1
|
Tian M, Ding X, Pang Y, Xu D, Sun Y, Xia P. Transcriptomic dose-response by UVC and heavy ion radiation reveal pathways to immune impairment. Toxicol In Vitro 2025; 108:106086. [PMID: 40419229 DOI: 10.1016/j.tiv.2025.106086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/27/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025]
Abstract
Irradiation-induced immune impairment has been linked to human immune diseases, such as myelodysplastic syndromes (MDS) and leukemia. Global molecular responses to genome instability in immune cells can be identified by using transcriptomics. However, it is hard to link the molecular mechanism to the disease outcomes in the previous mechanistic studies. Here, transcriptomic dose-responses in human CD4+ T lymphocytes exposed to ultraviolet and heavy ion radiation were revealed by identification of the gene expression patterns of differential expression genes (DEGs) and calculating the point of departure (POD) of each DEG and molecular pathway, which provided an opportunity for quantitively illustrating the biological process of irradiation-induced immune impairments. Two potential adverse outcome pathways (AOPs) to irradiation-related leukemia were identified by mapping the molecular pathways into the biological event cascades, which provided phenotypic anchoring for the toxicological mechanisms. In addition, this study also revealed that NOP14/ NOP14-AS1 could be potential biomarkers of irradiation-induced immune impairment. Our works strengthen the use of AOP network in the next-generation risk assessment of irradiation-related diseases.
Collapse
Affiliation(s)
- Mingming Tian
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, Linghai Road 1, PR China; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, Linghai Road 1, PR China
| | - Yue Pang
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, Linghai Road 1, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, Linghai Road 1, PR China.
| | - Yeqing Sun
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning 116026, Linghai Road 1, PR China
| | - Pu Xia
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China; Environmental Genomics Group, School of Biosciences, the University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Mousavi SE, Yu J, Shin HM. Exploring the neurodegenerative potential of per- and polyfluoroalkyl substances through an adverse outcome pathway network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 969:178972. [PMID: 40022984 DOI: 10.1016/j.scitotenv.2025.178972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
While emerging evidence links per- and polyfluoroalkyl substances (PFAS) to neurotoxicity, their potential role in neurodegeneration remains poorly understood. Moreover, existing neurodegeneration-related adverse outcome pathways (AOPs) available on AOP-Wiki have not yet been integrated into a unified network. To address these gaps, this study aims to develop the first neurodegeneration-related AOP network and utilize it to explore the possible contributions of long-chain legacy PFAS to neurodegeneration, specifically concerning Alzheimer's and Parkinson's diseases. A total of 74 AOPs were screened from AOP-Wiki, of which 13 neurodegeneration-related AOPs met the eligibility criteria and were incorporated into a network. We analyzed the resulting AOP network using topological parameters such as in-degree, out-degree, eccentricity, and betweenness centrality. To elucidate the mechanistic contributions of PFAS exposure to neurodegenerative pathways, we integrated evidence linking PFAS exposure to key events (KEs) within the network. The results highlighted increased intracellular calcium as the network hub with the highest connectivity followed by critical KEs such as neurodegeneration, neuronal apoptosis, oxidative stress, N-methyl-d-aspartate receptor (NMDA-R) overactivation, and mitochondrial dysfunction. Consistent with toxicological evidence, the pathways highlighted by the AOP network indicate that PFAS may adversely affect neurotransmitter systems, particularly through NMDA-R overactivation, leading to excitotoxicity. This may result in calcium dyshomeostasis, mitochondrial dysfunction, inflammatory-oxidative cascades, neuroinflammation, and neuronal cell death. By providing a mechanistic basis for understanding the neurodegenerative potential of PFAS, this study offers a crucial framework for assessing the risks associated with these chemicals which may inform future regulatory measures and public health strategies. Further experimental validation is needed to confirm the mechanistic contributions of PFAS exposure in neurodegeneration, particularly in animal models or human populations.
Collapse
Affiliation(s)
- Sayed Esmaeil Mousavi
- School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Nathan Campus, QLD 4111, Australia
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
3
|
Gao H, Zhang X, Liu Z, Yang X, Li Y, Cui M, Wang H, Chen X, Zhang W, Liu Z, Yu Y, Chen L, Li D, Xiao Y, Chen W, Wang Q. Discovery of phloridzin as a new antagonist for Di(2-ethylhexyl) phthalate-induced male reproductive toxicity based on the adverse outcome pathway network and drug-target gene set enrichment analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117740. [PMID: 39818139 DOI: 10.1016/j.ecoenv.2025.117740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP. In this study, 552 genes related to MRT induced by DEHP/MEHP were screened out from the Comparative Toxicogenomics Database (CTD) and DisGeNET database. Next, we developed a global adverse outcome pathway (AOP) network based on the existed AOP-wiki. After functional enrichment analyses and mapping to the global AOP network, we found that the increased ROS level, cell cycle arrest, and increased apoptosis are key events (KEs) involved in DEHP-mediated MRT, which was validated in TM3 Leydig cell model. Among them, cellular apoptosis is the core KE in DEHP-induced MRT via network topological analysis. Eventually, we developed a novel in silico antagonist screening platform (http://43.136.69.224:3838/wlab/) based on drug-target gene set enrichment analysis (dtGSEA version 2.0). Several potential candidates that mitigate DEHP-mediated cellular apoptosis have been screened out, including quercetin, taurine, methionine, and phloridzin. Further experimental results demonstrated that phloridzin provided the most effective protection against MEHP-induced apoptosis in TM3 cells probably through the p53 and MAPK signaling pathways. Molecular docking and molecular dynamics simulations suggest that STAT3 and RUNX1 may be important targets for phloridzin to antagonize MEHP-induced MRT. Our study provides a new approach to discover the antagonists for the toxicity of environmental contaminants based on AOP network and dtGSEA methods.
Collapse
Affiliation(s)
- Huan Gao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xue Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Ziqi Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoge Yang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yajie Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Mengxing Cui
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Han Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyu Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Weiying Zhang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhihan Liu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongjiang Yu
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Liping Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Daochuan Li
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yongmei Xiao
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qing Wang
- Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
4
|
Gao H, Zhang C, Zhu B, Geng M, Tong J, Zhan Z, Zhang Y, Wu D, Huang K, Tao F. Associating prenatal phthalate exposure with childhood autistic traits: Investigating potential adverse outcome pathways and the modifying effects of maternal vitamin D. ECO-ENVIRONMENT & HEALTH 2024; 3:425-435. [PMID: 39559191 PMCID: PMC11570402 DOI: 10.1016/j.eehl.2024.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 11/20/2024]
Abstract
The association between prenatal phthalate mixture exposure and the risk of autism spectrum disorder (ASD) in children, as well as the potential mechanism and impact of maternal vitamin D, remains unclear. We analyzed data from 3209 mother-child pairs. The associations between prenatal phthalate exposure and autistic traits in children aged 1.5, 3, 5, and 6 years were explored. Furthermore, the modifying effects of maternal vitamin D and the adverse outcome pathway, which elucidates the contribution of phthalates to ASD, were estimated. Exposure to a phthalate mixture was associated with an increased risk of ASD in children aged 1.5-6 years. For mothers with 25(OH)D deficiency, an exposure‒response relationship was observed between phthalate mixtures in early to mid-pregnancy and autistic traits in children aged 3 years. However, this association was not observed for mothers with sufficient prenatal 25(OH)D levels. The potential mechanism of action of di(2-ethylhexyl) phthalate (DEHP) exposure may involve affecting GRIN2B, inhibiting NMDAR in the postsynaptic membrane, disrupting synaptic function, and impairing learning and memory, ultimately leading to ASD development. Importantly, maternal vitamin D supplementation was demonstrated to mitigate the risk of ASD associated with phthalate exposure. Reducing phthalate exposure during pregnancy may be associated with a decreased risk of autistic traits in children. Furthermore, adequate vitamin D supplementation could potentially mitigate the impact of phthalates on these traits. Additionally, the proposed biological mechanism provides insight into how phthalate exposure may contribute to the development of ASD.
Collapse
Affiliation(s)
- Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of Biostatistics, Anhui Provincial Cancer Institute, Hefei 230022, China
| | - Beibei Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Menglong Geng
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Juan Tong
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Zixiang Zhan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yi Zhang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - De Wu
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kun Huang
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Fangbiao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei 230032, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
5
|
Cheng X, Zhang S, An J, Jia C, Zhang X, Li P, Guan Y, Yan Y, Zhao Z, Liu Y, Jing T, Huang S, He M. Association between phthalates exposure and all-cause mortality among diabetic cases: A prospective study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125008. [PMID: 39307341 DOI: 10.1016/j.envpol.2024.125008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
The aim of this study was to explore the association between phthalates (PAEs) exposure and all-cause mortality among diabetic cases, and potential molecular mechanisms of the effect. We followed 2806 diabetes cases from 2008 to the end of 2018 based on the Dongfeng-Tongji study, of which 446 cases died. We measured serum levels of six PAEs (DMP, DEP, DiBP, DnBP, BBP, and DEHP). Cox models were used to investigate the associations between PAEs and all-cause mortality. Genes related to PAEs are obtained from the Comparative Toxicogenomics Database. We constructed polygenic scores for sex hormone-binding globulin (SHBG) and testosterone, and functional SNPs for IL-6, PPARG, and GPX1 from genotyping data, and further analyzed the environment-gene interactions. The positive associations of PAEs (DMP, DiBP, DnBP, DEHP) with mortality were only observed in males but not in females. Comparing with the extreme quartile 1, the HRs (95% CI) for quartile 4 were 1.63 (0.17, 2.26) for DMP, 1.82 (1.29, 2.56) for DiBP, 1.68 (1.18, 2.40) for DnBP, 1.66 (1.17, 2.36) for DEHP. Enrichment analysis showed that PAEs-related genes were mainly associated with hormones and IL-6-related pathways. Genetic variants of SHBG, testosterone, and IL-6 modified the association between PAEs mixture and all-cause mortality. PAEs exposure are associated with all-cause mortality among diabetic cases, and PAE exposure increases the risk of all-cause mortality only in males. Effects on the hormonal system and IL6-related pathways may be potential mechanisms.
Collapse
Affiliation(s)
- Xu Cheng
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengyong Jia
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Peiwen Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuoya Zhao
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Jing
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Suli Huang
- School of Public Health, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Sahoo AK, Chivukula N, Madgaonkar SR, Ramesh K, Marigoudar SR, Sharma KV, Samal A. Leveraging integrative toxicogenomic approach towards development of stressor-centric adverse outcome pathway networks for plastic additives. Arch Toxicol 2024; 98:3299-3321. [PMID: 39097536 PMCID: PMC11402864 DOI: 10.1007/s00204-024-03825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
Plastics are widespread pollutants found in atmospheric, terrestrial and aquatic ecosystems due to their extensive usage and environmental persistence. Plastic additives, that are intentionally added to achieve specific functionality in plastics, leach into the environment upon plastic degradation and pose considerable risk to ecological and human health. Limited knowledge concerning the presence of plastic additives throughout plastic life cycle has hindered their effective regulation, thereby posing risks to product safety. In this study, we leveraged the adverse outcome pathway (AOP) framework to understand the mechanisms underlying plastic additives-induced toxicities. We first identified an exhaustive list of 6470 plastic additives from chemicals documented in plastics. Next, we leveraged heterogenous toxicogenomics and biological endpoints data from five exposome-relevant resources, and identified associations between 1287 plastic additives and 322 complete and high quality AOPs within AOP-Wiki. Based on these plastic additive-AOP associations, we constructed a stressor-centric AOP network, wherein the stressors are categorized into ten priority use sectors and AOPs are linked to 27 disease categories. We visualized the plastic additives-AOP network for each of the 1287 plastic additives and made them available in a dedicated website: https://cb.imsc.res.in/saopadditives/ . Finally, we showed the utility of the constructed plastic additives-AOP network by identifying highly relevant AOPs associated with benzo[a]pyrene (B[a]P), bisphenol A (BPA), and bis(2-ethylhexyl) phthalate (DEHP) and thereafter, explored the associated toxicity pathways in humans and aquatic species. Overall, the constructed plastic additives-AOP network will assist regulatory risk assessment of plastic additives, thereby contributing towards a toxic-free circular economy for plastics.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Nikhil Chivukula
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Shreyes Rajan Madgaonkar
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India
| | - Kundhanathan Ramesh
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India
| | | | - Krishna Venkatarama Sharma
- Ministry of Earth Sciences, National Centre for Coastal Research, Government of India, Pallikaranai, Chennai, 600100, India
| | - Areejit Samal
- Computational Biology Group, The Institute of Mathematical Sciences (IMSc), CIT Campus, Taramani, Chennai, 600113, India.
- Homi Bhabha National Institute (HBNI), Mumbai, 400094, India.
| |
Collapse
|
7
|
Yang Y, Zhang C, Gao H. Potential mechanisms and modifications of dietary antioxidants on the associations between co-exposure to plastic additives and diabetes. Nutr Diabetes 2024; 14:72. [PMID: 39227562 PMCID: PMC11372220 DOI: 10.1038/s41387-024-00330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The association of plastic additive mixture exposure with diabetes and the modifying effects of dietary antioxidants are unclear. METHODS The data from the NHANES 2011-2018 were retrieved, and phthalates and organophosphate esters (OPEs) were selected as exposures. The coexposure effect was analyzed by the environmental risk score (ERS) and quantile g-computation. To mitigate any potential bias caused by using the internal weights, another version of ERS was constructed using the cross-validation approach. The level of dietary antioxidant intake was measured by the composite dietary antioxidant index (CDAI). The biological mechanism underlying the association was studied by the adverse outcome pathway (AOP) framework. RESULTS Fifteen chemicals (ten phthalates and five OPEs) were measured in 2824 adult participants. A higher ERS was significantly associated with an increased risk of diabetes (OR per 1-SD increment of ERS: 1.25, 95% CI: 1.13-1.39). This association apparently interacted with the CDAI level (ORlow: 1.83, 95% CI: 1.37-2.55; ORhigh: 1.28, 95% CI: 1.15-1.45; Pinteraction = 0.038). Moreover, quantile g-computation also revealed higher level of combined exposure was positively associated with diabetes (OR: 1.27, 95% CI: 1.05-2.87), and the addition of dietary antioxidants showed a null association (OR: 1.09, 95% CI: 0.85-2.34). The AOP study identified TCPP and TCEP as key chemicals that cause aberrant glucose metabolism and insulin signaling pathways and result in diabetes. CONCLUSIONS Coexposure to phthalates and OPEs is positively associated with diabetes, where an antioxidative diet plays a modifying role. Several potential mechanisms have been proposed by AOP framework.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prevention and Health Care, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, 321000, Zhejiang, China
| | - Cheng Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China
- Department of Biostatistics, Anhui Provincial Cancer Institute, No.218 Jixi Road, Hefei, 230022, Anhui, China
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
8
|
Stanic B, Kokai D, Opacic M, Pogrmic-Majkic K, Andric N. Transcriptome-centric approach to the derivation of adverse outcome pathway networks of vascular dysfunction after long-term low-level exposure of human endothelial cells to dibutyl phthalate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174918. [PMID: 39038667 DOI: 10.1016/j.scitotenv.2024.174918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Dibutyl phthalate (DBP) is an endocrine disruptor that adversely affects reproduction; however, evidence suggests it can also impact other systems, including vascular function. The mechanisms underlying DBP-induced vascular dysfunction, particularly after long-term low-level exposure of endothelial cells to this phthalate, remain largely unknown. To address this gap, we used experimentally derived data on differentially expressed genes (DEGs) obtained after 12 weeks of exposure of human vascular endothelial cells EA.hy926 to the concentrations of DBP to which humans are routinely exposed (10-9 M, 10-8 M, and 10-7 M) and various computational tools and manual data curation to build the first adverse outcome pathway (AOP) network relevant to DBP-induced vascular toxicity. DEGs were used to infer transcription factors (molecular initiating events) and molecular functions and biological processes (key events, KEs) using the Enrichr database. The AOP-helpFinder 2.0, an artificial intelligence-based web tool, was used to link genes and KEs and assign confidence scores to co-occurred terms. We constructed the AOP networks using Cytoscape and then manually arranged KEs to depict the flow of mechanistic information across different levels of network organization. An AOP network was created for each DBP concentration, revealing several distinct high-confidence subnetworks that could be involved in DBP-induced vascular toxicity: the insulin-like growth factor subnetwork for 10-7 M DBP, the CXCL8-dependent chemokine subnetwork for 10-8 M DBP, and the fatty acid subnetwork for 10-9 M DBP. We also developed an AOP network providing a mechanistic insight into the dose-dependent effects of DBP in endothelial cells leading to vascular dysfunction. In summary, we present novel putative AOP networks describing the mechanistic flow of information involved in DBP-induced vascular dysfunction in a long-term low-level exposure scenario.
Collapse
Affiliation(s)
- Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Dunja Kokai
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | - Marija Opacic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia
| | | | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Serbia.
| |
Collapse
|
9
|
Xu B, Zhang Z, Yang H, Ding L, Dai W, Liu L, Du X, Fu X, Pei X. A novel perspective on di-hexyl phthalate (2-ethylhexyl)-induced reproductive toxicity in females: Lipopolysaccharide synergizes with mono-2-ethylhexyl ester to cause inflammatory apoptosis rather than autophagy in ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116319. [PMID: 38615642 DOI: 10.1016/j.ecoenv.2024.116319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/04/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Di-hexyl phthalate (2-ethylhexyl) (DEHP) has been confirmed to cause female reproductive toxicity in humans and model animals by affecting the survival of ovarian granulosa cells (GCs), but the interrelationships between DEHP's on autophagy, apoptosis, and inflammation in GCs are not clear. Our previous study demonstrated that DEHP exposure resulted in the disturbance of intestinal flora associated with serum LPS release, which in turn led to impaired ovarian function. LPS has also been shown to determine cell fate by modulating cellular autophagy, apoptosis, and inflammation. Therefore, this study investigated the role and link between LPS and autophagy, apoptosis, and inflammation of GCs in DEHP-induced ovarian injury. Here, we constructed an in vivo injury model by continuous gavage of 0-1500 mg/kg of DEHP in female mice for 30 days and an in vitro injury model by treatment of human ovarian granulosa cells (KGN) cells with mono-2- ethylhexyl ester (MEHP, an active metabolite of DEHP in vivo). In addition, the expression of relevant pathway molecules was detected by immunohistochemistry, immunofluorescence, qRT-PCR, and Western blotting after the addition of the autophagy inhibitor 3-methyladenine (3-MA), the apoptosis inhibitor Z-VAD- FMK and the NF-κB inhibitor BAY11-7082. The current study found that autophagy and apoptosis were significantly activated in GCs of DEHP-induced atretic follicles in vivo and found that MEHP-induced KGN cells autophagy and apoptosis were independent and potentially cytotoxic of each other in vitro. Further studies confirmed that DEHP exposure resulted in LPS release from the intestinal tract and entering the ovary, thereby participating in DEHP-induced inflammation of GCs. In addition, we found that exogenous LPS synergized with MEHP could activate the NF-κB signaling pathway to induce inflammation and apoptosis of GCs in a relatively prolonged exposure condition. Meanwhile, inhibition of inflammatory activation could rescue apoptosis and estrogen secretion function of GCs induced by MEHP combined with LPS. These results indicated that the increased LPS influenced by DEHP might cooperate with MEHP to induce inflammatory apoptosis of GCs, an important cause of ovarian injury in mice.
Collapse
Affiliation(s)
- Bo Xu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Zhen Zhang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Hong Yang
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Liyang Ding
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xing Du
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China
| | - Xufeng Fu
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- School of Basic Medical Science, Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Key Laboratory of Reproduction and Genetics of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
10
|
Singh J, Jangra A, Kumar D. Recent advances in toxicological research of di-(2-ethylhexyl)-phthalate: Focus on endoplasmic reticulum stress pathway. CHEMOSPHERE 2024; 356:141922. [PMID: 38593956 DOI: 10.1016/j.chemosphere.2024.141922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
The plasticizer di-(2-ethylhexyl)-phthalate (DEHP) is the most significant phthalate in production, usage, and environmental occurrence. DEHP is found in products such as personal care products, furniture materials, cosmetics, and medical devices. DEHP is noncovalently bind with plastic therefore, repeated uses lead to leaching out of it. Exposure to DEHP plasticizers leads to toxicity in essential organs of the body through various mechanisms. The main objective of this review article is to focus on the DEHP-induced endoplasmic reticulum (ER) stress pathway implicated in the testis, brain, lungs, kidney, heart, liver, and other organs. Not only ER stress, PPAR-related pathways, oxidative stress and inflammation, Ca2+ homeostasis disturbances in mitochondria are also identified as the relative mechanisms. ER is involved in various critical functions of the cell such as Protein synthesis, protein folding, calcium homeostasis, and lipid peroxidation but, DEHP exposure leads to augmentation of misfolded/unfolded protein. This review complies with various recently reported DEHP-induced toxicity studies and some pharmacological interventions that have been shown to be effective through ER stress pathway. DEHP exposure does assess health risks and vulnerability to populations across the globe. This study offers possible targets and approaches for addressing various DEHP-induced toxicity.
Collapse
Affiliation(s)
- Jiten Singh
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India
| | - Ashok Jangra
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| | - Dinesh Kumar
- Department of Pharmaceutical Sciences, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India.
| |
Collapse
|
11
|
Sahoo AK, Chivukula N, Ramesh K, Singha J, Marigoudar SR, Sharma KV, Samal A. An integrative data-centric approach to derivation and characterization of an adverse outcome pathway network for cadmium-induced toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170968. [PMID: 38367714 DOI: 10.1016/j.scitotenv.2024.170968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/19/2024]
Abstract
Cadmium is a prominent toxic heavy metal that contaminates both terrestrial and aquatic environments. Owing to its high biological half-life and low excretion rates, cadmium causes a variety of adverse biological outcomes. Adverse outcome pathway (AOP) networks were envisioned to systematically capture toxicological information to enable risk assessment and chemical regulation. Here, we leveraged AOP-Wiki and integrated heterogeneous data from four other exposome-relevant resources to build the first AOP network relevant for inorganic cadmium-induced toxicity. From AOP-Wiki, we filtered 309 high confidence AOPs, identified 312 key events (KEs) associated with inorganic cadmium from five exposome-relevant databases using a data-centric approach, and thereafter, curated 30 cadmium relevant AOPs (cadmium-AOPs). By constructing the undirected AOP network, we identified a large connected component of 18 cadmium-AOPs. Further, we analyzed the directed network of 59 KEs and 82 key event relationships (KERs) in the largest component using graph-theoretic approaches. Subsequently, we mined published literature using artificial intelligence-based tools to provide auxiliary evidence of cadmium association for all KEs in the largest component. Finally, we performed case studies to verify the rationality of cadmium-induced toxicity in humans and aquatic species. Overall, cadmium-AOP network constructed in this study will aid ongoing research in systems toxicology and chemical exposome.
Collapse
Affiliation(s)
- Ajaya Kumar Sahoo
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Nikhil Chivukula
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India
| | | | - Jasmine Singha
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai, India
| | | | - Krishna Venkatarama Sharma
- National Centre for Coastal Research, Ministry of Earth Sciences, Government of India, Pallikaranai, Chennai, India
| | - Areejit Samal
- The Institute of Mathematical Sciences (IMSc), Chennai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| |
Collapse
|
12
|
Zilliacus J, Draskau MK, Johansson HKL, Svingen T, Beronius A. Building an adverse outcome pathway network for estrogen-, androgen- and steroidogenesis-mediated reproductive toxicity. FRONTIERS IN TOXICOLOGY 2024; 6:1357717. [PMID: 38601197 PMCID: PMC11005472 DOI: 10.3389/ftox.2024.1357717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction: Adverse Outcome Pathways (AOPs) can support both testing and assessment of endocrine disruptors (EDs). There is, however, a need for further development of the AOP framework to improve its applicability in a regulatory context. Here we have inventoried the AOP-wiki to identify all existing AOPs related to mammalian reproductive toxicity arising from disruption to the estrogen, androgen, and steroidogenesis modalities. Core key events (KEs) shared between relevant AOPs were also identified to aid in further AOP network (AOPN) development. Methods: A systematic approach using two different methods was applied to screen and search the entire AOP-wiki library. An AOPN was visualized using Cytoscape. Manual refinement was performed to remove AOPS devoid of any KEs and/or KERs. Results: Fifty-eight AOPs relevant for mammalian reproductive toxicity were originally identified, with 42 AOPs included in the final AOPN. Several of the KEs and KE relationships (KERs) described similar events and were thus merged to optimize AOPN construction. Sixteen sub-networks related to effects on hormone levels or hormone activity, cancer outcomes, male and female reproductive systems, and overall effects on fertility and reproduction were identified within the AOPN. Twenty-six KEs and 11 KERs were identified as core blocks of knowledge in the AOPN, of which 19 core KEs are already included as parameters in current OECD and US EPA test guidelines. Discussion: The AOPN highlights knowledge gaps that can be targeted for further development of a more complete AOPN that can support the identification and assessment of EDs.
Collapse
Affiliation(s)
- Johanna Zilliacus
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Monica K. Draskau
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Sukur N, Milošević N, Pogrmic-Majkic K, Stanic B, Andric N. Predicting chemicals' toxicity pathway of female reproductive disorders using AOP7 and deep neural networks. Food Chem Toxicol 2023; 180:114013. [PMID: 37683992 DOI: 10.1016/j.fct.2023.114013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Experimental evidence shows that certain chemicals, particularly endocrine disrupting chemicals, may negatively affect the female reproductive system, thereby lowering women's fertility. However, humans are constantly exposed to a number of different chemicals with limited or no experimental data regarding their effect and the mechanism of action in the female reproductive system. To predict chemical hazards to the female reproductive system, we used a previously defined adverse outcome pathway (AOP) that links activation of the peroxisome proliferator-activated receptor γ to the reproductive toxicity in adult females (AOP7) and the Convolutional Deep Neural Network models that produce meaningful predictions when trained on a significant amount of data. The models trained using CompTox assays with intended molecular and biological targets corresponding to AOP7 achieved high performance (over 90% validation accuracy). The integration of AOP7 and Deep Neural Network identified chemicals that could negatively affect female reproduction through the mechanism described in AOP7. We provide a solution to quickly analyze the data and produce machine learning models to identify potentially active chemicals in the female reproductive system. Although we focused on the female reproductive system, this approach could be valid for a number of other chemicals and AOPs if the right data exist.
Collapse
Affiliation(s)
- Nataša Sukur
- University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg Dositeja Obradovica 4, Novi Sad, 21000, Serbia.
| | - Nemanja Milošević
- University of Novi Sad, Faculty of Sciences, Department of Mathematics and Informatics, Trg Dositeja Obradovica 4, Novi Sad, 21000, Serbia
| | - Kristina Pogrmic-Majkic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, 21000, Serbia
| | - Bojana Stanic
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, 21000, Serbia
| | - Nebojsa Andric
- University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovica 2, Novi Sad, 21000, Serbia
| |
Collapse
|
14
|
Davis AP, Wiegers TC, Wiegers J, Wyatt B, Johnson RJ, Sciaky D, Barkalow F, Strong M, Planchart A, Mattingly CJ. CTD tetramers: a new online tool that computationally links curated chemicals, genes, phenotypes, and diseases to inform molecular mechanisms for environmental health. Toxicol Sci 2023; 195:155-168. [PMID: 37486259 PMCID: PMC10535784 DOI: 10.1093/toxsci/kfad069] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
The molecular mechanisms connecting environmental exposures to adverse endpoints are often unknown, reflecting knowledge gaps. At the Comparative Toxicogenomics Database (CTD), we developed a bioinformatics approach that integrates manually curated, literature-based interactions from CTD to generate a "CGPD-tetramer": a 4-unit block of information organized as a step-wise molecular mechanism linking an initiating Chemical, an interacting Gene, a Phenotype, and a Disease outcome. Here, we describe a novel, user-friendly tool called CTD Tetramers that generates these evidence-based CGPD-tetramers for any curated chemical, gene, phenotype, or disease of interest. Tetramers offer potential solutions for the unknown underlying mechanisms and intermediary phenotypes connecting a chemical exposure to a disease. Additionally, multiple tetramers can be assembled to construct detailed modes-of-action for chemical-induced disease pathways. As well, tetramers can help inform environmental influences on adverse outcome pathways (AOPs). We demonstrate the tool's utility with relevant use cases for a variety of environmental chemicals (eg, perfluoroalkyl substances, bisphenol A), phenotypes (eg, apoptosis, spermatogenesis, inflammatory response), and diseases (eg, asthma, obesity, male infertility). Finally, we map AOP adverse outcome terms to corresponding CTD terms, allowing users to query for tetramers that can help augment AOP pathways with additional stressors, genes, and phenotypes, as well as formulate potential AOP disease networks (eg, liver cirrhosis and prostate cancer). This novel tool, as part of the complete suite of tools offered at CTD, provides users with computational datasets and their supporting evidence to potentially fill exposure knowledge gaps and develop testable hypotheses about environmental health.
Collapse
Affiliation(s)
- Allan Peter Davis
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Thomas C Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Jolene Wiegers
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Brent Wyatt
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Robin J Johnson
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Daniela Sciaky
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Fern Barkalow
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Melissa Strong
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
15
|
Stanic B, Milošević N, Sukur N, Samardzija Nenadov D, Fa Nedeljkovic S, Škrbić S, Andric N. An in silico toxicogenomic approach in constructing the aflatoxin B1-mediated regulatory network of hub genes in hepatocellular carcinoma. Toxicol Mech Methods 2023; 33:552-562. [PMID: 36978281 DOI: 10.1080/15376516.2023.2196686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023]
Abstract
Aflatoxin B1 (AFB1) can cause hepatocellular carcinoma (HCC) through a mutagenic mode of action but can also lead to global changes in gene expression; however, the AFB1 network of molecular pathways involved in HCC is not known. Here, we used toxicogenomic data from human liver cells exposed to AFB1 to infer the network of AFB1-responsive molecular pathways involved in HCC. The following computational tools: STRING, MCODE, cytoHubba, iRegulon, kinase enrichment tool KEA3, and DAVID were used to identify protein-protein interaction network, hub genes, transcription factors (TFs), upstream kinases, and biological processes (BPs). Predicted molecular events were validated with an external dataset, whereas the hub genes in HCC were validated using the UALCAN database. The results revealed an association between AFB1 and the hub genes involved in the cell cycle. We identified TFs that regulate the hub genes and linked them with upstream kinases including cyclin-dependent kinases, mitogen-activated protein kinase 1, and AKT. This approach enabled the construction of the AFB1-mediated regulatory network consisting of upstream kinases, TFs, hub genes, and BPs, thus revealing the signaling hierarchy and information flow that may contribute to AFB1-induced HCC. This could be a useful tool in predicting the molecular mechanisms involved in chemical-induced diseases when available toxicogenomic data exist.
Collapse
Affiliation(s)
- Bojana Stanic
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| | - Nemanja Milošević
- Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
| | - Nataša Sukur
- Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
| | | | | | - Srđan Škrbić
- Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia
| | - Nebojsa Andric
- Department of Biology and Ecology, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
16
|
Shi CF, Han F, Jiang X, Zhang Z, Li Y, Wang J, Sun S, Liu JY, Cao J. Benzo[b]fluoranthene induces male reproductive toxicity and apoptosis via Akt-Mdm2-p53 signaling axis in mouse Leydig cells: Integrating computational toxicology and experimental approaches. Food Chem Toxicol 2023; 179:113941. [PMID: 37473983 DOI: 10.1016/j.fct.2023.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
This study aims to explore the male reproductive toxicity of Benzo[b]fluoranthene (BbF) and related mechanisms. The results of computational toxicology analysis indicated male reproductive toxicity of BbF was related to apoptosis of Leydig cells and that Akt/p53 pathway might play a key role. In experiments, BbF induced testosterone decline, decreased concentration and motility of sperm and aggravated testicular pathological injury in mice. Besides, BbF led to apoptosis in Leydig cells, and decreased expressions of p-Akt and Bcl2, while improving the expressions of p53, Bax and Cleaved Caspase-3 in vivo and in vitro. Further, compared with BbF group, Akt activator SC79 significantly reduced cell apoptosis rate, improved cell viability, promoted the expressions of p-Akt and p-Mdm2, and reversed the above molecular expressions. Similarly, p53 inhibitor Pifithrin-α also significantly enhanced the cell vitality, alleviated the apoptosis of TM3 cells induced by BbF, and decreased the expressions of Bax and Cleaved Caspase-3, with the up-regulation of Bcl2. To sum up, by inhibiting Akt-Mdm2 signaling, BbF activated the p53-mediated mitochondrial apoptosis pathway, further inducing the apoptosis of Leydig cells, therefore resulting in testosterone decline and male reproductive damage. Besides, this study provided a valid mode integrating computational toxicology and experimental approaches in toxicity testing.
Collapse
Affiliation(s)
- Chao-Feng Shi
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhonghao Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingqing Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiankang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shengqi Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
17
|
Li K, Cui K, Wang Q. Adverse outcome pathway network approach to identify endocrine disruptor-induced reproductive toxicity. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
18
|
Li Y, Yao Y, Xiao N, Liu Y, Du Y, Liu M, Zhang Q, Zhao H, Zhang T, Zhang H, Wang L, Luo H, Zhang Y, Sun H. The association of serum phthalate metabolites with biomarkers of ovarian reserve in women of childbearing age. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113909. [PMID: 35999756 DOI: 10.1016/j.ecoenv.2022.113909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are widely used plasticizers drawing increasing concern due to reproductive toxicity. However, studies on serum PAEs metabolites (mPAEs) and their associations with human ovarian function remain very scarce. In this study, from April 2019 to August 2020, a total of 297 women of childbearing age were recruited in Tianjin, China. Eleven mPAEs were analyzed in serum samples and eight mPAEs were detected at frequencies > 65% with median concentrations of 0.43-15.3 ng/mL. In multinomial logistic analysis, an increase in serum mono (2-isobutyl) phthalate (miBP) was associated with decline in antral follicle count (AFC) (OR=1.26, 95% CI: 0.99, 1.61) and 5-mono-(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP) was significantly associated with AFC increase (OR=1.43, 95% CI: 1.06, 1.92), which were aligned with the associations found between mPAEs and AMH through generalized linear regression. In multiple linear regression models, per 10% increase in serum mono (2-ethylhexyl) phthalate (mEHP), mono (2-ethyl-5-oxohexyl) phthalate (mEOHP) (oxo-mEHP), and principal component 1 featured for high concentrations of mono-n-butyl phthalate (mBP), miBP and mEHP were associated with 0.15 (95% CI: -0.29, -0.02), 0.01 (95% CI: -0.01, 0.00) and 0.01 (95% CI: -0.02, 0.00) ln-unit decrease in estradiol (E2) levels, respectively, while mono-[(2-carboxymethyl) hexyl] phthalate (mCMHP) (carboxymethyl-mEHP) was positively associated with 0.05 ln-unit increase of E2 (95% CI: 0.02, 0.08). The observed negative associations between mPAEs and the Anti-Müllerian hormone (AMH) also aligned with the change in AFC. Generalized linear regression also revealed nonlinear associations between mono-ethyl phthalate (mEP), mCMHP and follicle-stimulating hormone (FSH). Overall, serum mEHP and its metabolites were negatively associated with E2. miBP was negatively associated with AFC. The nonlinear associations between mPAEs and FSH, and AMH need further study.
Collapse
Affiliation(s)
- Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yongrui Du
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Min Liu
- Tianjin Medical University, Tianjin 300070, China
| | - Qiuyue Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huajing Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China.
| | - Yunshan Zhang
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|