1
|
Masenga SK, Desta S, Hatcher M, Kirabo A, Lee DL. How PPAR-alpha mediated inflammation may affect the pathophysiology of chronic kidney disease. Curr Res Physiol 2024; 8:100133. [PMID: 39665027 PMCID: PMC11629568 DOI: 10.1016/j.crphys.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/13/2024] Open
Abstract
Chronic kidney disease (CKD) is a major risk factor for death in adults. Inflammation plays a role in the pathogenesis of CKD, but the mechanisms are poorly understood. Peroxisome proliferator-activated receptor alpha (PPAR-α) is a nuclear receptor and one of the three members (PPARα, PPARβ/δ, and PPARγ) of the PPARs that plays an important role in ameliorating pathological processes that accelerate acute and chronic kidney disease. Although other PPARs members are well studied, the role of PPAR-α is not well described and its role in inflammation-mediated chronic disease is not clear. Herein, we review the role of PPAR-α in chronic kidney disease with implications for the immune system.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Zambia
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Selam Desta
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Mark Hatcher
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dexter L. Lee
- Department of Physiology and Biophysics, College of Medicine, Howard University, Washington, DC, USA
| |
Collapse
|
2
|
Bindal P, Kumar V, Kapil L, Singh C, Singh A. Therapeutic management of ischemic stroke. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2651-2679. [PMID: 37966570 DOI: 10.1007/s00210-023-02804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Stroke is the third leading cause of years lost due to disability and the second-largest cause of mortality worldwide. Most occurrences of stroke are brought on by the sudden occlusion of an artery (ischemic stroke), but sometimes they are brought on by bleeding into brain tissue after a blood vessel has ruptured (hemorrhagic stroke). Alteplase is the only therapy the American Food and Drug Administration has approved for ischemic stroke under the thrombolysis category. Current views as well as relevant clinical research on the diagnosis, assessment, and management of stroke are reviewed to suggest appropriate treatment strategies. We searched PubMed and Google Scholar for the available therapeutic regimes in the past, present, and future. With the advent of endovascular therapy in 2015 and intravenous thrombolysis in 1995, the therapeutic options for ischemic stroke have expanded significantly. A novel approach such as vagus nerve stimulation could be life-changing for many stroke patients. Therapeutic hypothermia, the process of cooling the body or brain to preserve organ integrity, is one of the most potent neuroprotectants in both clinical and preclinical contexts. The rapid intervention has been linked to more favorable clinical results. This study focuses on the pathogenesis of stroke, as well as its recent advancements, future prospects, and potential therapeutic targets in stroke therapy.
Collapse
Affiliation(s)
- Priya Bindal
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Punjab, India.
| |
Collapse
|
3
|
Gao J, Gu Z. The Role of Peroxisome Proliferator-Activated Receptors in Kidney Diseases. Front Pharmacol 2022; 13:832732. [PMID: 35308207 PMCID: PMC8931476 DOI: 10.3389/fphar.2022.832732] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors. Accumulating evidence suggests that PPARs may play an important role in the pathogenesis of kidney disease. All three members of the PPAR subfamily, PPARα, PPARβ/δ, and PPARγ, have been implicated in many renal pathophysiological conditions, including acute kidney injury, diabetic nephropathy, and chronic kidney disease, among others. Emerging data suggest that PPARs may be potential therapeutic targets for renal disease. This article reviews the physiological roles of PPARs in the kidney and discusses the therapeutic utility of PPAR agonists in the treatment of kidney disease.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Nephrology, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Zhaoyan Gu
- Department of Endocrinology, Second Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Zhaoyan Gu,
| |
Collapse
|
4
|
PGC-1 α Protects against Hepatic Ischemia Reperfusion Injury by Activating PPAR α and PPAR γ and Regulating ROS Production. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6677955. [PMID: 34104311 PMCID: PMC8159639 DOI: 10.1155/2021/6677955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/05/2021] [Accepted: 04/26/2021] [Indexed: 01/19/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) α and γ have been shown to be protective in hepatic ischemia/reperfusion (I/R) injury. However, the precise role of PPARγ coactivator-1α (PGC-1α), which can coactivate both of these receptors, in hepatic I/R injury, remains largely unknown. This study was designed to test our hypothesis that PGC-1α is protective during hepatic I/R injury in vitro and in vivo. Our results show that endogenous PGC-1α is basally expressed in normal livers and is moderately increased by I/R. Ectopic PGC-1α protects against hepatic I/R and hepatocyte anoxia/reoxygenation (A/R) injuries, whereas knockdown of endogenous PGC-1α aggravates such injuries, as evidenced by assessment of the levels of serum aminotransferases and inflammatory cytokines, necrosis, apoptosis, cell viability, and histological examination. The EMSA assay shows that the activation of PPARα and PPARγ is increased or decreased by the overexpression or knockdown of PGC-1α, respectively, during hepatic I/R and hepatocyte A/R injuries. In addition, the administration of specific antagonists of either PPARα (MK886) or PPARγ (GW9662) can effectively decrease the protective effect of PGC-1α against hepatic I/R and hepatocyte A/R injuries. We also demonstrate an important regulatory role of PGC-1α in reactive oxygen species (ROS) metabolism during hepatic I/R, which is correlated with the induction of ROS-detoxifying enzymes and is also dependent on the activations of PPARα and PPARγ. These data demonstrate that PGC-1α protects against hepatic I/R injury, mainly by regulating the activation of PPARα and PPARγ. Thus, PGC-1α may be a promising therapeutic target for the protection of the liver against I/R injury.
Collapse
|
5
|
Zhou H, Sun J, Zhong W, Pan X, Liu C, Cheng F, Wang P, Rao Z. Dexmedetomidine preconditioning alleviated murine liver ischemia and reperfusion injury by promoting macrophage M2 activation via PPARγ/STAT3 signaling. Int Immunopharmacol 2020; 82:106363. [PMID: 32145512 DOI: 10.1016/j.intimp.2020.106363] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/05/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although a protective role of dexmedetomidine in liver ischemia and reperfusion (IR) injury has been reported, the underlying mechanism remains to be determined. The aim of this study is to analyze the effects of dexmedetomidine on the regulation of macrophage innate immune activation during liver IR. METHODS Mice were randomly divided into dexmedetomidine preconditioning (DEX) and phosphate buffered saline vehicle control (VEH) groups. A murine 70% warm liver IR model was used, and liver injury and intrahepatic inflammation was compared between groups. Bone marrow-derived macrophages (BMDMs) were stimulated with LPS in the presence or absence of dexmedetomidine. The inflammatory cytokine production was measured, and the macrophage M1/M2 polarization was determined in different groups. The underlying mechanism of dexmedetomidine in regulating macrophage M2 activation was also analyzed. RESULTS Compared to mice observed in the control group, mice in the DEX group showed reduced liver injury and diminished proinflammatory immune responses in livers post IR. In vitro, dexmedetomidine pretreatment promoted BMDMs M2 activation, as evidenced by increased Arg1 and Mrc1 gene induction, decreased iNOS gene induction, inhibited phosphorated-signal transducer and activator of transcription 1 (p-STAT1) but enhanced p-STAT6 expression, much lower levels of proinflammatory TNF-α and IL-6, and higher levels of anti-inflammatory IL-10 cytokine secretion. Signaling pathway analysis revealed that peroxisome proliferator-activated receptor-γ (PPARγ)/ STAT3 activation was upregulated in BMDMs with dexmedetomidine pretreatment. Furthermore, PPARγ knockdown by siRNA not only inhibited STAT3 activation but also abrogated the promotion effects of macrophage M2 activation in BMDMs pretreated with dexmedetomidine. Finally, in vivo PPARγ inhibition in macrophages by siRNA significantly increased liver IR injury and intrahepatic inflammation in mice from the Dex group, with no significant effect in the VEH group. CONCLUSIONS Our results indicate that dexmedetomidine preconditioning inhibited intrahepatic proinflammatory innate immune activation by promoting macrophage M2 activation in a PPARγ/STAT3 dependent manner. Our results demonstrate a novel innate immune regulatory mechanism by dexmedetomidine preconditioning during liver IR injury.
Collapse
Affiliation(s)
- Haoming Zhou
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Southeast University. Nanjing, China
| | - Weizhe Zhong
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiongxiong Pan
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cunming Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Cheng
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ping Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Zhuqing Rao
- Department of Anesthesiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Lin CM, Tsai JT, Chang CK, Cheng JT, Lin JW. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4709-17. [PMID: 26316709 PMCID: PMC4544623 DOI: 10.2147/dddt.s86616] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Decrease of peroxisome proliferator-activated receptors-δ (PPARδ) expression has been observed after spinal cord injury (SCI). Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application. METHODS In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage. RESULTS Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI. CONCLUSION The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.
Collapse
Affiliation(s)
- Chien-Min Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Chen Kuei Chang
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan
| | - Jia-Wei Lin
- Department of Neurosurgery, Shuang Ho Hospital-Taipei Medical University, Tainan City, Taiwan
| |
Collapse
|
7
|
Pang T, Kaufman A, Choi J, Gill A, Drummond M, Hugh T, Samra J. Peroxisome proliferator-activated receptor-α staining is associated with worse outcome in colorectal liver metastases. Mol Clin Oncol 2014; 3:308-316. [PMID: 25798259 DOI: 10.3892/mco.2014.482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/09/2014] [Indexed: 01/01/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are a family of nuclear receptors involved in lipid metabolism and liver response to injury. We hypothesised that differences in the expression of PPARs may reflect differences in the cellular microenvironment of the liver and, consequently, in the behaviour of colorectal liver metastases. Of the 145 patients who underwent hepatectomy for colorectal liver metastases between 1998 and 2007, 103 had adequate tissue for PPAR staining and histological re-evaluation. The histological characteristics evaluated included sinusoidal dilatation, perisinusoidal fibrosis, ballooning and steatosis. PPAR- α and-γ staining was performed and the results were correlated with clinical and survival data. Lobular inflammation and sinusoidal dilatation were the most common histopathological abnormalities. A total of 50% of the patients were PPAR- α-negative and 34% were PPAR- γ-negative. More patients exhibited lobular inflammation in the PPAR- α -positive group (P=0.023) compared to patients with negative PPAR- α staining, as seen on the multivariate analysis. PPAR- γpositivity was associated with oxaliplatin use, surgical margins ≥1 mm and a trend towards a lesser degree of fibrosis. The median follow-up in this cohort of patients was 48 months. Patients with PPAR- α staining had a worse overall survival (median, 36 vs. 79 months, P=0.037) compared to those with no PPAR- α staining. There was no correlation between PPAR- α or-γpositivity and disease-free survival. In conclusion, PPAR- α staining is associated with lobular inflammation and worse overall survival in patients with colorectal liver metastases. The exact mechanism underlying this finding remains unclear and further research into the diagnostic and therapeutic implications is required.
Collapse
Affiliation(s)
- Tony Pang
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital ; Northern Clinical School, University of Sydney
| | - Antony Kaufman
- Department of Anatomical Pathology, Royal North Shore Hospital
| | - Julian Choi
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital
| | - Anthony Gill
- Northern Clinical School, University of Sydney ; Cancer Diagnosis and Pathology Group, Kolling Institute of Medicine, Royal North Shore Hospital, St. Leonards, NSW 2065
| | - Martin Drummond
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital
| | - Thomas Hugh
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital ; Northern Clinical School, University of Sydney
| | - Jaswinder Samra
- Upper Gastrointestinal Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital ; Northern Clinical School, University of Sydney ; Australian School of Advanced Medicine, Macquarie University, Macquarie Park, NSW 2109, Australia
| |
Collapse
|
8
|
Activation of Peroxisome Proliferator–activated Receptor β/δ Attenuates Acute Ischemic Stroke on Middle Cerebral Ischemia Occlusion in Rats. J Stroke Cerebrovasc Dis 2014; 23:1396-402. [DOI: 10.1016/j.jstrokecerebrovasdis.2013.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/07/2013] [Accepted: 11/23/2013] [Indexed: 11/20/2022] Open
|
9
|
Luo Y, He Q, Kuang G, Jiang Q, Yang J. PPAR-alpha and PPAR-beta expression changes in the hippocampus of rats undergoing global cerebral ischemia/reperfusion due to PPAR-gamma status. Behav Brain Funct 2014; 10:21. [PMID: 24934302 PMCID: PMC4167308 DOI: 10.1186/1744-9081-10-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/08/2014] [Indexed: 12/19/2022] Open
Abstract
Background Peroxisome proliferator-activated receptors (PPARs, including alpha, beta and gamma subtypes) and their agonists have a protective role in treatment of central nervous system (CNS) diseases. The present study was designed to investigate the expression changes of PPAR-alpha, -beta, -gamma and NF-kappa B in the hippocampus of rats with global cerebral ischemia/reperfusion injury (GCIRI) after treatment with agonists or antagonists of PPAR-gamma. Methods A rat GCIRI model was established by occlusion of bilateral common carotid arteries and cervical vena retransfusion. GW9662 (5 μg), a selective PPAR- gamma antagonist, was intraventricularly injected at 0.5 h before GCIR; Rosiglitazone (0.8, 2.4 and 7.2 mg/kg), a selective PPAR- gamma agonist, was injected intraperitoneally at 1 h before GCIRI. The expression changes of PPAR-alpha, -beta and -gamma at mRNA and protein levels were detected by RT-PCR and western blotting. The changes of spatial learning and memory (SLM) functions were assessed by using a Morris water maze; the pathohistological changes of hippocampal neurons were evaluated by hematoxylin-eosin (HE) staining; the contents of IL-1, IL-6, IL-10 and TNF-alpha, and the NF- kappa B expression were measured by enzyme-linked immunosorbent assay (ELISA) and immunohistochemical staining. The superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were also detected. Results The SLM function and hippocampal neurons were significantly impaired after the occurrence of GCIRI. The MDA, IL-1, IL-6, IL-10, TNF-alpha content and expression of PPARs increased significantly, but the SOD activity and NF-kappa B expression were weakened in the hippocampus. Rosiglitazone treatment significantly protected rats from SLM function impairment and neuron death, and resulted in higher expressions of SOD activity and NF-kappa B, but lower contents of MDA and inflammatory factors. After treatment with rosiglitazone or GW9662, no significant change in PPAR-alpha or -beta expression was detected. Conclusions Rosiglitazone, a PPAR-gamma agonist, plays a protective role in hippocampal neuron damage of GCIRI rats by inhibiting the oxidative stress response and inflammation. The activation or antagonism of PPAR-gamma did not affect the expression of PPAR-alpha or -beta, indicating that the three subtypes of PPARs act in independent pathways in the CNS.
Collapse
Affiliation(s)
| | | | | | | | - Junqing Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Medical College Rd, No 1, Chongqing 400016, P, R, China.
| |
Collapse
|
10
|
Decrease of PPARδ in Type-1-Like Diabetic Rat for Higher Mortality after Spinal Cord Injury. PPAR Res 2014; 2014:456386. [PMID: 24817882 PMCID: PMC4003751 DOI: 10.1155/2014/456386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022] Open
Abstract
Changes in the peroxisome proliferator-activated receptors-δ (PPARδ) expression in rats after spinal cord injury (SCI) have been previously reported. Diabetic animals show a higher mortality after SCI. However, the relationship between the progress of diabetes and PPARδ in SCI remains unknown. In the present study, we used compressive SCI in streptozotocin-(STZ-) induced diabetic rats. GW0742, a PPARδ agonist, was used to evaluate its merit in STZ rats after SCI. Changes in PPARδ expression were detected by Western blot. Survival rates were also estimated. A lower expression of PPARδ in spinal cords of STZ-diabetic rats was observed. In addition, the survival times in two-week induction diabetes were longer than those in eight-week induction group, which is consistent with the expression of PPARδ in the spinal cord. Moreover, GW0742 significantly increased the survival time of STZ rats. Furthermore, their motor function and pain response were attenuated by GSK0660, a selective PPARδ antagonist, but were enhanced by GW0742. In conclusion, the data suggest that higher mortality rate in STZ-diabetic rats with SCI is associated with the decrease of PPARδ expression. Thus, change of PPARδ expression with the progress of diabetes seems responsible for the higher mortality rate after SCI.
Collapse
|
11
|
Antioxidant Stress and Anti-Inflammation of PPARα on Warm Hepatic Ischemia-Reperfusion Injury. PPAR Res 2012; 2012:738785. [PMID: 23213319 PMCID: PMC3503442 DOI: 10.1155/2012/738785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/27/2012] [Accepted: 10/10/2012] [Indexed: 02/07/2023] Open
Abstract
Hepatic ischemia-reperfusion (IR) injury is a serious clinical problem. Minimizing the adverse effect of ischemia-reperfusion injury after liver surgery or trauma is an urgent need. It has been proved that besides the effect of regulating the lipid and lipoprotein metabolism, PPARα also undertakes the task of organ protection. In this paper, related literature has been summarized and we come to the conclusion that administration of PPARα agonists can strengthen the antioxidant and anti-inflammation defense system by the upregulation of the expression of antioxidant enzymes and inhibition of NF-κB activity. This may provide a potential clinical treatment for hepatic ischemia-reperfusion injury.
Collapse
|
12
|
Liu YH, Lu M, Hu LF, Wong PTH, Webb GD, Bian JS. Hydrogen sulfide in the mammalian cardiovascular system. Antioxid Redox Signal 2012; 17:141-85. [PMID: 22304473 DOI: 10.1089/ars.2011.4005] [Citation(s) in RCA: 206] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
For more than a century, hydrogen sulfide (H(2)S) has been regarded as a toxic gas. This review surveys the growing recognition of the role of H(2)S as an endogenous signaling molecule in mammals, with emphasis on its physiological and pathological pathways in the cardiovascular system. In biological fluids, H(2)S gas is a weak acid that exists as about 15% H(2)S, 85% HS(-), and a trace of S(2-). Here, we use "H(2)S" to refer to this mixture. H(2)S has been found to influence heart contractile functions and may serve as a cardioprotectant for treating ischemic heart diseases and heart failure. Alterations of the endogenous H(2)S level have been found in animal models with various pathological conditions such as myocardial ischemia, spontaneous hypertension, and hypoxic pulmonary hypertension. In the vascular system, H(2)S exerts biphasic regulation of a vascular tone with varying effects based on its concentration and in the presence of nitric oxide. Over the past decade, several H(2)S-releasing compounds (NaHS, Na(2)S, GYY4137, etc.) have been utilized to test the effect of exogenous H(2)S under different physiological and pathological situations in vivo and in vitro. H(2)S has been found to promote angiogenesis and to protect against atherosclerosis and hypertension, while excess H(2)S may promote inflammation in septic or hemorrhagic shock. H(2)S-releasing compounds and inhibitors of H(2)S synthesis hold promise in alleviating specific disease conditions. This comprehensive review covers in detail the effects of H(2)S on the cardiovascular system, especially in disease situations, and also the various underlying mechanisms.
Collapse
Affiliation(s)
- Yi-Hong Liu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
13
|
Zeng Y, Xie K, Dong H, Zhang H, Wang F, Li Y, Xiong L. Hyperbaric oxygen preconditioning protects cortical neurons against oxygen-glucose deprivation injury: role of peroxisome proliferator-activated receptor-gamma. Brain Res 2012; 1452:140-50. [PMID: 22444276 DOI: 10.1016/j.brainres.2012.02.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 02/20/2012] [Accepted: 02/25/2012] [Indexed: 12/25/2022]
Abstract
Ischemic stroke is one of the leading causes of mortality and disability worldwide. Our previous studies have shown that hyperbaric oxygen (HBO) preconditioning can afford significant neuroprotection against cerebral ischemia-reperfusion (I/R) injury in rats. However, it is still unknown whether HBO preconditioning can directly protect primary cultured cortical neurons against oxygen-glucose deprivation (OGD). Peroxisome proliferator-activated receptor-gamma (PPAR γ) plays a central role in the regulation of apoptosis, oxidative stress and inflammation as well as affords significant neuroprotection against cerebral I/R injury. 15-deoxy-∆(12,14)-prostaglandin J(2) (15d-PGJ(2)) is an endogenous ligand with a high affinity for PPAR γ. Recently, some studies demonstrate that activation of PPAR γ mediates lipopolysaccharide and anesthetic preconditioning. In the present study, we firstly found that OGD exposure caused the significant damage of cultured cortical neurons evaluated by cell viability, lactate dehydrogenase (LDH) release and caspase-3 activity, which were significantly ameliorated by HBO preconditioning. Furthermore, HBO preconditioning significantly increased the levels of PPAR γ mRNA and protein, PPAR γ DNA binding activity, 15d-PGJ(2) and antioxidant enzymatic activities in primary cultured cortical neurons with OGD exposure. Moreover, PPAR γ antagonist GW9662 dose-dependently abolished the protection of HBO preconditioning in OGD-exposed neurons. GW9662 blocked the increase of PPAR γ DNA binding activity and antioxidant enzymatic activities, but did not influence the 15d-PGJ(2) level in OGD-exposed neurons with HBO preconditioning. However, the cyclooxygenase (COX)-2 inhibitor NS-398 blocked the production of 15d-PGJ(2) in OGD-exposed neurons with HBO preconditioning. In addition, 15d-PGJ(2) preconditioning could also protect cultured neurons against OGD injury. These results demonstrate that HBO preconditioning has directly beneficial effects on ODG-exposed cortical neurons by the activation of PPAR γ subsequent to the production of 15d-PGJ(2), which in turn increases the downstream antioxidant enzymatic activities.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Kinsey GR, Okusa MD. Pathogenesis of acute kidney injury: foundation for clinical practice. Am J Kidney Dis 2011; 58:291-301. [PMID: 21530035 PMCID: PMC3144267 DOI: 10.1053/j.ajkd.2011.02.385] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
The pathogenesis of acute kidney injury (AKI) is complex, involving such factors as vasoconstriction, leukostasis, vascular congestion, cell death, and abnormal immune modulators and growth factors. Many targeted clinical therapies have failed, are inconclusive, or have yet to be tested. Given the complexity of the pathogenesis of AKI, it may be naive to expect that one therapeutic intervention would have success. Some examples of detrimental processes that can be blocked in preclinical models to improve kidney function and survival are apoptotic cell death in tubular epithelial cells, complement-mediated immune system activation, and impairment of cellular homeostasis and metabolism. Modalities with the potential to decrease morbidity and mortality in patients with AKI include vasodilators, growth factors, anti-inflammatory agents, and cell-based therapies. Pharmacologic agents that target these diverse pathways are being used clinically for other indications. Using combinatorial approaches in future clinical trials may improve our ability to prevent and treat AKI.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
15
|
Miglio G, Rosa AC, Rattazzi L, Grange C, Collino M, Camussi G, Fantozzi R. The subtypes of peroxisome proliferator-activated receptors expressed by human podocytes and their role in decreasing podocyte injury. Br J Pharmacol 2011; 162:111-25. [PMID: 20840470 PMCID: PMC3012410 DOI: 10.1111/j.1476-5381.2010.01032.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/15/2010] [Accepted: 08/01/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, and three subtypes (α, β and γ) have been identified. PPAR activation has been reported to decrease renal injury and markers of glomerular dysfunction in models of renal ischemia/reperfusion (I/R). However, both the I/R effects and the effects of PPAR agonists on podocytes, an integral cellular part of the glomerular filtration barrier, remain to be established. EXPERIMENTAL APPROACH By using oxygen/glucose deprivation-reoxygenation as an in vitro model that mimics in vivo I/R, the effects of PPAR agonists on podocyte death were compared. Human immortalized podocytes were treated with gemfibrozil, GW0742, pioglitazone or rosiglitazone, as a single or repeated challenge. Cell loss, necrotic and apoptotic cell death were measured. KEY RESULTS Only the repeated treatment with each PPAR agonist significantly prevented cell death, mainly by decreasing apoptosis. In comparison, in a model of serum deprivation-induced apoptosis, both treatments were effective, although the repeated treatment achieved the more pronounced effect. Finally, our results showed that preservation of Bcl-2, Bax and nephrin expression accompanied the anti-apoptotic effects exerted by PPAR agonists in human podocytes. CONCLUSION AND IMPLICATIONS These findings contribute to clarification of the pathophysiological role of renal PPARs and suggest that selective PPARα, PPARβ or PPARγ agonists may exert similar protective effects on podocytes by decreasing apoptotic cell death.
Collapse
Affiliation(s)
- Gianluca Miglio
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Rodrigues WF, Miguel CB, Chica JEL, Napimoga MH. 15d-PGJ(2) modulates acute immune responses to Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2010; 105:137-43. [PMID: 20428671 DOI: 10.1590/s0074-02762010000200005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Accepted: 03/16/2010] [Indexed: 01/24/2023] Open
Abstract
The acute phase of Trypanosoma cruzi infection is associated with a strong inflammatory reaction in the heart characterised by a massive infiltration of immune cells that is dependent on the T. cruzi strain and the host response. 15d-PGJ(2) belongs to a new class of anti-inflammatory compounds with possible clinical applications. We evaluated the effects of 15d-PGJ(2) administered during the acute phase of T. cruzi infection in mice. Mice were infected with the Colombian strain of T. cruzi and subsequently treated with 15d-PGJ2 repeatedly for seven days. The inflammatory infiltrate was examined by histologic analysis. Slides were immunohistochemically stained to count the number and the relative size of parasite nests. Infection-induced changes in serum cytokine levels were measured by ELISA. The results demonstrated that treatment with 15d-PGJ(2) reduced the inflammatory infiltrate in the skeletal muscle at the site of infection and decreased the number of lymphocytes and neutrophils in the blood. In addition, we found that 15d-PGJ(2) led to a decrease in the relative volume density of amastigote nests in cardiac muscle. T. cruzi-infected animals treated with 15d-PGJ(2) displayed a statistically significant increase in IL-10 levels with no change in IFN-gamma levels. Taken together, we demonstrate that treatment with 15d-PGJ(2) in the acute phase of Chagas disease led to a controlled immune response with decreased numbers of amastigote nests, as measured by the volume density.
Collapse
Affiliation(s)
- Wellington F Rodrigues
- Laboratório de Biopatologia e Biologia Molecular, Universidade de Uberaba, Uberaba, MG, Brasil
| | | | | | | |
Collapse
|
17
|
Abstract
Several lines of evidence suggest a biological role for peroxisome proliferator-activated receptor (PPAR) beta/delta in the pathogenesis of a number of diseases. The aim of this study was to investigate the effects of a high-affinity PPAR-beta/delta agonist, GW0742, in a mouse model of carrageenan (CAR)-induced pleurisy. Injection of CAR into the pleural cavity of mice elicited an acute inflammatory response characterized by accumulation of fluid containing a large number of neutrophils (polymorphonuclear leukocytes) in the pleural cavity, infiltration of polymorphonuclear leukocytes in lung tissues and subsequent lipid peroxidation, and increased production of nitrite/nitrate, TNF-alpha, and IL-1beta. Furthermore, CAR induced lung apoptosis (Bax and Bcl-2 expression), and nitrotyrosine formation was determined by immunohistochemical analysis of lung tissues. Administration of GW0742 (0.3 mg/kg, i.p. bolus) 30 min before and 30 min after a challenge with CAR caused a reduction in all the parameters of inflammation measured. Thus, based on these findings, we propose that a PPAR-beta/delta agonist such as GW0742 may be useful in the treatment of various inflammatory diseases.
Collapse
|
18
|
Paterniti I, Esposito E, Mazzon E, Galuppo M, Di Paola R, Bramanti P, Kapoor A, Thiemermann C, Cuzzocrea S. Evidence for the role of peroxisome proliferator-activated receptor-beta/delta in the development of spinal cord injury. J Pharmacol Exp Ther 2010; 333:465-77. [PMID: 20176685 DOI: 10.1124/jpet.110.165605] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Several lines of evidence suggest a biological role for peroxisome proliferator-activated receptor (PPAR)-beta/delta in the pathogenesis many diseases. The aim of the present study was to evaluate the contribution of PPAR-beta/delta in the secondary damage in experimental spinal cord injury (SCI) in mice. To this purpose, we used 4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl]methyl]thio]-2-methylphenoxy]acetic acid (GW0742), a high-affinity PPAR-beta/delta agonist. Spinal cord trauma was induced by the application of vascular clips (force of 24 g) to the dura via a four-level T5 to T8 laminectomy. SCI in mice resulted in severe trauma characterized by edema, neutrophil infiltration, production of inflammatory mediators, tissue damage, and apoptosis. GW0742 treatment (0.3 mg kg(-1) i.p.) 1 and 6 h after the SCI significantly reduced 1) the degree of spinal cord inflammation and tissue injury (histological score), 2) neutrophil infiltration (myeloperoxidase activity), 3) nitrotyrosine formation, 4) proinflammatory cytokines expression, 5) nuclear factor-kappaB activation, 6) inducible nitric-oxide synthase expression, and 6) apoptosis (terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, FasL, Bax, and Bcl-2 expression). Moreover, GW0742 significantly ameliorated the recovery of limb function (evaluated by motor recovery score). To elucidate whether the protective effects of GW0742 are related to activation of the PPAR-beta/delta receptor, we also investigated the effect of PPAR-beta/delta antagonist methyl 3-({[2-(methoxy)-4 phenyl]amino}sulfonyl)-2-thiophenecarboxylate (GSK0660) on the protective effects of GW0742. GSK0660 (1 mg/kg i.p. 30 min before treatment with GW0742) significantly blocked the effect of the PPAR-beta/delta agonist and thus abolished the protective effect. Our results clearly demonstrate that GW0742 treatment reduces the development of inflammation and tissue injury associated with spinal cord trauma.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Messina, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen HH, Chen TW, Lin H. Prostacyclin-induced peroxisome proliferator-activated receptor-alpha translocation attenuates NF-kappaB and TNF-alpha activation after renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 2009; 297:F1109-18. [PMID: 19640904 DOI: 10.1152/ajprenal.00057.2009] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prostacyclin and peroxisome proliferator-activated receptors (PPAR) protect against ischemia-reperfusion (I/R) injury by the induction of an anti-inflammatory pathway. In this study, we examined the prostacyclin-enhanced protective effect of PPARalpha in I/R-induced kidney injury. PPAR-alpha reduced the NF-kappaB-induced overexpression of TNF-alpha and apoptosis in cultured kidney cells. In a murine model, pretreating wild-type (WT) mice with a PPAR-alpha activator, docosahexaenoic acid (DHA), significantly reduced I/R-induced renal dysfunction (lowered serum creatinine and urea nitrogen levels), apoptotic responses (decreased apoptotic cell number and caspase-3, -8 activation), and NF-kappaB activation. By comparison, I/R-induced injury was exacerbated in PPAR-alpha knockout mice. This indicated that PPAR-alpha attenuated renal I/R injury via NF-kappaB-induced TNF-alpha overexpression. Overexpression of prostacyclin using an adenovirus could also induce PPAR-alpha translocation from the cytosol into the nucleus to inhibit caspase-3 activation. This prostacyclin/PPAR-alpha pathway attenuated TNF-alpha promoter activity by binding to NF-kappaB. Using a cAMP inhibitor (CAY10441) and a prostacyclin receptor antibody, we also found that there was another prostacyclin/IP receptor/cAMP pathway that could inhibit TNF-alpha production. Taken together, our results demonstrate for the first time that prostacyclin induces the translocation of PPAR-alpha from the cytosol into the nucleus and attenuates NF-kappaB-induced TNF-alpha activation following renal I/R injury. Treatments that can augment prostacyclin, PPAR-alpha, or the associated signaling pathways may ameliorate conditions associated with renal I/R injury.
Collapse
Affiliation(s)
- Hsi-Hsien Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipai Medical University, Taiwan
| | | | | |
Collapse
|
20
|
Penson PE, Ford WR, Kidd EJ, Broadley KJ. Activation of beta-adrenoceptors mimics preconditioning of rat-isolated atria and ventricles against ischaemic contractile dysfunction. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:589-97. [PMID: 18663429 DOI: 10.1007/s00210-008-0331-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Accepted: 06/27/2008] [Indexed: 12/15/2022]
Abstract
The effects of ischaemia and reoxygenation on cardiac contractile function can be abrogated by ischaemic preconditioning (IPC). We tested whether beta-adrenoceptor agonists could mimic IPC and whether IPC was dependent on beta-adrenoceptor activation in rat-isolated cardiac tissues. Paced left atria and right ventricular strips were set-up in Krebs solution and isometric developed tension recorded. Ischaemia was simulated by replacing with hypoxic glucose-free Krebs solution for 30 min. IPC and isoprenaline (10(-7) M) preconditioning for 10 min were examined. Developed tension post-reoxygenation was expressed as a percentage of the pre-ischaemic baseline. Recovery at 15 min was significantly increased by IPC in atria (47 +/- 4.0% vs. 29.3 +/- 1.7%, p < 0.05) and ventricles (39.0 +/- 5.2% vs. 22.4 +/- 2.8%, p < 0.05). At 60 min, isoprenaline-treated atria recovery (75.8 +/- 16.6%) was significantly (p < 0.05) greater than controls (47.9 +/- 2.3%). Propranolol (10(-6) M) abolished both effects. Therefore, both IPC and beta-adrenoceptor agonist-induced improvement of contractile recovery was propranolol-sensitive and beta-adrenoceptor-mediated.
Collapse
Affiliation(s)
- Peter E Penson
- Pharmacology Division, Welsh School of Pharmacy, Cardiff University, Cathays Park, Cardiff, CF10 3NB, UK
| | | | | | | |
Collapse
|
21
|
Bibliography. Current world literature. Lipid metabolism. Curr Opin Lipidol 2008; 19:314-21. [PMID: 18460925 DOI: 10.1097/mol.0b013e328303e27e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|