1
|
Lei K, Wu R, Wang J, Lei X, Zhou E, Fan R, Gong L. Sirtuins as Potential Targets for Neuroprotection: Mechanisms of Early Brain Injury Induced by Subarachnoid Hemorrhage. Transl Stroke Res 2024; 15:1017-1034. [PMID: 37779164 PMCID: PMC11522081 DOI: 10.1007/s12975-023-01191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a prevalent cerebrovascular disease with significant global mortality and morbidity rates. Despite advancements in pharmacological and surgical approaches, the quality of life for SAH survivors has not shown substantial improvement. Traditionally, vasospasm has been considered a primary contributor to death and disability following SAH, but anti-vasospastic therapies have not demonstrated significant benefits for SAH patients' prognosis. Emerging studies suggest that early brain injury (EBI) may play a crucial role in influencing SAH prognosis. Sirtuins (SIRTs), a group of NAD + -dependent deacylases comprising seven mammalian family members (SIRT1 to SIRT7), have been found to be involved in neural tissue development, plasticity, and aging. They also exhibit vital functions in various central nervous system (CNS) processes, including cognition, pain perception, mood, behavior, sleep, and circadian rhythms. Extensive research has uncovered the multifaceted roles of SIRTs in CNS disorders, offering insights into potential markers for pathological processes and promising therapeutic targets (such as SIRT1 activators and SIRT2 inhibitors). In this article, we provide an overview of recent research progress on the application of SIRTs in subarachnoid hemorrhage and explore their underlying mechanisms of action.
Collapse
Affiliation(s)
- Kunqian Lei
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Rui Wu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Jin Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Xianze Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Erxiong Zhou
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China
| | - Ruiming Fan
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| | - Lei Gong
- Department of Pharmacy, Institute of Medical Biotechnology, Affiliated Hospital of Zunyi Medical University CN, Zunyi, China.
| |
Collapse
|
2
|
Li Y, Lv C, Li Z, Chen C, Cheng Y. Magnetic modulation of lysosomes for cancer therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1947. [PMID: 38488191 DOI: 10.1002/wnan.1947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024]
Abstract
Lysosomes play a central role in biochemical signal transduction and oxidative stress in cells. Inducing lysosome membrane penetration (LMP) to cause lysosomal-dependent cell death (LCD) in tumor cells is an effective strategy for cancer therapy. Chemical drugs can destroy the stability of lysosomes by neutralizing protons within the lysosomes or enhancing the fragility of the lysosomal membranes. However, there remain several unsolved problems of traditional drugs in LMP induction due to insufficient lysosomal targeting, fast metabolism, and toxicity in normal cells. With the development of nanotechnology, magnetic nanoparticles have been demonstrated to target lysosomes naturally, providing a versatile tool for lysosomal modulation. Combined with excellent tissue penetration and spatiotemporal manipulability of magnetic fields, magnetic modulation of lysosomes progresses rapidly in inducing LMP and LCD for cancer therapy. This review comprehensively discussed the strategies of magnetic modulation of lysosomes for cancer therapy. The intrinsic mechanisms of LMP-induced LCD were first introduced. Then, the modulation of lysosomes by diverse physical outputs of magnetic fields was emphatically discussed. Looking forward, this review will shed the light on the prospect of magnetic modulation of lysosomes, inspiring future research of magnetic modulation strategy in cancer therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yingze Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cheng Lv
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Zhenguang Li
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Cheng
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, School of Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Ijomone OM, Iroegbu JD, Morcillo P, Ayodele AJ, Ijomone OK, Bornhorst J, Schwerdtle T, Aschner M. Sex-dependent metal accumulation and immunoexpression of Hsp70 and Nrf2 in rats' brain following manganese exposure. ENVIRONMENTAL TOXICOLOGY 2022; 37:2167-2177. [PMID: 35596948 PMCID: PMC9357062 DOI: 10.1002/tox.23583] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Manganese (Mn), although important for multiple cellular processes, has posed environmental health concerns due to its neurotoxic effects. In recent years, there have been extensive studies on the mechanism of Mn-induced neuropathology, as well as the sex-dependent vulnerability to its neurotoxic effects. Nonetheless, cellular mechanisms influenced by sex differences in susceptibility to Mn have yet to be adequately characterized. Since oxidative stress is a key mechanism of Mn neurotoxicity, here, we have probed Hsp70 and Nrf2 proteins to investigate the sex-dependent changes following exposure to Mn. Male and female rats were administered intraperitoneal injections of MnCl2 (10 mg/kg and 25 mg/kg) 48 hourly for a total of eight injections (15 days). We evaluated changes in body weight, as well as Mn accumulation, Nrf2 and Hsp70 expression across four brain regions; striatum, cortex, hippocampus and cerebellum in both sexes. Our results showed sex-specific changes in body-weight, specifically in males but not in females. Additionally, we noted sex-dependent accumulation of Mn in the brain, as well as in expression levels of Nrf2 and Hsp70 proteins. These findings revealed sex-dependent susceptibility to Mn-induced neurotoxicity corresponding to differential Mn accumulation, and expression of Hsp70 and Nrf2 across several brain regions.
Collapse
Affiliation(s)
- Omamuyovwi M. Ijomone
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Joy D. Iroegbu
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
| | - Patricia Morcillo
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Akinyemi J. Ayodele
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Olayemi K. Ijomone
- The Neuro- Lab, Department of Human Anatomy, School of Basic Medical Sciences, Federal University of Technology Akure, Akure, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
| | - Tanja Schwerdtle
- TraceAge – DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Berlin-Potsdam-Jena-Wuppertal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Michael Aschner
- Departments of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Tuschl K, White RJ, Trivedi C, Valdivia LE, Niklaus S, Bianco IH, Dadswell C, González-Méndez R, Sealy IM, Neuhauss SCF, Houart C, Rihel J, Wilson SW, Busch-Nentwich EM. Loss of slc39a14 causes simultaneous manganese hypersensitivity and deficiency in zebrafish. Dis Model Mech 2022; 15:dmm044594. [PMID: 35514229 PMCID: PMC9227717 DOI: 10.1242/dmm.044594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/25/2022] [Indexed: 12/15/2022] Open
Abstract
Manganese neurotoxicity is a hallmark of hypermanganesemia with dystonia 2, an inherited manganese transporter defect caused by mutations in SLC39A14. To identify novel potential targets of manganese neurotoxicity, we performed transcriptome analysis of slc39a14-/- mutant zebrafish that were exposed to MnCl2. Differentially expressed genes mapped to the central nervous system and eye, and pathway analysis suggested that Ca2+ dyshomeostasis and activation of the unfolded protein response are key features of manganese neurotoxicity. Consistent with this interpretation, MnCl2 exposure led to decreased whole-animal Ca2+ levels, locomotor defects and changes in neuronal activity within the telencephalon and optic tectum. In accordance with reduced tectal activity, slc39a14-/- zebrafish showed changes in visual phototransduction gene expression, absence of visual background adaptation and a diminished optokinetic reflex. Finally, numerous differentially expressed genes in mutant larvae normalised upon MnCl2 treatment indicating that, in addition to neurotoxicity, manganese deficiency is present either subcellularly or in specific cells or tissues. Overall, we assembled a comprehensive set of genes that mediate manganese-systemic responses and found a highly correlated and modulated network associated with Ca2+ dyshomeostasis and cellular stress. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karin Tuschl
- UCL GOS Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Department of Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Kings College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Richard J. White
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Chintan Trivedi
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Leonardo E. Valdivia
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba 8580745, Chile
| | - Stephanie Niklaus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Isaac H. Bianco
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Chris Dadswell
- School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK
| | | | - Ian M. Sealy
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Corinne Houart
- Department of Developmental Neurobiology and MRC Centre for Neurodevelopmental Disorders, IoPPN, Kings College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London E1 4NS, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| |
Collapse
|
5
|
Xu C, He Z, Li J. Melatonin as a Potential Neuroprotectant: Mechanisms in Subarachnoid Hemorrhage-Induced Early Brain Injury. Front Aging Neurosci 2022; 14:899678. [PMID: 35572137 PMCID: PMC9098986 DOI: 10.3389/fnagi.2022.899678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/21/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a common cerebrovascular disease with high mortality and disability rates. Despite progressive advances in drugs and surgical techniques, neurological dysfunction in surviving SAH patients have not improved significantly. Traditionally, vasospasm has been considered the main cause of death and disability following SAH, but anti-vasospasm therapy has not benefited clinical prognosis. Many studies have proposed that early brain injury (EBI) may be the primary factor influencing the prognosis of SAH. Melatonin is an indole hormone and is the main hormone secreted by the pineal gland, with low daytime secretion levels and high nighttime secretion levels. Melatonin produces a wide range of biological effects through the neuroimmune endocrine network, and participates in various physiological activities in the central nervous system, reproductive system, immune system, and digestive system. Numerous studies have reported that melatonin has extensive physiological and pharmacological effects such as anti-oxidative stress, anti-inflammation, maintaining circadian rhythm, and regulating cellular and humoral immunity. In recent years, more and more studies have been conducted to explore the molecular mechanism underlying melatonin-induced neuroprotection. The studies suggest beneficial effects in the recovery of intracerebral hemorrhage, cerebral ischemia-reperfusion injury, spinal cord injury, Alzheimer’s disease, Parkinson’s disease and meningitis through anti-inflammatory, antioxidant and anti-apoptotic mechanisms. This review summarizes the recent studies on the application and mechanism of melatonin in SAH.
Collapse
Affiliation(s)
- Chengyan Xu
- Department of Neurosurgery, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Zixia He
- Department of Outpatient, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jiabin Li
- Department of Pharmacy, The Children’s Hospital Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Jiabin Li,
| |
Collapse
|
6
|
Critical Involvement of Glial Cells in Manganese Neurotoxicity. BIOMED RESEARCH INTERNATIONAL 2021; 2021:1596185. [PMID: 34660781 PMCID: PMC8514895 DOI: 10.1155/2021/1596185] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022]
Abstract
Over the years, most of the research concerning manganese exposure was restricted to the toxicity of neuronal cells. Manganese is an essential trace element that in high doses exerts neurotoxic effects. However, in the last two decades, efforts have shifted toward a more comprehensive approach that takes into account the involvement of glial cells in the development of neurotoxicity as a brain insult. Glial cells provide structural, trophic, and metabolic support to neurons. Nevertheless, these cells play an active role in adult neurogenesis, regulation of synaptogenesis, and synaptic plasticity. Disturbances in glial cell function can lead to neurological disorders, including neurodegenerative diseases. This review highlights the pivotal role that glial cells have in manganese-induced neurotoxicity as well as the most sounding mechanisms involved in the development of this phenomenon.
Collapse
|
7
|
He X, Lin Z, Ning J, Li N, Cui X, Zhao B, Hong F, Miao J. Promoting TTC4 and HSP70 interaction and translocation of annexin A7 to lysosome inhibits apoptosis in vascular endothelial cells. FASEB J 2020; 34:12932-12945. [PMID: 33000523 DOI: 10.1096/fj.202000067r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 07/12/2020] [Accepted: 07/21/2020] [Indexed: 01/16/2023]
Abstract
We previously demonstrated that Tetraticopeptide 4 (TTC4) inhibited apoptosis in vascular endothelial cells (VEC) deprived of serum and fibroblast growth factor 2 (FGF-2). In this study, we aimed to resolve the mechanism of TTC4 inhibiting VEC apoptosis. TTC4, predicted as a HSP70 co-chaperone protein, may regulate the fate of cells by affecting the activity of HSP70, however, there is no experimental evidence showing the interaction of TTC4 and HSP70. Using Co-immunoprecipitation (Co-IP), we demonstrated that TTC4 interacted with HSP70. If HSP70 was knockdown, TTC4 no longer suppressed apoptosis. Furthermore, we found ABO, an inhibitor of annexin A7 (ANXA7) GTPase, could promote the interaction of TTC4 and HSP70 and the translocation of ANXA7 to lysosome. At the same time, ABO inhibited the interaction of HSP70 and ANXA7. Moreover, Akt, as a downstream effector of HSP70 was upregulated, and ANXA7 translocating to lysosome protected the stability of lysosomal membrane. Here, we discovered a special mechanism by which TTC4 inhibited apoptosis via HSP70 in VECs. On the one hand, increasing TTC4 and HSP70 interaction upregulated Akt that inhibited apoptosis. On the other hand, decreasing HSP70 and ANXA7 interaction promoted the translocation of ANXA7 to lysosome, which inhibited apoptosis through protecting the lysosomal membrane stability.
Collapse
Affiliation(s)
- Xiaoying He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Zhaomin Lin
- Institute of Medical Science, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Junya Ning
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Na Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Xiaoling Cui
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China
| | - Baoxiang Zhao
- Institute of Organic Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, P.R. China
| | - Fanzhen Hong
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, P.R. China
| | - Junying Miao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, P.R. China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, P.R. China
| |
Collapse
|
8
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
9
|
Porte Alcon S, Gorojod RM, Kotler ML. Kinetic and protective role of autophagy in manganese-exposed BV-2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118787. [PMID: 32592735 DOI: 10.1016/j.bbamcr.2020.118787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
Abstract
Manganese (Mn) plays an important role in many physiological processes. Nevertheless, Mn accumulation in the brain can cause a parkinsonian-like syndrome known as manganism. Unfortunately, the therapeutic options for this disease are scarce and of limited efficacy. For this reason, a great effort is being made to understand the cellular and molecular mechanisms involved in Mn toxicity in neuronal and glial cells. Even though evidence indicates that Mn activates autophagy in microglia, the consequences of this activation in cell death remain unknown. In this study, we demonstrated a key role of reactive oxygen species in Mn-induced damage in microglial cells. These species generated by Mn2+ induce lysosomal alterations, LMP, cathepsins release and cell death. Besides, we described for the first time the kinetic of Mn2+-induced autophagy in BV-2 microglial cells and its relevance to cell fate. We found that Mn promotes a time-dependent increase in LC3-II and p62 expression levels, suggesting autophagy activation. Possibly, cells trigger autophagy to neutralize the risks associated with lysosomal rupture. In addition, pre-treatment with both Rapamycin and Melatonin enhanced autophagy and retarded Mn2+ cytotoxicity. In summary, our results demonstrated that, despite the damage inflicted on a subset of lysosomes, the autophagic pathway plays a protective role in Mn-induced microglial cell death. We propose that 2 h Mn2+ exposure will not induce disturbances in the autophagic flux. However, as time passes, the accumulated damage inside the cell could trigger a dysfunction of this mechanism. These findings may represent a valuable contribution to future research concerning manganism therapies.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Sun Q, Kang RR, Chen KG, Liu K, Ma Z, Liu C, Deng Y, Liu W, Xu B. Sirtuin 3 is required for the protective effect of Resveratrol on Manganese-induced disruption of mitochondrial biogenesis in primary cultured neurons. J Neurochem 2020; 156:121-135. [PMID: 32426865 DOI: 10.1111/jnc.15095] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Chronic manganese (Mn) exposure can disturb mitochondrial homeostasis leading to mitochondrial dysfunction, which is involved in Mn-induced neurodegenerative diseases. Resveratrol (RSV), as a promoter of mitochondrial biogenesis, plays a significant role against mitochondrial dysfunction. However, whether RSV can relieve Mn-induced neuronal injury and mitochondrial dysfunction remains unknown. Sirtuin 3 (SIRT3), a main mitochondrial sirtuin, is an important regulator of mitochondria to maintain mitochondrial homeostasis. Therefore, this study investigated whether SIRT3 was required for RSV alleviating Mn-induced mitochondrial dysfunction in primary cultured neurons from C57BL/6 mice. Here, we showed that Mn (100 and 200 μM) exposure for 24 hr caused significant neuronal damage and mitochondrial dysfunction through increasing mitochondrial ROS, reducing mitochondrial membrane potential and adenosine triphosphate level, and leading to mitochondrial network fragmentation, which could be ameliorated by RSV pretreatment in primary cultured neurons. Additionally, our results also indicated that RSV could activate the SIRT1/PGC-1α signaling pathway and alleviate Mn-induced disruption of mitochondrial biogenesis by increasing SIRT1 expression and activity, enhancing deacetylation of PGC-1α. Furthermore, SIRT3 over-expression increased deacetylation of mitochondrial transcription factor A and mitochondrial DNA (mtDNA) copy number. Oppositely, silencing SIRT3 increased acetylation of mitochondrial transcription factor A and decreased mtDNA copy number. Our results showed SIRT3 was required for the protective effect of RSV in mitochondrial biogenesis. In conclusion, our findings demonstrated that RSV could ameliorate Mn-induced neuronal injury and mitochondrial dysfunction in primary cultured neurons through activating the SIRT1/ PGC-1α signaling pathway, and that SIRT3 is required for promoting mitochondrial biogenesis and attenuating Mn-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qian Sun
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Run-Run Kang
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Kai-Ge Chen
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Kuan Liu
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Zhuo Ma
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Chang Liu
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Liaoning, China
| |
Collapse
|
11
|
Mutated ATP10B increases Parkinson's disease risk by compromising lysosomal glucosylceramide export. Acta Neuropathol 2020; 139:1001-1024. [PMID: 32172343 PMCID: PMC7244618 DOI: 10.1007/s00401-020-02145-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative brain disease presenting with a variety of motor and non-motor symptoms, loss of midbrain dopaminergic neurons in the substantia nigra pars compacta and the occurrence of α-synuclein-positive Lewy bodies in surviving neurons. Here, we performed whole exome sequencing in 52 early-onset PD patients and identified 3 carriers of compound heterozygous mutations in the ATP10B P4-type ATPase gene. Genetic screening of a Belgian PD and dementia with Lewy bodies (DLB) cohort identified 4 additional compound heterozygous mutation carriers (6/617 PD patients, 0.97%; 1/226 DLB patients, 0.44%). We established that ATP10B encodes a late endo-lysosomal lipid flippase that translocates the lipids glucosylceramide (GluCer) and phosphatidylcholine (PC) towards the cytosolic membrane leaflet. The PD associated ATP10B mutants are catalytically inactive and fail to provide cellular protection against the environmental PD risk factors rotenone and manganese. In isolated cortical neurons, loss of ATP10B leads to general lysosomal dysfunction and cell death. Impaired lysosomal functionality and integrity is well known to be implicated in PD pathology and linked to multiple causal PD genes and genetic risk factors. Our results indicate that recessive loss of function mutations in ATP10B increase risk for PD by disturbed lysosomal export of GluCer and PC. Both ATP10B and glucocerebrosidase 1, encoded by the PD risk gene GBA1, reduce lysosomal GluCer levels, emerging lysosomal GluCer accumulation as a potential PD driver.
Collapse
|
12
|
Anderson FL, Coffey MM, Berwin BL, Havrda MC. Inflammasomes: An Emerging Mechanism Translating Environmental Toxicant Exposure Into Neuroinflammation in Parkinson's Disease. Toxicol Sci 2019; 166:3-15. [PMID: 30203060 DOI: 10.1093/toxsci/kfy219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence indicates that complex gene-environment interactions underlie the incidence and progression of Parkinson's disease (PD). Neuroinflammation is a well-characterized feature of PD widely believed to exacerbate the neurodegenerative process. Environmental toxicants associated with PD, such as pesticides and heavy metals, can cause cellular damage and stress potentially triggering an inflammatory response. Toxicant exposure can cause stress and damage to cells by impairing mitochondrial function, deregulating lysosomal function, and enhancing the spread of misfolded proteins. These stress-associated mechanisms produce sterile triggers such as reactive oxygen species (ROS) along with a variety of proteinaceous insults that are well documented in PD. These associations provide a compelling rationale for analysis of sterile inflammatory mechanisms that may link environmental exposure to neuroinflammation and PD progression. Intracellular inflammasomes are cytosolic assemblies of proteins that contain pattern recognition receptors, and a growing body of evidence implicates the association between inflammasome activation and neurodegenerative disease. Characterization of how inflammasomes may function in PD is a high priority because the majority of PD cases are sporadic, supporting the widely held belief that environmental exposure is a major factor in disease initiation and progression. Inflammasomes may represent a common mechanism that helps to explain the strong association between exposure and PD by mechanistically linking environmental toxicant-driven cellular stress with neuroinflammation and ultimately cell death.
Collapse
Affiliation(s)
| | | | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | | |
Collapse
|
13
|
Liu K, Jing M, Liu C, Yan D, Ma Z, Wang C, Deng Y, Liu W, Xu B. Effect of trehalose on manganese‐induced mitochondrial dysfunction and neuronal cell damage in mice. Basic Clin Pharmacol Toxicol 2019; 125:536-547. [DOI: 10.1111/bcpt.13316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/27/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Kuan Liu
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Meng‐Jiao Jing
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Chang Liu
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Dong‐Ying Yan
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Zhuo Ma
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Can Wang
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Yu Deng
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Wei Liu
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| | - Bin Xu
- Department of Environmental Health School of Public Health China Medical University Shenyang China
| |
Collapse
|
14
|
Gorojod RM, Porte Alcon S, Dittler ML, Gonzalez MC, Kotler ML. Nanohydroxyapatite Exerts Cytotoxic Effects and Prevents Cellular Proliferation and Migration in Glioma Cells. Toxicol Sci 2019; 169:34-42. [DOI: 10.1093/toxsci/kfz019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Roxana Mayra Gorojod
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina
| | - Soledad Porte Alcon
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina
| | - María Laura Dittler
- Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mónica Cristina Gonzalez
- Facultad de Ciencias Exactas, Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mónica Lidia Kotler
- CONICET- Universidad de Buenos Aires. Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN). Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina. Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
15
|
Porte Alcon S, Gorojod RM, Kotler ML. Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity. Neuroscience 2018; 393:206-225. [PMID: 30316909 DOI: 10.1016/j.neuroscience.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. However, the occurrence of a direct cytotoxic effect of Mn on microglial cells remains controversial. In the present work, we investigated the potential vulnerability of immortalized mouse microglial cells (BV-2) toward Mn2+, focusing on the signaling pathways involved in cell death. Evidence obtained showed that Mn2+ induces a decrease in cell viability which is associated with reactive oxygen species (ROS) generation. In this report we demonstrated, for the first time, that Mn2+ triggers regulated necrosis (RN) in BV-2 cells involving two central mechanisms: parthanatos and lysosomal disruption. The occurrence of parthanatos is supported by several cellular and molecular events: (i) DNA damage; (ii) AIF translocation from mitochondria to the nucleus; (iii) mitochondrial membrane permeabilization; and (iv) PARP1-dependent cell death. On the other hand, Mn2+ induces lysosomal membrane permeabilization (LMP) and cathepsin D (CatD) release into the cytosol supporting the lysosomal disruption. Pre-incubation with CatB and D inhibitors partially prevented the Mn2+-induced cell viability decrease. Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn2+ damage. In this scenario, Mn2+ triggers cell death involving RN pathways.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Heme Oxygenase-1 protects astroglia against manganese-induced oxidative injury by regulating mitochondrial quality control. Toxicol Lett 2018; 295:357-368. [DOI: 10.1016/j.toxlet.2018.07.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 01/28/2023]
|
17
|
Kuş G, Özkurt M, Öztopcu Vatan P, Erkasap N, Uyar R, Kabadere S. Comparison of a ceramidase inhibitor (ceranib-2) with C2 ceramide and cisplatin on cytotoxicity and apoptosis of glioma cells. Turk J Biol 2018; 42:259-265. [PMID: 30814888 DOI: 10.3906/biy-1712-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhibiting ceramidase activity in cancer cells has been identified as a promising target for cancer therapy in recent studies. uhTs, we examined the possible role of ceranib-2, a novel ceramidase inhibitor, on growth and apoptotic mechanisms of the human normal glia cell line (HNA), human glioma cell lines (T-98G and U-87MG), and a rat glioma cell line (C6). We also compared the results with the effects of C2 ceramide and cisplatin. We determined the in vitro survival rate with MTT assay, apoptosis with flow cytometry, gene expressions with qRT-PCR, and statistical significance by one-way analysis of variance together with Tukey's test. Calculated from MTT outcomes, the inhibitory ranking was as follows: T-98G > U-87MG > C6 > HNA. Ceranib-2 had the most growth-suppressive activity on human T-98G cells with an IC50 of 7 µM for 24 h and 0.9 µM for 48 h. Only the 25 µM dose of ceranib-2 induced apoptosis of human T-98G and U-87MG cells after 24 h of treatment; however, it increased apoptosis of C6 cells dose- and time-dependently. Ceranib-2 increased the cytochrome c gene expression level during 24 h in T-98G cells. Ceranib-2 had cytotoxic and apoptotic effects on glioma cells but the cytotoxic effect was weaker on normal glia cells. This cytotoxicity was stronger than that of C2 ceramide and cisplatin.
Collapse
Affiliation(s)
- Gökhan Kuş
- Department of Health Programs, Open Education Faculty, Anadolu University , Eskişehir , Turkey
| | - Mete Özkurt
- Department of Physiology, Faculty of Medicine, Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Pınar Öztopcu Vatan
- Department of Biology, Faculty of Arts and Sciences, Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Nilüfer Erkasap
- Department of Physiology, Faculty of Medicine, Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Ruhi Uyar
- Department of Physiology, Faculty of Medicine, Eskişehir Osmangazi University , Eskişehir , Turkey
| | - Selda Kabadere
- Department of Physiology, Faculty of Medicine, Eskişehir Osmangazi University , Eskişehir , Turkey
| |
Collapse
|