1
|
Li Y, Liu H, Mu C, Gu J, Li C. Probing the interaction between encapsulated ethoxyquin and its β-cyclodextrin inclusion complex with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123259. [PMID: 37634329 DOI: 10.1016/j.saa.2023.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Ethoxyquin (EQ) is a synthetic antioxidant that is derived from quinolines and found in many meat products. EQ is strictly regulated in feed due to its potential health implications. An investigation of the interaction mechanism between EQ and transporter protein before and after β-cyclodextrin (β-CD) encapsulation was conducted with the use of multi-spectroscopy, cyclic voltammetry, and molecular docking. EQ formed complexes with bovine serum albumin (BSA), and affected secondary structure and microenvironment polarity of BSA. However, at 298 K, EQ's fluorescence quenching constants decreased from (9.81 ± 0.05) × 103 L mol-1 to (4.94 ± 0.09) × 103 L mol-1, binding constants decreased from (10.28 ± 0.02) × 103 L mol-1 to (2.08 ± 0.07) × 103 L mol-1, after encapsulation in β-CD as well as the binding distance increased. β-CD contains part of EQ in its hydrophobic cavity, inhibiting its binding to BSA. β-CD inclusion complex prevented adverse effects of EQ on BSA conformation. However, β-CD encapsulation had no effect on EQ's antioxidant activity.
Collapse
Affiliation(s)
- Ye Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Chunyu Mu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China.
| | - Chun Li
- College of Chemistry and Chemical Engineering, Bohai University, Jinzhou 121013, PR China
| |
Collapse
|
2
|
Pluym N, Roegner N, Peschel O, Leibold E, Scherer G, Scherer M. Human metabolism and excretion kinetics of the surfactant 2,4,7,9-tetramethyl-5-decyne-4,7-diol (TMDD) after oral and dermal administration. Arch Toxicol 2023; 97:2419-2428. [PMID: 37392209 DOI: 10.1007/s00204-023-03547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant with a wide range of applications. TMDD is considered a high-production chemical and, due to its low biodegradation rate, possesses a potentially high prevalence in the environment. However, despite its widespread use, toxicokinetic data and data on internal exposure to TMDD in the general population are completely lacking. Hence, we developed a human biomonitoring (HBM) method for TMDD. Our approach included a metabolism study with four subjects, who were administered an oral dose of 75 µg TMDD/kg body weight and a dermal dose of 750 µg/kg body weight. Terminal methyl-hydroxylated TMDD (1-OH-TMDD) was previously identified as the main urinary metabolite in our lab. The results of the oral and dermal applications were used to determine the toxicokinetic parameters of 1-OH-TMDD as a biomarker of exposure. Finally, the method was applied to 50 urine samples from non-occupationally exposed volunteers. Results show that TMDD was rapidly metabolized, with an average tmax of 1.7 h and a rapid and almost complete (96%) excretion of 1-OH-TMDD until 12 h after oral dosage. Elimination was bi-phasic, with half-lives of 0.75-1.6 h and 3.4-3.6 h for phases 1 and 2, respectively. The dermal application resulted in a delayed urinary excretion of this metabolite with a tmax of 12 h and complete excretion after about 48 h. The excreted amounts of 1-OH-TMDD represented 18% of the orally administered TMDD dose. The data of the metabolism study demonstrated a fast oral as well as substantial dermal resorption of TMDD. Moreover, the results indicated an effective metabolism of 1-OH-TMDD, which is excreted rapidly and completely via urine. Application of the method to 50 urine samples revealed a quantification rate of 90%, with an average concentration of 0.19 ng/mL (0.97 nmol/g creatinine). With the urinary excretion factor (Fue) derived from the metabolism study, we estimated an average daily intake of 1.65 µg TMDD from environmental and dietary sources. In conclusion, 1-OH-TMDD in urine is a suitable biomarker of exposure to TMDD and can be applied for biomonitoring of the general population.
Collapse
Affiliation(s)
- Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Nadine Roegner
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Oliver Peschel
- Institut für Rechtsmedizin der Universität München, Nussbaumstr. 26, 80336, Munich, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, 67056, Ludwigshafen, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152, Planegg, Germany.
| |
Collapse
|
3
|
Pluym N, Burkhardt T, Rögner N, Scherer G, Weber T, Scherer M, Kolossa-Gehring M. Monitoring the exposure to ethoxyquin between 2000 and 2021 in urine samples from the German Environmental Specimen Bank. ENVIRONMENT INTERNATIONAL 2023; 172:107781. [PMID: 36758297 DOI: 10.1016/j.envint.2023.107781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Human Biomonitoring (HBM) of emerging chemicals gained increasing attention within the EU in recent years. After evaluating the metabolism, we established a new HBM method for ethoxyquin (EQ), a feed additive, which was banned in 2017 due to concerns regarding the possible exposure of the general population to it and its highly toxic precursor p-phenetidine. The method was applied to 250 urine samples from the Environmental Specimen Bank collected between 2000 and 2021. The major metabolite EQI was quantified in the majority of the study samples illustrating the ubiquitous exposure of the non-occupationally exposed population. A rather constant exposure was observed until 2016 with a significant decline from 2016 to 2021. This drop falls within the EU wide ban of the chemical as a feed additive from June 2017 which led to a gradual removal until its complete suspension in June 2020. The daily intake (DI) was evaluated with respect to the reported derived no-effect level (DNEL) to estimate the potential health risks from EQ exposure. The median DI of 0.0181 µg/kg bw/d corresponds to only 0.01 % of the DNEL. Even the observed maxima up to 13.1 µg/kg bw/d only accounted for 10 % of the DNEL. Nevertheless, the values suggest a general exposure with the risk of higher burden in a low fraction of the population. In regard to the EQ associated intake of the carcinogen and suspected mutagen p-phenetidine, this level of exposure cannot be evaluated as safe. The recent decrease and the broad exposure substantiate the need for future HBM campaigns in population representative studies to further investigate the observed reductions, potentially find highly exposed subgroups and clarify the impact of the ban as feed additive on EQ exposure.
Collapse
Affiliation(s)
- Nikola Pluym
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Therese Burkhardt
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Nadine Rögner
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Till Weber
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany
| | - Max Scherer
- ABF Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany.
| | | |
Collapse
|
4
|
Roegner N, Pluym N, Peschel O, Leibold E, Kachhadia A, Scherer G, Scherer M. Determination of a specific metabolite for the non-ionic surfactant 2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1216:123584. [PMID: 36640715 DOI: 10.1016/j.jchromb.2022.123584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
2,4,7,9-Tetramethyldec-5-yne-4,7-diol (TMDD) is a non-ionic surfactant commonly used as defoaming agent and numerous other applications. Effluents of wastewater treatment plants have been identified as one of the main sources of TMDD emissions into the environment. Due to its broad application in various fields, TMDD was selected for the development of a biomonitoring method for assessing human exposure within the frame of the cooperation project of the German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety (BMUB) and the German Chemical Industry Association (VCI) in 2020. This study aimed to identify a urinary metabolite for TMDD by UPLC-Q-Orbitrap-MS which can be used as a biomarker of TMDD exposure. Monohydroxylated TMDD (1-OH-TMDD) was deciphered as the most prominent metabolite of TMDD in humans in a series of in vitro and in vivo experiments. In a next step, a quantitative method for the determination of 1-OH-TMDD was developed and validated. Quantification was achieved by isotope dilution using D3-1-OH-TMDD as internal standard. The method is characterized by a simple sample clean-up procedure and an enzymatic hydrolysis of possible metabolite conjugates with ß-glucuronidase. Method validation was performed according to international guidelines for bioanalytical method validation. The method proved its robustness, precision, accuracy and sensitivity for the intended purpose, i.e. the assessment of TMDD exposure in the general population by means of human biomonitoring.
Collapse
Affiliation(s)
- Nadine Roegner
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Nikola Pluym
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Oliver Peschel
- Institut für Rechtsmedizin der Universität München, Nussbaumstr. 26, 80336 Munich, Germany
| | - Edgar Leibold
- BASF SE, Product Safety, 67056 Ludwigshafen, Germany
| | - Alpeshkumar Kachhadia
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Gerhard Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany
| | - Max Scherer
- Analytisch-Biologisches Forschungslabor GmbH, Semmelweisstr. 5, 82152 Planegg, Germany.
| |
Collapse
|
5
|
Kryl'skii ED, Chupandina EE, Popova TN, Shikhaliev KS, Medvedeva SM, Verevkin AN, Popov SS, Mittova VO. 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline exerts a neuroprotective effect and normalises redox homeostasis in a rat model of cerebral ischemia/reperfusion. Metab Brain Dis 2022; 37:1271-1282. [PMID: 35201554 DOI: 10.1007/s11011-022-00928-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Ischemia is one of the main etiological factors of stroke and is associated with the development of energy deficiency, oxidative stress, and inflammation. An abrupt restoration of blood flow, called reperfusion, can worsen the effects of ischemia. In our study, we assessed the neuroprotective potential of 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) in cerebral ischemia/reperfusion (CIR) in rats. Wistar rats, divided into 4 groups were used in the study: sham-operated animals; animals with CIR caused by occlusion of the common carotid arteries and subsequent removal of the occlusions; rats treated with BHDQ at a dose of 50 mg/kg in the presence of pathology; sham-operated animals treated with BHDQ. The analysis of the state of energy metabolism in the brain, the level of the S100B protein and the histological assessment of the brain tissue were carried out. The antioxidant potential of BHDQ was assessed by measuring biochemiluminescence parameters, analysing the level of 8-isoprostane, products of lipid and protein oxidation, concentration of α-tocopherol and citrate, and aconitate hydratase activity during CIR in rats. A study of the effect of BHDQ on the regulation of the enzymatic antioxidant system and the inflammatory processes was performed. We demonstrated that BHDQ has a neuroprotective effect in CIR, reducing histopathological changes in the brain, normalizing pyruvate and lactate concentrations, and the transcripts level of Hif-1α gene. The positive effect of BHDQ was probably due to its antioxidant and anti-inflammatory activity, manifested in a decrease in the parameters of the oxidative stress, decreased mRNA of proinflammatory cytokines and NF-κB factor genes. In addition, BHDQ reduced the load on antioxidant protection enzymes, contributing to a change in their activities, decreased the level of antioxidant gene transcripts and expression of Nrf2 and Foxo1 factors toward control. Thus, BHDQ exhibited a neuroprotective effect due to a decrease in the level of oxidative stress and inflammation and the normalization of redox homeostasis on CIR in rats.
Collapse
Affiliation(s)
- E D Kryl'skii
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia.
| | - E E Chupandina
- Department of Pathological Anatomy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - T N Popova
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - Kh S Shikhaliev
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - S M Medvedeva
- Department of Organic Chemistry, Voronezh State University, Voronezh, Russia
| | - A N Verevkin
- Department of Medical Biochemistry and Microbiology, Voronezh State University, Universitetskaya sq. 1, 394018, Voronezh, Russia
| | - S S Popov
- Department of Organization of Pharmaceutical Business, Clinical Pharmacy and Pharmacognosy, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| | - V O Mittova
- Department of Clinical laboratory Diagnostics, Voronezh State Medical University named after N.N. Burdenko, Voronezh, Russia
| |
Collapse
|
6
|
Rasinger JD, Frenzel F, Braeuning A, Bernhard A, Ørnsrud R, Merel S, Berntssen MHG. Use of (Q)SAR genotoxicity predictions and fuzzy multicriteria decision-making for priority ranking of ethoxyquin transformation products. ENVIRONMENT INTERNATIONAL 2022; 158:106875. [PMID: 34607038 DOI: 10.1016/j.envint.2021.106875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/16/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Ethoxyquin (EQ; 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline) has been used as an antioxidant in feed for pets and food-producing animals, including farmed fish such as Atlantic salmon. In Europe, the authorization for use of EQ as a feed additive was suspended, due to knowledge gaps concerning the presence and toxicity of EQ transformation products (TPs). Recent analytical studies focusing on the detection of EQ TPs in farmed Atlantic salmon feed and fillets reported the detection of a total of 27 EQ TPs, comprising both known and previously not described EQ TPs. We devised and applied an in silico workflow to rank these EQ TPs according to their genotoxic potential and their occurrence data in Atlantic salmon feed and fillet. Ames genotoxicity predictions were obtained applying a suite of five (quantitative) structure-activity relationship ((Q)SAR) tools, namely VEGA, TEST, LAZAR, Derek Nexus and Sarah Nexus. (Q)SAR Ames genotoxicity predictions were aggregated using fuzzy analytic hierarchy process (fAHP) multicriteria decision-making (MCDM). A priority ranking of EQ TPs was performed based on combining both fAHP ranked (Q)SAR predictions and analytical occurrence data. The applied workflow prioritized four newly identified EQ TPs for further investigation of genotoxicity. The fAHP-based prioritization strategy described here, can easily be applied to other toxicity endpoints and groups of chemicals for priority ranking of compounds of most concern for subsequent experimental and mechanistic toxicology analyses.
Collapse
Affiliation(s)
- J D Rasinger
- Institute of Marine Research (IMR), Bergen, Norway.
| | - F Frenzel
- German Federal Institute for Risk Assessment (BfR), Dept. Food Safety, Berlin, Germany
| | - A Braeuning
- German Federal Institute for Risk Assessment (BfR), Dept. Food Safety, Berlin, Germany
| | - A Bernhard
- Institute of Marine Research (IMR), Bergen, Norway
| | - R Ørnsrud
- Institute of Marine Research (IMR), Bergen, Norway
| | - S Merel
- Institute of Marine Research (IMR), Bergen, Norway; National Research Institute for Agriculture, Food and Environment (INRAE), Lyon-Villeurbanne, France
| | | |
Collapse
|