1
|
Ruiz-Moreno AJ, Del Castillo-Izquierdo Á, Tamargo-Rubio I, Fu J. MicrobeRX: a tool for enzymatic-reaction-based metabolite prediction in the gut microbiome. MICROBIOME 2025; 13:78. [PMID: 40108657 PMCID: PMC11921629 DOI: 10.1186/s40168-025-02070-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/23/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND The gut microbiome functions as a metabolic organ, producing numerous enzymes that influence host health; however, their substrates and metabolites remain largely unknown. RESULTS We present MicrobeRX, an enzyme-based metabolite prediction tool that employs 5487 human reactions and 4030 unique microbial reactions from 6286 genome-scale models, as well as 3650 drug metabolic reactions from the DrugBank database (v.5.1.12). MicrobeRX includes additional analysis modules for metabolite visualization and enzymatic and taxonomic analyses. When we applied MicrobeRX to 1083 orally administered drugs that have been approved in at least one jurisdiction at some point in time (DrugBank), it predicted metabolites with physicochemical properties and structures similar to metabolites found in biosamples (from MiMeDB). It also outperformed another existing metabolite prediction tool (BioTransformer 3.0) in terms of predictive potential, molecular diversity, reduction of redundant predictions, and enzyme annotation. CONCLUSIONS Our analysis revealed both unique and overlapping metabolic capabilities in human and microbial metabolism and chemo- and taxa-specific microbial biotransformations. MicrobeRX bridges the genomic and chemical spaces of the gut microbiome, making it a valuable tool for unlocking the chemical potential of the gut microbiome in human health, the food and pharmaceutical industries, and environmental safety. Video Abstract.
Collapse
Affiliation(s)
- Angel J Ruiz-Moreno
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| | - Ángela Del Castillo-Izquierdo
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
- Department of Medical Microbiology, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Isabel Tamargo-Rubio
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
- Department of Pediatrics, University Medical Center Groningen, Groningen, 9713GZ, The Netherlands.
| |
Collapse
|
2
|
Byer-Alcorace A, Thomas C, Taub ME, Piekos S. Improved clearance predictions for aldehyde oxidase substrates using a novel triculture human hepatocyte model. Drug Metab Dispos 2025; 53:100051. [PMID: 40147225 DOI: 10.1016/j.dmd.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/03/2025] [Accepted: 02/03/2025] [Indexed: 03/29/2025] Open
Abstract
Over the last several decades, efforts in medicinal chemistry have aimed to reduce the extent of CYP metabolism of new chemical entities. This approach, however, has led to increased susceptibility to metabolism by non-CYP-mediated pathways, particularly involving other phase I enzymes such as aldehyde oxidase (AO). Commonly used in vitro models, such as suspended or cocultured primary human hepatocytes, have limitations in evaluating the disposition of compounds metabolized by AO due to low or variable levels of enzyme activity. Thus, an in vitro model that exhibits high to moderate levels of AO activity that can better predict the contribution of AO to drug metabolism and its impact on drug clearance is needed. A novel, 2D+ primary human hepatocyte model, TruVivo, was evaluated for its potential utility to improve hepatic clearance (CLh) predictions and determine the contribution of AO to drug metabolism in humans. TruVivo demonstrated stable levels of AO activity for at least 2 weeks that were higher than levels in other hepatocyte models. CLh predictions generated using TruVivo for the reference compounds carbazeran, zoniporide, zaleplon, and O6-benzylguanine were within 2-fold of reported in vivo CL values. Furthermore, the estimated fraction metabolized by AO for zaleplon and zoniporide was within 25% of reported in vivo values, whereas that for carbazeran and O6-benzylguanine was similar to those generated in other systems. These findings suggest TruVivo may offer a novel means to assess CLh of AO substrates more accurately, even over extended incubation times for low clearance compounds. SIGNIFICANCE STATEMENT: The TruVivo in vitro primary human hepatocyte model maintains high levels of aldehyde oxidase (AO) activity for at least 14 days in culture, making the system suitable for evaluating slowly metabolized compounds, particularly those metabolized by AO. This novel system may therefore be useful for improving human clearance predictions for AO substrates.
Collapse
Affiliation(s)
- Alexander Byer-Alcorace
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Cody Thomas
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Mitchell E Taub
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut
| | - Stephanie Piekos
- Department of Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, Connecticut.
| |
Collapse
|
3
|
Zhang N, Li X, Ming L, Sun W, Xie X, Zhi C, Zhou X, Wen Y, Liang Z, Deng Y. Comparative Genomics and Pathogenicity Analysis of Three Fungal Isolates Causing Barnyard Grass Blast. J Fungi (Basel) 2024; 10:868. [PMID: 39728364 DOI: 10.3390/jof10120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Barnyard grass is one of the most serious rice weeds, often growing near paddy fields and therefore potentially serving as a bridging host for the rice blast fungus. In this study, we isolated three fungal strains from diseased barnyard grass leaves in a rice field. Using a pathogenicity assay, we confirmed that they were capable of causing blast symptoms on barnyard grass and rice leaves to various extents. Based on morphology characterization and genome sequence analyses, we confirmed that these three strains were Epicoccum sorghinum (SCAU-1), Pyricularia grisea (SCAU-2), and Exserohilum rostratum (SCAU-6). The established Avirulence (Avr) genes Avr-Pia, Avr-Pita2, and ACE1 were detected by PCR amplification in SCAU-2, but not in SCAU-1 or SCAU-6. Furthermore, the whole-genome sequence analysis helped to reveal the genetic variations and potential virulence factors relating to the host specificity of these three fungal pathogens. Based on the evolutionary analysis of single-copy orthologous proteins, we found that the genes encoding glycoside hydrolases, carbohydrate esterases, oxidoreductase, and multidrug transporters in SCAU-1 and SCAU-6 were expanded, while expansion in SCAU-2 was mainly related to carbohydrate esterases. In summary, our study provides clues to understand the pathogenic mechanisms of fungal isolates from barnyard grass with the potential to cause rice blast.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xinyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Liangping Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Wenda Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Cailing Zhi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
4
|
Guengerich FP. Roles of Individual Human Cytochrome P450 Enzymes in Drug Metabolism. Pharmacol Rev 2024; 76:1104-1132. [PMID: 39054072 PMCID: PMC11549934 DOI: 10.1124/pharmrev.124.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/28/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Our knowledge of the roles of individual cytochrome P450 (P450) enzymes in drug metabolism has developed considerably in the past 30 years, and this base has been of considerable use in avoiding serious issues with drug interactions and issues due to variations. Some newer approaches are being considered for "phenotyping" metabolism reactions with new drug candidates. Endogenous biomarkers are being used for noninvasive estimation of levels of individual P450 enzymes. There is also the matter of some remaining "orphan" P450s, which have yet to be assigned reactions. Practical problems that continue in drug development include predicting drug-drug interactions, predicting the effects of polymorphic and other P450 variations, and evaluating interspecies differences in drug metabolism, particularly in the context of "metabolism in safety testing" regulatory issues ["disproportionate (human) metabolites"]. SIGNIFICANCE STATEMENT: Cytochrome P450 enzymes are the major catalysts involved in drug metabolism. The characterization of their individual roles has major implications in drug development and clinical practice.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
5
|
Satkanov M, Tazhibay D, Zhumabekova B, Assylbekova G, Abdukarimov N, Nurbekova Z, Kulatayeva M, Aubakirova K, Alikulov Z. Method for assessing the content of molybdenum enzymes in the internal organs of fish. MethodsX 2024; 12:102576. [PMID: 38304395 PMCID: PMC10832488 DOI: 10.1016/j.mex.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
Molybdenum enzymes (Mo-enzymes) contain a molybdenum cofactor (MoCo) in the active site. These enzymes are potentially interesting for studying the survival mechanism of fish under hypoxic water conditions. This is because Mo-enzymes can synthesize nitric oxide from nitrates and nitrites, which are present in high concentrations under hypoxic water conditions. However, there is currently no method for assessing the Mo-enzymes content in the fish internal organs. Methods capable of determining Mo-enzymes content in the fish are of major importance. For this purpose, a method for quantitative determination of MoCo from plant tissues was modified. We demonstrated the Mo-enzyme content assessment by isolated MoCo from the fish's internal organs and the Neurospora crassa nit-1 extract containing inactive NADPH nitrate reductase. The Mo enzyme content was calculated using a calibration curve in nM of nitrites as a product of restored NADPH reductase activity after complementation with MoCo. Here we present a robust laboratory method which can be used to assess the content of Mo-enzymes in the internal organs of fish.•Mo-enzymes play a crucial role in detoxifying toxic compounds. Therefore, it is important to develop a method to accurately determine the amount of Mo-enzymes present. Notably, the method demonstrated the efficiency and accuracy as detected high content of Mo-enzymes in the liver and intestines (P < 0.0001). The obtained data on the distribution of Mo-enzymes in the internal organs of this species correspond to that of other vertebrates. Here, we present a rapid, sensitive, accurate and accessible method.•The developed method is simple and easy to use. Importantly, the protocol does not require complex manipulations, and the equipment used is available in most laboratories. The article provides step-by-step instructions for reproducing the method.
Collapse
Affiliation(s)
- Mereke Satkanov
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
- Immanuel Kant Baltic Federal University, Higher School of Living Systems, Kaliningrad, 236041, Russia
| | - Diana Tazhibay
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Bibigul Zhumabekova
- Pavlodar Pedagogical University, Higher School of Natural Science, Pavlodar, 140002, Kazakhstan
| | - Gulmira Assylbekova
- Pavlodar Pedagogical University, Higher School of Natural Science, Pavlodar, 140002, Kazakhstan
| | | | - Zhadyrassyn Nurbekova
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Maral Kulatayeva
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Karlygash Aubakirova
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| | - Zerekbai Alikulov
- L.N. Gumilyov Eurasian National University, Department of Biotechnology and Microbiology, Astana, 010000, Kazakhstan
| |
Collapse
|
6
|
Hanneman CM, Twilton J, Hall MN, Goodwin NC, Elward JM, Lynch-Colameta T, Stahl SS. Copper-Nitroxyl-Catalyzed α-Oxygenation of Cyclic Secondary Amines Including Application to Late-Stage Functionalization. J Am Chem Soc 2024; 146:14439-14444. [PMID: 38743876 PMCID: PMC11409824 DOI: 10.1021/jacs.4c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cyclic secondary amines are prominent subunits in pharmaceutical compounds. Methods for direct functionalization of N-unprotected/unsubstituted piperidines and related heterocycles have limited precedent despite their potential to impact medicinal chemistry and organic synthesis. Herein, we report a Cu/nitroxyl co-catalyzed method for direct conversion of cyclic secondary amines to the corresponding lactams via aerobic dehydrogenation and oxidative coupling with water. The mild reaction conditions tolerate diverse functional groups, enabling application to molecules that cover broad chemical space. The method is showcased in selective functionalization of building blocks and complex molecules, including late-stage functionalization of bromodomain inhibitors.
Collapse
Affiliation(s)
- Christopher M Hanneman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jack Twilton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Melissa N Hall
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicole C Goodwin
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Jennifer M Elward
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Tessa Lynch-Colameta
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Shannon S Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Fedorova MV, Voznesensky VI, Sosnova EA, Proskurnina EV. Activity of NAD(P)H-Oxidoreductases in Ovarian Cancer. Biomedicines 2024; 12:1052. [PMID: 38791014 PMCID: PMC11117946 DOI: 10.3390/biomedicines12051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Reactive oxygen species (ROS) play an important and controversial role in carcinogenesis. Microsomal redox chains containing NADH- and NADPH-dependent oxidoreductases are among the main sites of intracellular ROS synthesis, but their role in the oxidative balance has not been fully studied. Here, we studied the activity of cytochrome b5 reductase (CYB5R) and cytochrome P450 reductase (CYPOR) in ovarian cancer tissues and cells isolated from peritoneal fluid, along with the antioxidant capacity of peritoneal fluid. We used the developed a chemiluminescence assay based on stimulation with NADH and NADPH, which reflects the activity of CYB5R and CYPOR, respectively. The activity of CYB5R and CYPOR was significantly higher in moderately and poorly differentiated ovarian adenocarcinomas compared with well-differentiated adenocarcinomas and cystadenomas. For the chemotherapy-resistant tumors, the activity of tissue CYB5R and CYPOR was lower compared to the non-resistant tumors. In the peritoneal fluid, the antioxidant capacity significantly increased in this series, benign tumors < well-differentiated < moderately and poorly differentiated adenocarcinomas, so the antioxidant excess was observed for moderately and poorly differentiated adenocarcinomas. The antioxidant capacity of peritoneal fluid and the activity of CYB5R and CYPOR of cells isolated from peritoneal fluid were characterized by a direct moderate correlation for moderately and poorly differentiated adenocarcinomas. These results indicate the significant role of NAD(P)H oxidoreductases and the antioxidant potential of peritoneal fluid in cancer biochemistry. The parameters studied are useful for diagnostics and prognostics. The developed assay can be used to analyze CYB5R and CYPOR activity in other tissues and cells.
Collapse
Affiliation(s)
- Maria V. Fedorova
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 111123 Moscow, Russia;
| | | | - Elena A. Sosnova
- Department of Obstetrics and Gynecology No. 1, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119048 Moscow, Russia;
| | | |
Collapse
|
8
|
Shimizu M, Makiguchi M, Hishinuma E, Saito S, Hiratsuka M, Yamazaki H. Rare but impaired flavin-containing monooxygenase 3 (FMO3) variants reported in a recently updated Japanese mega-databank of genome resources. Drug Metab Pharmacokinet 2024; 55:100539. [PMID: 38280279 DOI: 10.1016/j.dmpk.2023.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/18/2023] [Accepted: 11/15/2023] [Indexed: 01/29/2024]
Abstract
Genetic variants of human flavin-containing monooxygenase 3 (FMO3) were investigated using an updated Japanese population panel containing 54,000 subjects (the previous panel contained 38,000 subjects). One stop codon mutation and six amino acid-substituted FMO3 variants were newly identified in the updated databank. Of these, two substituted variants (p.Thr329Ala and p.Arg492Trp) were previously identified in compound haplotypes with p.[(Glu158Lys; Glu308Gly)] and were associated with the metabolic disorder trimethylaminuria. Three recombinant FMO3 protein variants (p.Ser137Leu, p.Ala334Val, and p.Ile426Val) expressed in bacterial membranes had similar activities toward trimethylamine N-oxygenation (∼75-125 %) as wild-type FMO3 (117 min-1); however, the recombinant novel FMO3 variant Phe313Ile showed moderately decreased FMO3 catalytic activity (∼20 % of wild-type). Because of the known deleterious effects of FMO3 C-terminal stop codons, the novel truncated FMO3 Gly184Ter variant was suspected to be inactive. To easily identify the four impaired FMO3 variants (one stop codon mutation and three amino-acid substitutions) in the clinical setting, simple confirmation methods for these FMO3 variants are proposed using polymerase chain reaction/restriction fragment length polymorphism or allele-specific PCR methods. The updated whole-genome sequence data and kinetic analyses revealed that four of the seven single-nucleotide nonsense or missense FMO3 variants had moderately or severely impaired activity toward trimethylamine N-oxygenation.
Collapse
Affiliation(s)
| | | | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Sendai, Japan
| | - Sakae Saito
- Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Sendai, Japan
| | - Masahiro Hiratsuka
- Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Sendai, Japan; Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | | |
Collapse
|
9
|
Ganouna-Cohen G, Marcouiller F, Blachot-Minassian B, Demarest M, Beauparlant CJ, Droit A, Belaidi E, Bairam A, Joseph V. Loss of testosterone induces postprandial insulin resistance and increases the expression of the hepatic antioxidant flavin-containing monooxygenases in mice exposed to intermittent hypoxia. Acta Physiol (Oxf) 2024; 240:e14089. [PMID: 38230898 DOI: 10.1111/apha.14089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/29/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
AIM We tested the hypothesis that low testosterone alters the effects of intermittent hypoxia (IH) on glucose homeostasis, hepatic oxidative stress, and transcriptomic profile in male mice. METHODS We used sham-operated or orchiectomized (ORX) mice exposed to normoxia (Nx) or IH for 2 weeks. We performed fasting insulin and glucose tolerance tests and assessed fasting and postprandial insulin resistance with the HOMA-IR. The activity of hepatic prooxidant (NADPH oxidase-NOX), antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase-SOD, Cat, GPx), lipid peroxidation (MDA concentration), and the total concentration of glutathione (GSH) were measured under postprandial conditions. mRNA sequencing and pathway enrichment analyses were used to identify hepatic genes underlying the interactions between IH and testosterone. RESULTS In Sham mice, IH improves fasting insulin sensitivity and glucose tolerance, while there are no effects of IH in ORX mice. In ORX mice, IH induces postprandial hyperinsulinemia, insulin resistance, and a prooxidant profile of enzyme activity (low SOD activity) without altering hepatic MDA and GSH content. ORX and IH altered the expression of genes involved in oxidoreductase activities, cytochromes-dependent pathways, and glutathione metabolism. Among the genes upregulated in ORX-IH mice, the flavin-containing monooxygenases (FMO) are particularly relevant since these are potent hepatic antioxidants that could help prevent overt oxidative stress in ORX-IH mice. CONCLUSION Low levels of testosterone in male mice exposed to IH induce post-prandial hyperinsulinemia and insulin resistance and determine the mechanisms by which the liver handles IH-induced oxidative stress.
Collapse
Affiliation(s)
- Gauthier Ganouna-Cohen
- Département de Pédiatrie, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - François Marcouiller
- Département de Pédiatrie, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Britanny Blachot-Minassian
- Département de Pédiatrie, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
- HP2, INSERM, U1300, Université Grenoble Alpes, Grenoble, France
| | - Maud Demarest
- Département de Pédiatrie, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Charles Joly Beauparlant
- Département de Médecine Moléculaire, Faculté de Médecine, Centre de Recherche du Centre Hospitalo-Universitaire de Québec, Québec, Quebec, Canada
| | - Arnaud Droit
- Département de Médecine Moléculaire, Faculté de Médecine, Centre de Recherche du Centre Hospitalo-Universitaire de Québec, Québec, Quebec, Canada
| | - Elise Belaidi
- HP2, INSERM, U1300, Université Grenoble Alpes, Grenoble, France
- UMR5305-LBTI, CNRS, Institut de Biologie et Chimie des Protéines, Lyon, France
| | - Aida Bairam
- Département de Pédiatrie, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Vincent Joseph
- Département de Pédiatrie, Faculté de Médecine, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
10
|
Shimizu M, Makiguchi M, Yokota Y, Shimamura E, Matsuta M, Nakamura Y, Harano M, Yamazaki H. Simple confirmation methods for rare but impaired variants of human flavin-containing monooxygenase 3 (FMO3) found in an updated genome resource databank. Drug Metab Pharmacokinet 2023; 53:100528. [PMID: 37856929 DOI: 10.1016/j.dmpk.2023.100528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023]
Abstract
Forty-seven new nonsense or missense human flavin-containing monooxygenase 3 (FMO3) variants were recently identified in an updated Japanese population reference panel. Of these, 20 rare single-nucleotide substitutions resulted in moderately or severely impaired FMO3 activity. To easily identify these 20 FMO3 variants (2 stop codon mutations, 2 frameshifts, and 16 amino-acid substitutions) in the clinical setting, simple confirmation methods for impaired FMO3 variants are proposed using polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) or allele-specific PCR methods. Using PCR-RFLP, FMO3 variants p.Arg51Gly, p.Met66Lys, p.Asn80Lys, p.Val151Glu, p.Val187fsTer25, p.Gly193Arg, p.Val283Ala, p.Asp286His, p.Val382Ala, and p.Phe451Leu were digested by the designated restriction enzymes and confirmed using reference cDNAs. In contrast, the FMO3 variants p.Gly39Val, p.Arg238Ter, p.Arg387Cys, p.Arg387His, p.Leu457Trp, and p.Met497Arg were not digested, whereas the wild type was digested. FMO3 variants p.Gly11Asp, p.Lys416fsTer72, p.Gln427Ter, and p.Thr453Pro were confirmed using allele-specific PCR systems. The previously identified FMO3 p.Arg500Ter variant has a relatively high frequency and was differentiated from p.Arg500Gln in two steps, i.e., enzyme restriction followed by allele-specific PCR, similar to the method for p.Arg387Cys and p.Arg387His. These systems should facilitate easy detection in the clinical setting of FMO3 variants in Japanese subjects susceptible to low drug clearance possibly caused by impaired FMO3 function.
Collapse
Affiliation(s)
- Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Miaki Makiguchi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yuka Yokota
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Erika Shimamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Moegi Matsuta
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yuria Nakamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Mizuki Harano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
11
|
Chen X, Li J, Yu L, Maule F, Chang L, Gallant JA, Press DJ, Raithatha SA, Hagel JM, Facchini PJ. A cane toad (Rhinella marina) N-methyltransferase converts primary indolethylamines to tertiary psychedelic amines. J Biol Chem 2023; 299:105231. [PMID: 37690691 PMCID: PMC10570959 DOI: 10.1016/j.jbc.2023.105231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/31/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Psychedelic indolethylamines have emerged as potential medicines to treat several psychiatric pathologies. Natural sources of these compounds include 'magic mushrooms' (Psilocybe spp.), plants used to prepare ayahuasca, and toads. The skin and parotid glands of certain toads accumulate a variety of specialized metabolites including toxic guanidine alkaloids, lipophilic alkaloids, poisonous steroids, and hallucinogenic indolethylamines such as DMT, 5-methoxy-DMT, and bufotenin. The occurrence of psychedelics has contributed to the ceremonial use of toads, particularly among Mesoamerican peoples. Yet, the biosynthesis of psychedelic alkaloids has not been elucidated. Herein, we report a novel indolethylamine N-methyltransferase (RmNMT) from cane toad (Rhinella marina). The RmNMT sequence was used to identify a related NMT from the common toad, Bufo bufo. Close homologs from various frog species were inactive, suggesting a role for psychedelic indolethylamine biosynthesis in toads. Enzyme kinetic analyses and comparison with functionally similar enzymes showed that recombinant RmNMT was an effective catalyst and not product inhibited. The substrate promiscuity of RmNMT enabled the bioproduction of a variety of substituted indolethylamines at levels sufficient for purification, pharmacological screening, and metabolic stability assays. Since the therapeutic potential of psychedelics has been linked to activity at serotonergic receptors, we evaluated binding of derivatives at 5-HT1A and 5-HT2A receptors. Primary amines exhibited enhanced affinity at the 5-HT1A receptor compared with tertiary amines. With the exception of 6-substituted derivatives, N,N-dimethylation also protected against catabolism by liver microsomes.
Collapse
Affiliation(s)
- Xue Chen
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Jing Li
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Lisa Yu
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Francesca Maule
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Limei Chang
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - David J Press
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | | | - Jillian M Hagel
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada
| | - Peter J Facchini
- Discovery Group, Enveric Biosciences Inc, Calgary, Alberta, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
12
|
Uehara S, Yasuda M, Higuchi Y, Yoneda N, Kawai K, Suzuki M, Yamazaki H, Suemizu H. SGX523 causes renal toxicity through aldehyde oxidase-mediated less-soluble metabolite formation in chimeric mice with humanized livers. Toxicol Lett 2023; 388:48-55. [PMID: 37806366 DOI: 10.1016/j.toxlet.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
SGX523 is a c-Met tyrosine kinase inhibitor that failed in clinical trials because of renal toxicity caused by crystal deposits in renal tubules. SGX523 is metabolized by aldehyde oxidase (AOX) in a species-dependent manner to the considerably less soluble 2-quinolinone-SGX523, which is likely involved in the clinically observed obstructive nephropathy. This study investigated the metabolism and renal toxicity of SGX523 in chimeric mice with humanized livers (humanized-liver mice). The 2-quinolinone-SGX523 formation activity was higher in humanized-liver mouse and human hepatocytes than in mouse hepatocytes. Additionally, this activity in the liver cytosolic fraction from humanized-liver mice was inhibited by the AOX inhibitors raloxifene and hydralazine. After oral SGX523 administration, higher maximum concentrations, larger areas under the plasma concentration versus time curves, and higher urinary concentrations of 2-quinolinone-SGX523 were observed in humanized-liver mice than in non-humanized mice. Serum creatinine and blood urea nitrogen levels were elevated in humanized-liver mice following repeated oral SGX523 administration. The accumulation of amorphous material in the tubules and infiltration of inflammatory cells around tubules were observed in the kidneys of humanized-liver mice after repeated oral SGX523 administration. These findings demonstrate that humanized-liver mice are useful for understanding the metabolism and toxicity of SGX523.
Collapse
Affiliation(s)
- Shotaro Uehara
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan.
| | - Masahiko Yasuda
- Pathology Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Yuichiro Higuchi
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Nao Yoneda
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Kenji Kawai
- Pathology Center, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Masami Suzuki
- Translational Research Division, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida 194-8543, Japan
| | - Hiroshi Suemizu
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kawasaki 210-0821, Japan
| |
Collapse
|
13
|
Makiguchi M, Shimizu M, Yokota Y, Shimamura E, Hishinuma E, Saito S, Hiratsuka M, Yamazaki H. Variants of Flavin-Containing Monooxygenase 3 Found in Subjects in an Updated Database of Genome Resources. Drug Metab Dispos 2023; 51:884-891. [PMID: 37041084 DOI: 10.1124/dmd.123.001310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Single-nucleotide substitutions of human flavin-containing monooxygenase 3 (FMO3) identified in the whole-genome sequences of the updated Japanese population reference panel (now containing 38,000 subjects) were investigated. In this study, two stop codon mutations, two frameshifts, and 43 amino-acid-substituted FMO3 variants were identified. Among these 47 variants, one stop codon mutation, one frameshift, and 24 substituted variants were already recorded in the National Center for Biotechnology Information database. Functionally impaired FMO3 variants are known to be associated with the metabolic disorder trimethylaminuria; consequently, the enzymatic activities of the 43 substituted FMO3 variants were investigated. Twenty-seven recombinant FMO3 variants expressed in bacterial membranes had similar activities toward trimethylamine N-oxygenation (∼75%-125%) to that of wild-type FMO3 (98 minutes-1). However, six recombinant FMO3 variants (Arg51Gly, Val283Ala, Asp286His, Val382Ala, Arg387His, and Phe451Leu) had moderately decreased (∼50%) activities toward trimethylamine N-oxygenation, and 10 recombinant FMO3 variants (Gly11Asp, Gly39Val, Met66Lys, Asn80Lys, Val151Glu, Gly193Arg, Arg387Cys, Thr453Pro, Leu457Trp, and Met497Arg) showed severely decreased FMO3 catalytic activity (<10%). Because of the known deleterious effects of FMO3 C-terminal stop codons, the four truncated FMO3 variants (Val187SerfsTer25, Arg238Ter, Lys416SerfsTer72, and Gln427Ter) were suspected to be inactive with respect to trimethylamine N-oxygenation. The FMO3 p.Gly11Asp and p.Gly193Arg variants were located within the conserved sequences of flavin adenine dinucleotide (positions 9-14) and NADPH (positions 191-196) binding sites, which are important for FMO3 catalytic function. Whole-genome sequence data and kinetic analyses revealed that 20 of the 47 nonsense or missense FMO3 variants had moderately or severely impaired activity toward N-oxygenation of trimethylaminuria. SIGNIFICANCE STATEMENT: The number of single-nucleotide substitutions in human flavin-containing monooxygenase 3 (FMO3) recorded in the expanded Japanese population reference panel database was updated. One stop mutation, FMO3 p.Gln427Ter; one frameshift (p.Lys416SerfsTer72); and 19 novel amino-acid-substituted FMO3 variants were identified, along with p.Arg238Ter, p.Val187SerfsTer25, and 24 amino-acid-substituted variants already recorded with reference SNP (rs) numbers. Recombinant FMO3 Gly11Asp, Gly39Val, Met66Lys, Asn80Lys, Val151Glu, Gly193Arg, Arg387Cys, Thr453Pro, Leu457Trp, and Met497Arg variants showed severely decreased FMO3 catalytic activity, possibly associated with the trimethylaminuria.
Collapse
Affiliation(s)
- Miaki Makiguchi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Yuka Yokota
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Erika Shimamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Eiji Hishinuma
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Sakae Saito
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Masahiro Hiratsuka
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan (M.M., M.S., Y.Y., E.S., H.Y.), Advanced Research Center for Innovations in Next-Generation Medicine and Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan (E.H., S.S., M.H.), and Graduate School of Pharmaceutical Sciences, Tohoku University and Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan (M.H.)
| |
Collapse
|
14
|
Isin EM. Unusual Biotransformation Reactions of Drugs and Drug Candidates. Drug Metab Dispos 2023; 51:413-426. [PMID: 36653118 DOI: 10.1124/dmd.121.000744] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Detailed assessment of the fate of drugs in nonclinical test species and humans is essential to ensure the safety and efficacy of medicines in patients. In this context, biotransformation of drugs and drug candidates has been an area of keen interest over many decades in the pharmaceutical industry as well as academia. Although many of the enzymes and biotransformation pathways involved in the metabolism of xenobiotics and more specifically drugs have been well characterized, each drug molecule is unique and constitutes specific challenges for the biotransformation scientist. In this mini-review written for the special issue on the occasion of the 50th Anniversary celebration of Drug Metabolism and Disposition and to celebrate contributions of F. Peter Guengerich, one of the pioneers of the drug metabolism field, recently reported "unusual" biotransformation reactions are presented. Scientific and technological advances in the "toolbox" of the biotransformation scientists are summarized. As the pharmaceutical industry continues to explore therapeutic modalities different from the traditional small molecule drugs, the new challenges confronting the biotransformation scientist as well as future opportunities are discussed. SIGNIFICANCE STATEMENT: For the biotransformation scientists, it is essential to share and be aware of unexpected biotransformation reactions so that they can increase their confidence in predicting metabolites of drugs in humans to ensure the safety and efficacy of these metabolites before the medicines reach large numbers of patients. The purpose of this review is to highlight recent observations of "unusual" metabolites so that the scientists working in the area of drug metabolism can strengthen their readiness in expecting the unexpected.
Collapse
Affiliation(s)
- Emre M Isin
- Translational Medicine, Servier, 25/27 Rue Eugène Vignat, 45000, Orléans, France
| |
Collapse
|
15
|
Gaba Y, Bhowal B, Pareek A, Singla-Pareek SL. Genomic Survey of Flavin Monooxygenases in Wild and Cultivated Rice Provides Insight into Evolution and Functional Diversities. Int J Mol Sci 2023; 24:4190. [PMID: 36835601 PMCID: PMC9960948 DOI: 10.3390/ijms24044190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023] Open
Abstract
The flavin monooxygenase (FMO) enzyme was discovered in mammalian liver cells that convert a carcinogenic compound, N-N'-dimethylaniline, into a non-carcinogenic compound, N-oxide. Since then, many FMOs have been reported in animal systems for their primary role in the detoxification of xenobiotic compounds. In plants, this family has diverged to perform varied functions like pathogen defense, auxin biosynthesis, and S-oxygenation of compounds. Only a few members of this family, primarily those involved in auxin biosynthesis, have been functionally characterized in plant species. Thus, the present study aims to identify all the members of the FMO family in 10 different wild and cultivated Oryza species. Genome-wide analysis of the FMO family in different Oryza species reveals that each species has multiple FMO members in its genome and that this family is conserved throughout evolution. Taking clues from its role in pathogen defense and its possible function in ROS scavenging, we have also assessed the involvement of this family in abiotic stresses. A detailed in silico expression analysis of the FMO family in Oryza sativa subsp. japonica revealed that only a subset of genes responds to different abiotic stresses. This is supported by the experimental validation of a few selected genes using qRT-PCR in stress-sensitive Oryza sativa subsp. indica and stress-sensitive wild rice Oryza nivara. The identification and comprehensive in silico analysis of FMO genes from different Oryza species carried out in this study will serve as the foundation for further structural and functional studies of FMO genes in rice as well as other crop types.
Collapse
Affiliation(s)
- Yashika Gaba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Bidisha Bhowal
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| |
Collapse
|
16
|
Shimizu M, Yamamoto A, Makiguchi M, Shimamura E, Yokota Y, Harano M, Yamazaki H. A family study of compound variants of flavin-containing monooxygenase 3 (FMO3) in Japanese subjects found by urinary phenotyping for trimethylaminuria. Drug Metab Pharmacokinet 2023; 50:100490. [PMID: 36889044 DOI: 10.1016/j.dmpk.2023.100490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Phenotype-gene analyses and the increasing availability of mega-databases have revealed the impaired human flavin-containing monooxygenase 3 (FMO3) variants associated with the metabolic disorder trimethylaminuria. In this study, a novel compound variant of FMO3, p.[(Val58Ile; Tyr229His)], was identified in a 1-year-old Japanese girl who had impaired FMO3 metabolic capacity (70%) in terms of urinary trimethylamine N-oxide excretion levels divided by total levels of trimethylamine and its N-oxide. One cousin in the family had the same p.[(Val58Ile); (Tyr229His)]; [(Glu158Lys; Glu308Gly)] FMO3 haplotype and had a similar FMO3 metabolic capacity (69%). In a family study, the novel p.[(Val58Ile); (Tyr229His)] compound FMO3 variant was also detected in the proband 1's mother and aunt. Another novel compound FMO3 variant p.[(Glu158Lys; Met260Lys; Glu308Gly; Ile426Thr)] was identified in a 7-year-old girl, proband 2. This novel compound FMO3 variant was inherited from her mother. Recombinant FMO3 Val58Ile; Tyr229His variant and Glu158Lys; Met260Lys; Glu308Gly; Ile426Thr variant showed moderately decreased capacities for trimethylamine N-oxygenation compared to wild-type FMO3. Analysis of trimethylaminuria phenotypes in family studies has revealed compound missense FMO3 variants that impair FMO3-mediated N-oxygenation in Japanese subjects; moreover, these variants could result in modified drug clearances.
Collapse
Affiliation(s)
- Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Akane Yamamoto
- Kobe City Medical Center General Hospital, Kobe, Hyogo, 650-0047, Japan
| | - Miaki Makiguchi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Erika Shimamura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Yuka Yokota
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Mizuki Harano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan.
| |
Collapse
|
17
|
Toselli F, Golding M, Nicolaï J, Gillent E, Chanteux H. Drug clearance by aldehyde oxidase: can we avoid clinical failure? Xenobiotica 2022; 52:890-903. [PMID: 36170034 DOI: 10.1080/00498254.2022.2129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Despite increased awareness of aldehyde oxidase (AO) as a major drug-metabolising enzyme, predicting the pharmacokinetics of its substrates remains challenging. Several drug candidates have been terminated due to high clearance, which were subsequently discovered to be AO substrates. Even retrospective extrapolation of human clearance, from models more sensitive to AO activity, often resulted in underprediction.The questions of the current work thus were: Is there an acceptable degree of in vitro AO metabolism that does not result in high in vivo human clearance? And, if so, how can this be predicted?We built an in vitro/in vivo correlation using known AO substrates, combining multiple in vitro parameters to calculate the blood metabolic clearance mediated by AO (CLbAO). This value was compared with observed blood clearance (CLb-obs), establishing cut-off CLbAO values, to discriminate between low and high CLb-obs. The model was validated using additional literature compounds, and CLb-obs was predicted in the correct category.This simple, categorical, semi-quantitative yet multi-factorial model is readily applicable in drug discovery. Further, it is valuable for high-clearance compounds, as it predicts the CLb group, rather than an exact CLb value, for the substrates of this poorly-characterised enzyme.
Collapse
Affiliation(s)
| | | | - Johan Nicolaï
- Development Science, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Eric Gillent
- Development Science, UCB Biopharma, Braine-l'Alleud, Belgium
| | - Hugues Chanteux
- Development Science, UCB Biopharma, Braine-l'Alleud, Belgium
| |
Collapse
|