, - 0.07), and 0.12 (95% CrI: - 0.004, 0.24) pmol/L, respectively. A change in PFNA and PFOA concentrations from the 25th to 75th percentile was associated with a - 1.69 (95% CrI: - 2.98, - 0.41) μIU/mL decrease and a 1.51 (95% CrI: 0.48, 2.55) μIU/mL increase in TSH concentrations. The associations of PFOA and PFNA with T3/FT3 were more pronounced in boys, while those with TSH were more pronounced in girls. CONCLUSION Our results suggest that prenatal exposure to multiple PFASs was associated with thyroid hormones in cord blood. However, individual PFAS had varied effects-differing in magnitude and direction-on fetal thyroid hormones.
Collapse
Affiliation(s)
- Hong Liang
- Department of Social Medicine and Reproductive Epidemiology, National Health Commission Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, #779 Lao Hu Min Road, Shanghai, 200032, China
| | - Ziliang Wang
- Department of Social Medicine and Reproductive Epidemiology, National Health Commission Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, #779 Lao Hu Min Road, Shanghai, 200032, China
| | - Maohua Miao
- Department of Social Medicine and Reproductive Epidemiology, National Health Commission Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, #779 Lao Hu Min Road, Shanghai, 200032, China
| | - Youping Tian
- National Management Office of Neonatal Screening Project for CHD, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Yan Zhou
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, China
| | - Sheng Wen
- National Reference Laboratory of Dioxin, Institute of Health Inspection and Detection, Hubei Provincial Academy of Preventive Medicine, Hubei Provincial Center for Disease Control and Prevention, #6 Zhuo Daoquan North Road, Wuhan, 430079, China
| | - Yao Chen
- Department of Social Medicine and Reproductive Epidemiology, National Health Commission Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, #779 Lao Hu Min Road, Shanghai, 200032, China
| | - Xiaowei Sun
- Department of Social Medicine and Reproductive Epidemiology, National Health Commission Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, #779 Lao Hu Min Road, Shanghai, 200032, China
| | - Wei Yuan
- Department of Social Medicine and Reproductive Epidemiology, National Health Commission Key Laboratory of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, #779 Lao Hu Min Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology 2020; 443:152565. [PMID: 32861749 PMCID: PMC7530144 DOI: 10.1016/j.tox.2020.152565] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 01/09/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous drinking water contaminants of concern due to mounting evidence implicating adverse health outcomes associated with exposure, including reduced kidney function, metabolic syndrome, thyroid disruption, and adverse pregnancy outcomes. PFAS have been produced in the U.S. since the 1940s and now encompass a growing chemical family comprised of diverse chemical moieties, yet the toxicological effects have been studied for relatively few compounds. Critically, exposures to some PFAS in utero are associated with adverse outcomes for both mother and offspring, such as hypertensive disorders of pregnancy (HDP), including preeclampsia, and low birth weight. Given the relationship between HDP, placental dysfunction, adverse health outcomes, and increased risk for chronic diseases in adulthood, the role of both developmental and lifelong exposure to PFAS likely contributes to disease risk in complex ways. Here, evidence for the role of some PFAS in disrupted thyroid function, kidney disease, and metabolic syndrome is synthesized with an emphasis on the placenta as a critical yet understudied target of PFAS and programming agent of adult disease. Future research efforts must continue to fill the knowledge gap between placental susceptibility to environmental exposures like PFAS, subsequent perinatal health risks for both mother and child, and latent health effects in adult offspring.
Collapse
Affiliation(s)
- Bevin E Blake
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA.
| | - Suzanne E Fenton
- Division of the National Toxicology Program (DNTP), NTP Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institute of Health (NIH), Research Triangle Park, NC, USA
| |
Collapse
|
15
|
Vuong AM, Yolton K, Braun JM, Sjodin A, Calafat AM, Xu Y, Dietrich KN, Lanphear BP, Chen A. Polybrominated diphenyl ether (PBDE) and poly- and perfluoroalkyl substance (PFAS) exposures during pregnancy and maternal depression. ENVIRONMENT INTERNATIONAL 2020; 139:105694. [PMID: 32259757 PMCID: PMC7275897 DOI: 10.1016/j.envint.2020.105694] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Experimental studies in rodents suggest that polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkyl substances (PFAS) may contribute to depressive symptoms. Few studies have examined the impact of these chemicals on depression in adults. OBJECTIVE To examine the associations between serum PBDE and PFAS concentrations during pregnancy and repeated measures of depressive symptoms in women assessed from pregnancy to 8 years postpartum. METHODS This study was based on 377 women from the Health Outcomes and Measures of the Environment Study, a birth cohort in Cincinnati, OH (USA). PBDEs (BDE-28, -47, -99, -100, -153, and ∑PBDEs) and PFAS (perfluorooctanoate [PFOA], perfluorooctane sulfonate [PFOS], perfluorohexane sulfonate [PFHxS], perfluorononanoate [PFNA]) were quantified in maternal serum at 16 ± 3 weeks gestation. Depressive symptoms were measured using the Beck Depression Inventory-II (BDI-II) at ~20 weeks gestation and up to seven times during postpartum visits (4 weeks, 1, 2, 3, 4, 5, and 8 years). We used linear mixed models to estimate covariate-adjusted associations between chemical concentrations and repeated measures of BDI-II. Multinomial logistic regression models were used to estimate the relative risk ratios of having a medium or high depression trajectory. RESULTS We found that a 10-fold increase in BDE-28 at 16 ± 3 weeks gestation was associated with significantly increased BDI-II scores (β = 2.5 points, 95% confidence interval [CI] 0.8, 4.2) from pregnancy to 8 years postpartum. Significant positive associations were also observed with BDE-47, -100, -153, and ∑PBDEs. A 10-fold increase in ∑PBDEs was associated with a 4.6-fold increased risk (95% CI 1.8, 11.8) of a high trajectory for BDI-II compared to a low trajectory. We observed no significant associations between PFAS and BDI-II scores. CONCLUSION PBDEs during pregnancy were associated with more depressive symptoms among women in this cohort.
Collapse
Affiliation(s)
- Ann M Vuong
- Department of Environmental and Occupational Health, University of Nevada, Las Vegas School of Public Health, 4700 S. Maryland Parkway, Suite 335, MS 3063, Las Vegas, NV 89119-3063, USA; Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA.
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, 121 South Main St, Box G-S121-2, Providence, RI 02912, USA
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH 45229, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, P.O. Box 670056, Cincinnati, OH 45267, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Blockley Hall 231, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Cao XY, Liu J, Zhang YJ, Wang Y, Xiong JW, Wu J, Chen L. Exposure of adult mice to perfluorobutanesulfonate impacts ovarian functions through hypothyroxinemia leading to down-regulation of Akt-mTOR signaling. CHEMOSPHERE 2020; 244:125497. [PMID: 31809938 DOI: 10.1016/j.chemosphere.2019.125497] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Perfluorobutanesulfonate (PFBS), a short-chain perfluoroalkyl substance, is used in many industrial products. Preliminary evidence suggests that exposure to PFBS may increase the risk of infertility. The aim of this study was to investigate the influence of PFBS on ovarian function. Herein, we show that exposure of adult female mice to PFBS (200 mg/kg/day) (PFBS-mice) caused a decrease in the levels of serum total triiodothyronine and thyroxine, which depended on the activation of peroxisome proliferator-activated receptor α (PPARα). The numbers of secondary, early antral and antral follicles were reduced in PFBS-mice with an increase in the atretic follicles, and these changes were recovered by the replacement of L-thyroxinein or the treatment with PPARα antagonist GW6471. PFBS-induced hypothyroxinemia led to a decrease in the levels of Akt, mTOR and p70S6K phosphorylation in ovarian granular cells and cumulus cells, which suppressed the proliferation of these cells and enhanced autophagic death of granular cells and cumulus cells. The levels of serum estradiol and progesterone were reduced in PFBS-mice with a low expression of the steroidogenic genes Star and P450scc in ovarian tissues, which were sensitive to the replacement of L-thyroxinein or the blockade of PPARα. The results indicate that exposure to PFBS (≥200 mg/kg/day) through reducing thyroid hormones causes down-regulation of Akt-mTOR signaling in granular cells and cumulus cells, leading to the deficits in the development of follicles and the biosynthesis of ovarian hormones.
Collapse
Affiliation(s)
- Xin-Yuan Cao
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Juan Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China; Yangzhou Municipal Maternal and Child Health Hospital, Yangzhou, Jiangsu, 225001, China
| | - Ya-Jie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Jian-Wei Xiong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
17
|
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, Cottrill B, Dinovi M, Edler L, Grasl-Kraupp B, Hogstrand C, Hoogenboom LR, Nebbia CS, Oswald IP, Petersen A, Rose M, Roudot AC, Vleminckx C, Vollmer G, Wallace H, Bodin L, Cravedi JP, Halldorsson TI, Haug LS, Johansson N, van Loveren H, Gergelova P, Mackay K, Levorato S, van Manen M, Schwerdtle T. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J 2018; 16:e05194. [PMID: 32625773 PMCID: PMC7009575 DOI: 10.2903/j.efsa.2018.5194] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) in food. Regarding PFOS and PFOA occurrence, the final data set available for dietary exposure assessment contained a total of 20,019 analytical results (PFOS n = 10,191 and PFOA n = 9,828). There were large differences between upper and lower bound exposure due to analytical methods with insufficient sensitivity. The CONTAM Panel considered the lower bound estimates to be closer to true exposure levels. Important contributors to the lower bound mean chronic exposure were 'Fish and other seafood', 'Meat and meat products' and 'Eggs and egg products', for PFOS, and 'Milk and dairy products', 'Drinking water' and 'Fish and other seafood' for PFOA. PFOS and PFOA are readily absorbed in the gastrointestinal tract, excreted in urine and faeces, and do not undergo metabolism. Estimated human half-lives for PFOS and PFOA are about 5 years and 2-4 years, respectively. The derivation of a health-based guidance value was based on human epidemiological studies. For PFOS, the increase in serum total cholesterol in adults, and the decrease in antibody response at vaccination in children were identified as the critical effects. For PFOA, the increase in serum total cholesterol was the critical effect. Also reduced birth weight (for both compounds) and increased prevalence of high serum levels of the liver enzyme alanine aminotransferase (ALT) (for PFOA) were considered. After benchmark modelling of serum levels of PFOS and PFOA, and estimating the corresponding daily intakes, the CONTAM Panel established a tolerable weekly intake (TWI) of 13 ng/kg body weight (bw) per week for PFOS and 6 ng/kg bw per week for PFOA. For both compounds, exposure of a considerable proportion of the population exceeds the proposed TWIs.
Collapse
|
18
|
Nrf2 Signaling Elicits a Neuroprotective Role Against PFOS-mediated Oxidative Damage and Apoptosis. Neurochem Res 2018; 43:2446-2459. [DOI: 10.1007/s11064-018-2672-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/24/2018] [Accepted: 10/25/2018] [Indexed: 01/22/2023]
|
19
|
Stinckens E, Vergauwen L, Ankley GT, Blust R, Darras VM, Villeneuve DL, Witters H, Volz DC, Knapen D. An AOP-based alternative testing strategy to predict the impact of thyroid hormone disruption on swim bladder inflation in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:1-12. [PMID: 29702435 PMCID: PMC6002951 DOI: 10.1016/j.aquatox.2018.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 05/20/2023]
Abstract
The adverse outcome pathway (AOP) framework can be used to help support the development of alternative testing strategies aimed at predicting adverse outcomes caused by triggering specific toxicity pathways. In this paper, we present a case-study demonstrating the selection of alternative in chemico assays targeting the molecular initiating events of established AOPs, and evaluate use of the resulting data to predict higher level biological endpoints. Based on two AOPs linking inhibition of the deiodinase (DIO) enzymes to impaired posterior swim bladder inflation in fish, we used in chemico enzyme inhibition assays to measure the molecular initiating events for an array of 51 chemicals. Zebrafish embryos were then exposed to 14 compounds with different measured inhibition potentials. Effects on posterior swim bladder inflation, predicted based on the information captured by the AOPs, were evaluated. By linking the two datasets and setting thresholds, we were able to demonstrate that the in chemico dataset can be used to predict biological effects on posterior chamber inflation, with only two outliers out of the 14 tested compounds. Our results show how information organized using the AOP framework can be employed to develop or select alternative assays, and successfully forecast downstream key events along the AOP. In general, such in chemico assays could serve as a first-tier high-throughput system to screen and prioritize chemicals for subsequent acute and chronic fish testing, potentially reducing the need for long-term and costly toxicity tests requiring large numbers of animals.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Gerald T Ankley
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Mid-Continent Ecology Division,6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Hilda Witters
- Applied Bio & Molecular Systems (ABS), Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| | - David C Volz
- Department of Environmental Sciences, University of California, 900 University Ave, Riverside, CA 92521, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
20
|
Gong Y, Zhang H, Geng N, Xing L, Fan J, Luo Y, Song X, Ren X, Wang F, Chen J. Short-chain chlorinated paraffins (SCCPs) induced thyroid disruption by enhancement of hepatic thyroid hormone influx and degradation in male Sprague Dawley rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:657-666. [PMID: 29304504 DOI: 10.1016/j.scitotenv.2017.12.251] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 05/22/2023]
Abstract
Short-chain chlorinated paraffins (SCCPs) are known to disturb thyroid hormone (TH) homeostasis in rodents. However, the mechanism remains to be fully characterized. In this study, male Sprague Dawley rats received SCCPs (0, 1, 10, or 100mg/kg/day) via gavage once a day for consecutive 28days. Plasma and hepatic TH concentrations, thyrocyte structure, as well as thyroid and hepatic mRNA and protein levels of genes associated with TH homeostasis were examined. Moreover, we performed molecular docking to predict interactions between constitutive androstane receptor (CAR), a key regulator in xenobiotic-induced TH metabolism, with different SCCP molecules. Exposure to SCCPs significantly decreased the circulating free thyroxine (T4) and triiodothyronine (T3) levels, but increased thyroid-stimulating hormone (TSH) levels by a feedback mechanism. Decreased hepatic T4 and increased hepatic T3 levels were also seen after 100mg/kg/day SCCPs exposure. SCCPs didn't show any significant effects on the expression of thyroid TH synthesis genes or thyrocyte structure. However, stimulation effects were observed for mRNA and protein levels of hepatic uridine diphosphoglucuronosyl transferase (UGT) 1A1 and organic anion transporter 2, suggesting an accelerated TH metabolism in rat liver. The increased cytochrome P450 2B1 but not 1A1 mRNA and protein levels indicated that the CAR signaling was activated by SCCPs exposure. According to docking analysis, SCCPs form hydrophobic interactions with CAR and the binding affinity shows dependency on chlorine content. Overall, our data showed that CAR implicated enhancement of hepatic TH influx and degradation could be the main cause for SCCPs induced TH deficiency in male rats.
Collapse
Affiliation(s)
- Yufeng Gong
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Liguo Xing
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd., Shenyang 110021, China
| | - Jingfeng Fan
- National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyao Song
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoqian Ren
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feidi Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiping Chen
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
21
|
Han R, Zhang F, Wan C, Liu L, Zhong Q, Ding W. Effect of perfluorooctane sulphonate-induced Kupffer cell activation on hepatocyte proliferation through the NF-κB/TNF-α/IL-6-dependent pathway. CHEMOSPHERE 2018; 200:283-294. [PMID: 29494909 DOI: 10.1016/j.chemosphere.2018.02.137] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 05/18/2023]
Abstract
Perfluorooctane sulfonate (PFOS), one member of polyfluoroalkyl chemicals (PFASs), persist in the environment and are found in relatively high concentrations in animal livers. PFOS has been shown to induce tumour of the liver in rats following chronic dietary administration. However, the molecular mechanisms involved in PFOS-induced hepatocellular hypertrophy are still not well characterized. In this study, male Sprague-Dawley rats were daily gavaged with PFOS (1 or 10 mg/kg body weight) for 28 days. Rat primary cultured Kupffer cells or hepatocytes were exposed to 100 μM PFOS for 0-48 h. Our results showed that PFOS exposure caused serious hepatocellular damage and obvious inflammatory cell infiltration and increased serum tumour necrosis factor-ɑ (TNF-α) and interleukin-6 (IL-6) levels. Particularly, PFOS exposure triggered Kupffer cell activation and significantly upregulated the expression of proliferating cell nuclear antigen (PCNA), c-Jun, c-MYC and Cyclin D1 (CyD1) in liver. In vitro, PFOS significantly induced production of TNF-α and IL-6 in Kupffer cells and increased PCNA, c-Jun, c-MYC and CyD1 expression in the primary hepatocytes co-cultured with Kupffer cells. However, Kupffer cell activation was mostly abolished by anti-TNF-α or anti-IL6 treatment. Furthermore, blockage of TNF-α and IL-6 significantly inhibited hepatocyte proliferation by gadolinium chloride (GdCl3) pre-treatment in PFOS-treated mice and primary cultured Kupffer cells. On the other hand, NF-κB inhibitor (PDTC) and c-Jun amino-terminal kinase (JNK) inhibitor (SP600125) significantly inhibited production of PFOS-induced TNF-α and IL-6. Taken together, these data suggest that PFOS induces Kupffer cell activation, leading to hepatocyte proliferation by through the NF-κB/TNF-ɑ/IL-6-dependent pathway.
Collapse
Affiliation(s)
- Rui Han
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chong Wan
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Limin Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhong
- Department of Emergency Medicine, Tongji Hospital Affiliated to Tongji Medical College Huazhong, University of Science & Technology, Wuhan, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Haggard DE, Noyes PD, Waters KM, Tanguay RL. Transcriptomic and phenotypic profiling in developing zebrafish exposed to thyroid hormone receptor agonists. Reprod Toxicol 2018; 77:80-93. [PMID: 29458080 PMCID: PMC5878140 DOI: 10.1016/j.reprotox.2018.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 02/08/2023]
Abstract
There continues to be a need to develop in vivo high-throughput screening (HTS) and computational methods to screen chemicals for interaction with the estrogen, androgen, and thyroid pathways and as complements to in vitro HTS assays. This study explored the utility of an embryonic zebrafish HTS approach to identify and classify endocrine bioactivity using phenotypically-anchored transcriptome profiling. Transcriptome analysis was conducted on zebrafish embryos exposed to 25 estrogen-, androgen-, or thyroid-active chemicals at concentrations that elicited adverse malformations or mortality at 120 h post-fertilization in 80% of animals exposed. Analysis of the top 1000 significant differentially expressed transcripts and developmental toxicity profiles across all treatments identified a unique transcriptional and phenotypic signature for thyroid hormone receptor agonists. This unique signature has the potential to be used as a tiered in vivo HTS and may aid in identifying chemicals that interact with the thyroid hormone receptor.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Pamela D Noyes
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; Current: National Center for Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC, United States
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
23
|
Blévin P, Tartu S, Ellis HI, Chastel O, Bustamante P, Parenteau C, Herzke D, Angelier F, Gabrielsen GW. Contaminants and energy expenditure in an Arctic seabird: Organochlorine pesticides and perfluoroalkyl substances are associated with metabolic rate in a contrasted manner. ENVIRONMENTAL RESEARCH 2017; 157:118-126. [PMID: 28554005 DOI: 10.1016/j.envres.2017.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 05/22/2023]
Abstract
Basal metabolic rate (BMR), the minimal energetic cost of living in endotherms, is known to be influenced by thyroid hormones (THs) which are known to stimulate in vitro oxygen consumption of tissues in birds and mammals. Several environmental contaminants may act on energy expenditure through their thyroid hormone-disrupting properties. However, the effect of contaminants on BMR is still poorly documented for wildlife. Here, we investigated the relationships between three groups of contaminants (organochlorines (OCs), perfluoroalkyl substances (PFASs), and mercury) with metabolic rate (MR), considered here as a proxy of BMR and also with circulating total THs (thyroxine (TT4) and triiodothyronine (TT3)) in Arctic breeding adult black-legged kittiwakes (Rissa tridactyla) from Svalbard, during the chick rearing period. Our results indicate a negative relationship between the sum of all detected chlordanes (∑CHLs) and MR in both sexes whereas perfluorotridecanoate (PFTrA) and MR were positively related in females only. MR was not associated with mercury. Additionally, levels of TT3 were negatively related to ∑CHLs but not to PFTrA. The findings from the present study indicate that some OCs (in both sexes) and some PFASs (only in females) could disrupt fine adjustment of BMR during reproduction in adult kittiwakes. Importantly, highly lipophilic OCs and highly proteinophilic PFASs appear, at least in females, to have the ability to disrupt the metabolic rate in an opposite way. Therefore, our study highlights the need for ecotoxicological studies to include a large variety of contaminants which can act in an antagonistic manner.
Collapse
Affiliation(s)
- Pierre Blévin
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de la Rochelle, 79360 Villiers-en-Bois, France.
| | - Sabrina Tartu
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de la Rochelle, 79360 Villiers-en-Bois, France; Norwegian Polar Research Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Hugh I Ellis
- Department of Biology, University of San Diego, San Diego, CA 92110, USA
| | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de la Rochelle, 79360 Villiers-en-Bois, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 - CNRS & Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de la Rochelle, 79360 Villiers-en-Bois, France
| | - Dorte Herzke
- Norwegian Institute for Air Research, NILU, Fram Centre, NO-9296 Tromsø, Norway
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 - CNRS & Université de la Rochelle, 79360 Villiers-en-Bois, France
| | - Geir W Gabrielsen
- Norwegian Polar Research Institute, Fram Centre, NO-9296 Tromsø, Norway
| |
Collapse
|
24
|
Recent experimental results of effects of perfluoroalkyl substances in laboratory animals - Relation to current regulations and guidance values. Int J Hyg Environ Health 2017; 220:766-775. [PMID: 28286084 DOI: 10.1016/j.ijheh.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 01/27/2023]
Abstract
The detection of perfluoroalkyl substances (PFAS) in surface and drinking water from various countries raised the attention to the presence of these chemicals in environmental probes and led to several regulatory actions to limit exposure in human beings. There was particular concern about perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), due to their former wide-spread use. Recently, several institutions published revisions of former regulatory or recommended maximum concentrations in drinking water and food, which are markedly lower than the former values. The present short overview describes the current regulations for PFAS and compares them with the outcome of several experimental studies in laboratory animals at low-level exposure to PFOA and PFOS. In addition, regulations for short-chain PFAS are presented which, due to lack of toxicological information, are evaluated according to the concepts of Threshold of Toxicological Concern (TTC) or the Health-related Indication Values (HRIV).
Collapse
|
25
|
Coperchini F, Awwad O, Rotondi M, Santini F, Imbriani M, Chiovato L. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). J Endocrinol Invest 2017; 40:105-121. [PMID: 27837466 DOI: 10.1007/s40618-016-0572-z] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/22/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two fluorinated compounds widely used in industry because of their useful chemical characteristics. They were identified as endocrine disruptors due to their ability to interfere with thyroid function. The resistance of PFOA and PFOS to environmental degradation, their bio-accumulation in food chains, and their long half-life raised concern in the scientific community, and several studies were performed with the aim to establish the real dangerousness of these compounds for the human health. PURPOSE The present review will focus on the effects of PFOA and PFOS on the thyroid gland taking into account in vitro experiments, animal studies, and human data. PFOS and PFOA reduce the circulating levels of thyroid hormones in diet-exposed animals, mainly by increasing their metabolic clearance rate. CONCLUSIONS An accumulation of PFOS and PFOA was documented in thyroid cells, and a cytotoxic effect was observed after exposure to extremely high concentrations of these compounds. In environmentally exposed communities and in the general population, the most consistent effect of exposure to PFOA, and to a less extent to PFOS, is the occurrence of hypothyroidism. Women and children appear to be more at risk of developing mild thyroid failure. Pregnant women with circulating thyroid antibodies might be at risk of developing subclinical hypothyroidism, mainly when exposed at high doses of PFOS. The relative risks for thyroid cancer in people exposed to PFOA and PFOS were low and based on a few cases. Moreover, there was no consistent finding across all or even most studies.
Collapse
Affiliation(s)
- F Coperchini
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione, Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - O Awwad
- Department of Biopharmaceutics and Clinical Pharmacy, The University of Jordan, Amman, Jordan
| | - M Rotondi
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione, Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via Maugeri 10, 27100, Pavia, Italy
| | - F Santini
- Endocrinology Unit 1, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - M Imbriani
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - L Chiovato
- Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors Fondazione, Salvatore Maugeri I.R.C.C.S., Chair of Endocrinology, University of Pavia, Via Maugeri 10, 27100, Pavia, Italy.
| |
Collapse
|
26
|
Placental Transfer of Perfluoroalkyl Substances and Associations with Thyroid Hormones: Beijing Prenatal Exposure Study. Sci Rep 2016; 6:21699. [PMID: 26898235 PMCID: PMC4762009 DOI: 10.1038/srep21699] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/28/2016] [Indexed: 01/09/2023] Open
Abstract
Perfluoroalkyl substances (PFASs) have been detected in wildlife and human samples worldwide. Toxicology research showed that PFASs could interfere with thyroid hormone homeostasis. In this study, eight PFASs, fifteen PFAS precursors and five thyroid hormones were analyzed in 157 paired maternal and cord serum samples collected in Beijing around delivery. Seven PFASs and two precursors were detected in both maternal and cord sera with significant maternal-fetal correlations (r = 0.336 to 0.806, all P < 0.001). The median ratios of major PFASs concentrations in fetal versus maternal serum were from 0.25:1 (perfluorodecanoic acid, PFDA) to 0.65:1 (perfluorooctanoic acid, PFOA). Spearman partial correlation test showed that maternal thyroid stimulating hormone (TSH) was negatively correlated with most maternal PFASs (r = −0.261 to −0.170, all P < 0.05). Maternal triiodothyronin (T3) and free T3 (FT3) showed negative correlations with most fetal PFASs (r = −0.229 to −0.165 for T3; r = −0.293 to −0.169 for FT3, all P < 0.05). Our results suggest prenatal exposure of fetus to PFASs and potential associations between PFASs and thyroid hormone homeostasis in humans.
Collapse
|
27
|
Yu N, Wang X, Zhang B, Yang J, Li M, Li J, Shi W, Wei S, Yu H. Distribution of perfluorooctane sulfonate isomers and predicted risk of thyroid hormonal perturbation in drinking water. WATER RESEARCH 2015; 76:171-80. [PMID: 25813491 DOI: 10.1016/j.watres.2015.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 05/03/2023]
Abstract
We documented the distribution of seven perfluorooctane sulfonate (PFOS) isomers in drinking water in Jiangsu Province, China. Compared to the 30% proportion of branched PFOS in technical PFOS, the levels of branched PFOS in drinking water increased to 31.8%-44.6% of total PFOS. Because of previous risk assessment without considering the PFOS isomer profile and the toxicity of individual PFOS isomers, here we performed a new health risk assessment of PFOS for thyroid hormonal perturbation in drinking water with the contribution from individual PFOS isomers. The risk quotients (RQs) of individual PFOS isomers indicated that linear PFOS contributed most to the risk among all the target PFOS isomers (83.0%-90.2% of the total PFOS RQ), and that risk from 6m-PFOS (5.2%-11.9% of the total PFOS RQ) was higher than that from other branched PFOS isomers. We found that the risks associated with PFOS in drinking water would be overestimated by 10.0%-91.7% if contributions from individual PFOS isomers were not considered. The results revealed that the PFOS isomer profile and the toxicity of individual PFOS isomers were important factors in health risk assessment of PFOS and should be considered in the future risk assessments.
Collapse
Affiliation(s)
- Nanyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Beibei Zhang
- State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing, PR China
| | - Jingping Yang
- Laboratory of Immunology and Reproductive Biology, School of Medicine, Nanjing University, Nanjing, Jiangsu, PR China
| | - Meiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Jun Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China
| | - Si Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China.
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
28
|
Hou WY, Xu SF, Zhu QN, Lu YF, Cheng XG, Liu J. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats. Toxicol Appl Pharmacol 2014; 280:370-7. [PMID: 25168429 DOI: 10.1016/j.taap.2014.08.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 08/09/2014] [Accepted: 08/15/2014] [Indexed: 01/08/2023]
Abstract
Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (-2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted for western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60-180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women.
Collapse
Affiliation(s)
- Wei-Yu Hou
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Shang-Fu Xu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Qiong-Ni Zhu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Yuan-Fu Lu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China
| | - Xing-Guo Cheng
- Department of Pharmaceutical Sciences, St. John's University, New York, NY 11439, USA
| | - Jie Liu
- Key Lab for Pharmacology of Ministry of Education, Zunyi Medical College, Zunyi 563003, China.
| |
Collapse
|
29
|
|
30
|
Miyawaki I, Tamura A, Matsumoto I, Inada H, Kunimatsu T, Kimura J, Funabashi H. The effects of clobazam treatment in rats on the expression of genes and proteins encoding glucronosyltransferase 1A/2B (UGT1A/2B) and multidrug resistance-associated protein-2 (MRP2), and development of thyroid follicular cell hypertrophy. Toxicol Appl Pharmacol 2012; 265:351-9. [PMID: 22982618 DOI: 10.1016/j.taap.2012.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 11/17/2022]
Abstract
Clobazam (CLB) is known to increase hepatobiliary thyroxine (T4) clearance in Sprague-Dawley (SD) rats, which results in hypothyroidism followed by thyroid follicular cell hypertrophy. However, the mechanism of the acceleration of T4-clearance has not been fully investigated. In the present study, we tried to clarify the roles of hepatic UDP-glucronosyltransferase (UGT) isoenzymes (UGT1A and UGT2B) and efflux transporter (multidrug resistance-associated protein-2; MRP2) in the CLB-induced acceleration of T4-clearance using two mutant rat strains, UGT1A-deficient mutant (Gunn) and MRP2-deficient mutant (EHBR) rats, especially focusing on thyroid morphology, levels of circulating hormones (T4 and triiodothyronine (T3)) and thyroid-stimulating hormone (TSH), and mRNA or protein expressions of UGTs (Ugt1a1, Ugt1a6, and Ugt2b1/2) and MRP2 (Mrp). CLB induced thyroid morphological changes with increases in TSH in SD and Gunn rats, but not in EHBR rats. T4 was slightly decreased in SD and Gunn rats, and T3 was decreased in Gunn rats, whereas these hormones were maintained in EHBR rats. Hepatic Ugt1a1, Ugt1a6, Ugt2b1/2, and Mrp2 mRNAs were upregulated in SD rats. In Gunn rats, UGT1A mRNAs (Ugt1a1/6) and protein levels were quite low, but UGT2B mRNAs (Ugt2b1/2) and protein were prominently upregulated. In SD and Gunn rats, MRP2 mRNA and protein were upregulated to the same degree. These results suggest that MRP2 is an important contributor in development of the thyroid cellular hypertrophy in CLB-treated rats, and that UGT1A and UGT2B work in concert with MRP2 in the presence of MRP2 function to enable the effective elimination of thyroid hormones.
Collapse
Affiliation(s)
- Izuru Miyawaki
- Safety Research Laboratories, Dainippon Sumitomo Pharma Co., Ltd., 3-1-98, Kasugade Naka, Konohanaku, Osaka 554-0022, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Greaves AK, Letcher RJ, Sonne C, Dietz R, Born EW. Tissue-specific concentrations and patterns of perfluoroalkyl carboxylates and sulfonates in East Greenland polar bears. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11575-83. [PMID: 23057644 DOI: 10.1021/es303400f] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) of varying chain length are bioaccumulative in biota. However, wildlife reports have focused on liver and with very little examination of other tissues, and thus there is a limited understanding of their distribution and potential effects in the mammalian body. In the present study, the comparative accumulation of C(6) to C(15) PFCAs, C(4), C(6), C(8) and C(10) PFSAs, and select precursors were examined in the liver, blood, muscle, adipose, and brain of 20 polar bears (Ursus maritimus) from Scoresby Sound, Central East Greenland. Overall, PFSA and PFCA concentrations were highest in liver followed by blood > brain > muscle ≈ adipose. Liver and blood samples contained proportionally more of the shorter/medium chain length (C(6) to C(11)) PFCAs, whereas adipose and brain samples were dominated by longer chain (C(13) to C(15)) PFCAs. PFCAs with lower lipophilicities accumulated more in the liver, whereas the brain accumulated PFCAs with higher lipophilicities. The concentration ratios (±SE) between perfluorooctane sulfonate and its precursor perfluorooctane sulfonamide varied among tissues from 9 (±1):1 (muscle) to 36 (±7):1 (liver). PFCA and PFSA patterns in polar bears indicate that the pharmacokinetics of these compounds are to some extent tissue-specific, and are the result of several factors that may include differing protein interactions throughout the body.
Collapse
Affiliation(s)
- Alana K Greaves
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada , National Wildlife Research Centre, Carleton University, Ottawa, ON, K1A 0H3, Canada
| | | | | | | | | |
Collapse
|
32
|
Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Noker PE, Butenhoff JL. Evaluation of hepatic and thyroid responses in male Sprague Dawley rats for up to eighty-four days following seven days of dietary exposure to potassium perfluorooctanesulfonate. Toxicology 2012; 293:30-40. [DOI: 10.1016/j.tox.2011.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 01/23/2023]
|
33
|
Elcombe CR, Elcombe BM, Foster JR, Chang SC, Ehresman DJ, Butenhoff JL. Hepatocellular hypertrophy and cell proliferation in Sprague–Dawley rats from dietary exposure to potassium perfluorooctanesulfonate results from increased expression of xenosensor nuclear receptors PPARα and CAR/PXR. Toxicology 2012; 293:16-29. [DOI: 10.1016/j.tox.2011.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 12/27/2011] [Accepted: 12/28/2011] [Indexed: 10/14/2022]
|
34
|
Gebbink WA, Letcher RJ. Comparative tissue and body compartment accumulation and maternal transfer to eggs of perfluoroalkyl sulfonates and carboxylates in Great Lakes herring gulls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 162:40-47. [PMID: 22243845 DOI: 10.1016/j.envpol.2011.10.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/03/2011] [Accepted: 10/12/2011] [Indexed: 05/31/2023]
Abstract
The comparative accumulation of C(4)-C(15) perfluorinated sulfonates (PFSAs) and carboxylates (PFCAs), and several precursors (e.g., perfluorooctane sulfonamide, N-methyl-FOSA, and fluorotelomer unsaturated acids and alcohols) was examined in tissues (liver, brain, muscle, and adipose), plasma/red blood cells (RBCs) and whole egg clutches (yolk and albumen) of female herring gulls collected in 2010 from Chantry Island, Lake Huron of the Laurentian Great Lakes. Highest mean ∑PFSA concentrations were in yolk, followed by adipose, liver, plasma, muscle, RBCs, and brain. Highest mean ∑PFCA concentrations were in yolk, followed by brain, plasma, liver, RBC, adipose and muscle. PFOS accounted for >88% of ∑PFSA in all samples; the liver, plasma/RBCs, muscle and adipose PFCA patterns were dominated by C(8)-C(11) PFCAs, whereas C(10)-C(15) PFCAs in brain and yolk. Among PFSAs and PFCAs there is tissue-specific accumulation, which could be due to a number of pharmacokinetic processes.
Collapse
Affiliation(s)
- Wouter A Gebbink
- Ecotoxicology and Wildlife Health Division, Science and Technology Branch, Environment Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada.
| | | |
Collapse
|
35
|
Cheng Y, Cui Y, Chen HM, Xie WP. Thyroid disruption effects of environmental level perfluorooctane sulfonates (PFOS) in Xenopus laevis. ECOTOXICOLOGY (LONDON, ENGLAND) 2011; 20:2069-78. [PMID: 21809121 DOI: 10.1007/s10646-011-0749-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/13/2011] [Indexed: 05/28/2023]
Abstract
Perfluorooctane sulfonate (PFOS), one of the emerging persistent organic pollutants (POPs), has caused growing international concern especially related to the potential disruption in the development and function of thyroid system. Xenopus laevis is an amphibian species widely used as a suitable amphibian model for thyroid disruption research. To study the thyroid disruption effects related to PFOS exposure at environmental low levels, X. laevis tadpoles were exposed to 0.1, 1, 10 and 100 μg/l PFOS in water respectively from stage 46/47 to stage 62. The results showed that the time to metamorphosis (presented by forelimb emergence, FLE) did not significantly change with PFOS exposure, but exhibited an increasing trend (except for 10 μg/l exposure). Partial colloid depletion was observed for PFOS exposure, but no significant histological abnormality was observed in treatment groups. In addition, PFOS exposure resulted in up-regulation of thyroid hormone-regulated genes-thyroid receptor beta A (TRβA), basic transcription element-binding protein (BTEB) and type II deiodinase (DI2) mRNA expression, presented as an inverted U-shaped dose response pattern. However, the mRNA expression of type III deiodinase (DI3) remained unaffected compared with the control. These results demonstrated that PFOS might disrupt the thyroid system in X. laevis tadpoles regarding FLE changes and regulation alternation of thyroid hormone-regulated genes. Our study has raised new concerns for possible thyroid disruption of PFOS in amphibians at environmental relevant levels.
Collapse
Affiliation(s)
- Yan Cheng
- Research Center for Import-Export Chemicals Safety of General Administration of Quality Supervision, Inspection and Quarantine of People's Republic of China, Chinese Academy of Inspection and Quarantine, Chaoyang District, Beijing, 100123, China
| | | | | | | |
Collapse
|
36
|
Butenhoff JL, Bjork JA, Chang SC, Ehresman DJ, Parker GA, Das K, Lau C, Lieder PH, van Otterdijk FM, Wallace KB. Toxicological evaluation of ammonium perfluorobutyrate in rats: twenty-eight-day and ninety-day oral gavage studies. Reprod Toxicol 2011; 33:513-530. [PMID: 21878386 DOI: 10.1016/j.reprotox.2011.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 06/20/2011] [Accepted: 08/11/2011] [Indexed: 11/18/2022]
Abstract
Sequential 28-day and 90-day oral toxicity studies were performed in male and female rats with ammonium perfluorobutyrate (NH(4)(+)PFBA) at doses up to 150 and 30mg/kg-d, respectively. Ammonium perfluorooctanoate was used as a comparator at a dose of 30mg/kg-d in the 28-day study. Female rats were unaffected by NH(4)(+)PFBA. Effects in males included: increased liver weight, slight to minimal hepatocellular hypertrophy; decreased serum total cholesterol; and reduced serum thyroxin with no change in serum thyrotropin. During recovery, liver weight, histological, and cholesterol effects were resolved. Results of RT-qPCR were consistent with increased transcriptional expression of the xenosensor nuclear receptors PPARα and CAR as well as the thyroid receptor, and decreased expression of Cyp1A1 (Ah receptor-regulated). No observable adverse effect levels (NOAELs) were 6 and >150mg/kg-d for male and female rats in the 28-day study and 6 and >30mg/kg-d in the 90-dat study, respectively.
Collapse
Affiliation(s)
- John L Butenhoff
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | - James A Bjork
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Minnesota, Duluth, MN, USA.
| | - Shu-Ching Chang
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | - David J Ehresman
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | | | - Kaberi Das
- United States Environmental Protection Agency, National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA.
| | - Christopher Lau
- United States Environmental Protection Agency, National Health and Environmental Effects Laboratory, Research Triangle Park, NC, USA.
| | - Paul H Lieder
- Medical Department, 3M Company, 3M Center 220-06-W-08, St. Paul, MN, USA.
| | | | - Kendall B Wallace
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Minnesota, Duluth, MN, USA.
| |
Collapse
|