1
|
Wong HI, Audira G, Chen HC, Feng WW, Suryanto ME, Saputra F, Kurnia KA, Casuga FP, Hsiao CD, Hung CH. Chronic dimethomorph exposure induced behaviors abnormalities and cognitive performance alterations in adult zebrafish ( Danio rerio). Toxicol Rep 2025; 14:101977. [PMID: 40166733 PMCID: PMC11957589 DOI: 10.1016/j.toxrep.2025.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/21/2025] [Accepted: 03/07/2025] [Indexed: 04/02/2025] Open
Abstract
Dimethomorph is a systematic fungicide that inhibits sterol synthesis in fungi and unfortunately, there was only scarce data regarding its toxicity. Therefore, considering its extensive application in agriculture and its presence in food residues and the environment, its toxicities in non-target organisms, including aquatic animals, are required to be evaluated since they are sensitive indicators of ecological change. In this study, we evaluated the toxicities of dimethomorph after chronic exposure to adult zebrafish (Danio rerio) by conducting various behavioral assays, a passive avoidance test, and biochemical assays by ELISA. From the results, ∼ 2 weeks exposure to dimethomorph caused lower locomotion, aggressiveness, and conspecific social interaction, and more robust predator avoidance behaviors. Furthermore, alterations in color preferences and short-term memory loss were also observed in the treated fish. In helping to elucidate the mechanism, the expression level of several important neurotransmitters in the brain tissue was measured. Interestingly, increment in several biomarkers, including serotonin, kisspeptin, epinephrine, norepinephrine, and dopamine was observed in the treated group along with a slight increase in other tested neurotransmitters, which were catalase, acetylcholine, and melatonin, which might play a role in the observed behavior alterations. Nevertheless, the results from the current study suggested possible alterations in the central nervous system by dimethomorph, and thus, consideration is required prior to the usage of this fungicide in the agricultural fields surrounding natural freshwater reservoirs.
Collapse
Affiliation(s)
- Heong-Ieng Wong
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu District, Kaohsiung 84001, Taiwan
- Ucheers Clinic, No. 156, Weixin St., Zuoying Dist., Kaohsiung 813018, Taiwan
| | - Gilbert Audira
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Hsiu-Chao Chen
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu District, Kaohsiung 84001, Taiwan
| | - Wen-Wei Feng
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu District, Kaohsiung 84001, Taiwan
| | | | - Ferry Saputra
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Kevin Adi Kurnia
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Franelyne P. Casuga
- Department of Pharmacy, Research Center for the Natural and Applied Science, University of Santo Tomas, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Chih-Hsin Hung
- Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Da-Shu District, Kaohsiung 84001, Taiwan
| |
Collapse
|
2
|
Bouly L, Jacquin L, Chapeau F, Bonmatin JM, Cousseau M, Hagimont A, Laffaille P, Lalot B, Lemarié A, Pasquet C, Huc L, Jean S. Fluopyram SDHI pesticide alters fish physiology and behaviour despite low in vitro effects on mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117400. [PMID: 39612682 DOI: 10.1016/j.ecoenv.2024.117400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Pollution from pesticides is an increasing concern for human health and biodiversity conservation. However, there is lack of knowledge about some emerging molecules such as SDHI fungicides (succinate dehydrogenase inhibitors) that are widely used but potentially highly toxic for vertebrates. Boscalid, fluopyram, and bixafen are 3 frequent SDHI molecules commonly detected in surface waters, which may pose risks to aquatic species. This study aimed to (1) test the in vitro effects of SDHI on mitochondrial activities (inhibition of succinate dehydrogenase SDH, also named respiratory chain complex II) and (2) assess the in vivo effects of sublethal SDHI concentrations on fish physiology and behaviour over 96 hours of exposure, using Carassius auratus fish as a model species. Results show that bixafen and boscalid inhibited complex II activities in vitro as expected (bixafen > boscalid), while fluopyram had no in vitro effects. In contrast, in vivo studies showed that fluopyram strongly altered fish behaviour (enhanced activity, social and feeding behaviours), likely explained by reduced AChE enzymatic activity. In addition, fluopyram increased muscle lipid content, suggesting metabolic disruption. These findings raise serious concern about the toxic effects of SDHI pesticides, especially fluopyram, although its underpinning molecular mechanisms remain to be explored. We thus encourage further research on the long-term impacts of SDHI pesticides to improve existing regulation and prevent adverse effects on wildlife.
Collapse
Affiliation(s)
- Lucie Bouly
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Lisa Jacquin
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Florian Chapeau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Jean-Marc Bonmatin
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans 45071, France
| | - Myriam Cousseau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Aurianne Hagimont
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Pascal Laffaille
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Bénédicte Lalot
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Anthony Lemarié
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| | - Camille Pasquet
- Centre National de La Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans 45071, France
| | - Laurence Huc
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes 35000, France; Laboratoire Interdisciplinaire Sciences Innovations Sociétés (LISIS), INRAE/CNRS/Université Gustave Eiffel, Marne-La-Vallée 77454, France
| | - Séverine Jean
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
3
|
Yadav S, Sewariya S, Raman APS, Arun, Singh P, Chandra R, Jain P, Singh A, Kumari K. A multifaceted approach to investigate interactions of thifluzamide with haemoglobin. Int J Biol Macromol 2024; 282:136736. [PMID: 39433183 DOI: 10.1016/j.ijbiomac.2024.136736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
This study explores the interaction between the pesticide thifluzamide (TF) and haemoglobin (Hb) to understand potential structural changes that might affect Hb's function. Using a combination of UV-Visible and fluorescence spectroscopy, circular dichroism (CD), molecular docking, molecular dynamics (MD) simulations, and electrochemical methods, we investigated these interactions in detail. Spectroscopy results indicated the formation of a stable TF-Hb complex, with a binding constant of 6.64 × 105 M-1 at 298 K and a 1:1 binding ratio. The stability of this complex was confirmed by a free energy change (∆G) of -34.491 kJ mol-1. CD spectroscopy was employed to confirm structural changes in Hb due to thifluzamide binding. Molecular docking studies revealed that TF interacts with specific amino acids in Hb like ALA, HIS, VAL, LYS, and LEU, with a binding energy of -25.10 kJ mol-1. MD simulations supported these findings by showing conformational changes in Hb upon TF binding, as indicated by RMSD and RMSF analyses. Electrochemical experiments further confirmed the interaction, evidenced by a consistent decrease in the TF's peak in the presence of Hb. Overall, our findings shed light to understand the binding of TF with Hb, causing structural changes that could potentially impact its normal function. This research enhances our understanding of the biochemical effects of TF on Hb, which could have significant implications for biological systems.
Collapse
Affiliation(s)
- Sandeep Yadav
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India; Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Shubham Sewariya
- Department of Chemistry, University of Delhi, Delhi, India; School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Anirudh Pratap Singh Raman
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India; Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Arun
- Department of Zoology, University of Delhi, Delhi, India
| | - Prashant Singh
- Department of Chemistry, Atma Ram Sanatan Dharma College, University of Delhi, New Delhi, India.
| | - Ramesh Chandra
- Department of Chemistry, University of Delhi, Delhi, India
| | - Pallavi Jain
- Department of Chemistry, SRM Institute of Science & Technology, Delhi-NCR Campus, Modinagar, Ghaziabad, India
| | - Anju Singh
- Department of Chemistry, University of Delhi, Delhi, India; Department of Chemistry, Hindu College, University of Delhi, Delhi, India
| | - Kamlesh Kumari
- Department of Zoology, University of Delhi, Delhi, India.
| |
Collapse
|
4
|
Yang Y, He B, Mu X, Qi S. Exposure to flutolanil at environmentally relevant concentrations can induce image and non-image-forming failure of zebrafish larvae through neuro and visual disruptions. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134108. [PMID: 38521039 DOI: 10.1016/j.jhazmat.2024.134108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Numerous pesticides pose a threat to aquatic ecosystems, jeopardizing aquatic animal species and impacting human health. While the contamination of aquatic environment by flutolanil and its adverse effects on animal in the treatment of rich sheath blight have been reported, the neuro-visual effects of flutolanil at environmentally relevant concentrations remain unknown. In this study, we administered flutolanil to zebrafish embryos (0, 0.125, 0.50 and 2.0 mg/L) for 4 days to investigate its impact on the neuro and visual system. The results revealed that flutolanil induced abnormal behavior in larvae, affecting locomotor activity, stimuli response and phototactic response. Additionally, it led to defective brain and ocular development and differentiation. The disruption extended to the neurological system and visual phototransduction of larvae, evidenced by significant disturbances in genes and proteins related to neurodevelopment, neurotransmission, eye development, and visual function. Untargeted metabolomics analysis revealed that the GABAergic signaling pathway and increased levels of glutamine, glutamate, andγ-aminobutyric acid were implicated in the response to neuro and visual system injury induced by flutolanil, contributing to aberrant development, behavioral issues, and endocrine disruption. This study highlights the neuro-visual injury caused by flutolanil in aquatic environment, offering fresh insights into the mechanisms underlying image and non-image effects.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, Wuhan 430070, People's Republic of China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China.
| | - Suzhen Qi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100093, People's Republic of China.
| |
Collapse
|
5
|
Okeke ES, Feng W, Luo M, Mao G, Chen Y, Zhao T, Wu X, Yang L. RNA-Seq analysis offers insight into the TBBPA-DHEE-induced endocrine-disrupting effect and neurotoxicity in juvenile zebrafish (Danio rerio). Gen Comp Endocrinol 2024; 350:114469. [PMID: 38360373 DOI: 10.1016/j.ygcen.2024.114469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) is the major TBBPA derivative. It has been detected in different environmental samples. Previous studies show that TBBPA-DHEE caused neurotoxicity in rats. In this study, juvenile zebrafish were exposed to various concentrations of TBBPA-DHEE to ascertain the potential neurotoxicity of TBBPA-DHEE, the chemical, and its possible molecular mechanism of action. Behavioral analysis revealed that TBBPA-DHEE could significantly increase the swimming distance and speed in the 1.5 mg/L group compared to the control. In contrast, the swimming distance and speed were significantly reduced in the 0.05 and 0.3 mg/L groups, affecting learning, memory, and neurodevelopment. Similarly, TBBPA-DHEE exposure caused a concentration-dependent significant increase in the levels of excitatory neurotransmitters, namely, dopamine, norepinephrine, and epinephrine, which could be attributed to the change observed in zebrafish behavior. This demonstrates the neurotoxicity of TBBPA-DHEE on juvenile zebrafish. The concentration-dependent increase in the IBR value revealed by the IBR index reveals the noticeable neurotoxic effect of TBBPA-DHEE. Transcriptomic analysis shows that TBBPA-DHEE exposure activated the PPAR signaling pathways, resulting in a disturbance of fatty acid (FA) metabolism and changes in the transcript levels of genes involved in these pathways, which could lead to lipotoxicity and hepatotoxicity. Our findings demonstrate a distinct endocrine-disrupting response to TBBPA-DHEE exposure, possibly contributing to abnormal behavioral alterations. This study provides novel insights into underlying the mechanisms and effects of TBBPA-DHEE on aquatic organisms, which may be helpful forenvironmental/human health risk assessments of the emerging pollutant.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences University of Nigeria, Nsukka, Enugu State 410001, Nigeria; Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China
| | - Ting Zhao
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of Emergency Management, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd, 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
6
|
Reis CG, Bastos LM, Chitolina R, Gallas-Lopes M, Zanona QK, Becker SZ, Herrmann AP, Piato A. Neurobehavioral effects of fungicides in zebrafish: a systematic review and meta-analysis. Sci Rep 2023; 13:18142. [PMID: 37875532 PMCID: PMC10598008 DOI: 10.1038/s41598-023-45350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 10/26/2023] Open
Abstract
Pesticides are widely used in global agriculture to achieve high productivity levels. Among them, fungicides are specifically designed to inhibit fungal growth in crops and seeds. However, their application often results in environmental contamination, as these chemicals can persistently be detected in surface waters. This poses a potential threat to non-target organisms, including humans, that inhabit the affected ecosystems. In toxicologic research, the zebrafish (Danio rerio) is the most commonly used fish species to assess the potential effects of fungicide exposure, and numerous and sometimes conflicting findings have been reported. To address this, we conducted a systematic review and meta-analysis focusing on the neurobehavioral effects of fungicides in zebrafish. Our search encompassed three databases (PubMed, Scopus, and Web of Science), and the screening process followed predefined inclusion/exclusion criteria. We extracted qualitative and quantitative data, as well as assessed reporting quality, from 60 included studies. Meta-analyses were performed for the outcomes of distance traveled in larvae and adults and spontaneous movements in embryos. The results revealed a significant overall effect of fungicide exposure on distance, with a lower distance traveled in the exposed versus control group. No significant effect was observed for spontaneous movements. The overall heterogeneity was high for distance and moderate for spontaneous movements. The poor reporting practices in the field hindered a critical evaluation of the studies. Nevertheless, a sensitivity analysis did not identify any studies skewing the meta-analyses. This review underscores the necessity for better-designed and reported experiments in this field.
Collapse
Affiliation(s)
- Carlos G Reis
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Leonardo M Bastos
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Rafael Chitolina
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Matheus Gallas-Lopes
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Querusche K Zanona
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurofisiologia e Neuroquímica da Excitabilidade Neuronal e Plasticidade Sináptica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Sofia Z Becker
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Ana P Herrmann
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Laboratório de Neurobiologia e Psicofarmacologia Experimental (PsychoLab), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Brazilian Reproducibility Initiative in Preclinical Systematic Review and Meta-Analysis (BRISA) Collaboration, Rio de Janeiro, Brazil
| | - Angelo Piato
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Laboratório de Psicofarmacologia e Comportamento (LAPCOM), Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Farmacologia e Terapêutica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Cresto N, Forner-Piquer I, Baig A, Chatterjee M, Perroy J, Goracci J, Marchi N. Pesticides at brain borders: Impact on the blood-brain barrier, neuroinflammation, and neurological risk trajectories. CHEMOSPHERE 2023; 324:138251. [PMID: 36878369 DOI: 10.1016/j.chemosphere.2023.138251] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/11/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Pesticides are omnipresent, and they pose significant environmental and health risks. Translational studies indicate that acute exposure to high pesticide levels is detrimental, and prolonged contact with low concentrations of pesticides, as single and cocktail, could represent a risk factor for multi-organ pathophysiology, including the brain. Within this research template, we focus on pesticides' impact on the blood-brain barrier (BBB) and neuroinflammation, physical and immunological borders for the homeostatic control of the central nervous system (CNS) neuronal networks. We examine the evidence supporting a link between pre- and postnatal pesticide exposure, neuroinflammatory responses, and time-depend vulnerability footprints in the brain. Because of the pathological influence of BBB damage and inflammation on neuronal transmission from early development, varying exposures to pesticides could represent a danger, perhaps accelerating adverse neurological trajectories during aging. Refining our understanding of how pesticides influence brain barriers and borders could enable the implementation of pesticide-specific regulatory measures directly relevant to environmental neuroethics, the exposome, and one-health frameworks.
Collapse
Affiliation(s)
- Noemie Cresto
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom.
| | - Asma Baig
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Mousumi Chatterjee
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
| | - Julie Perroy
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|