1
|
Davletshin AI, Matveeva AA, Poletaeva II, Evgen'ev MB, Garbuz DG. The role of molecular chaperones in the mechanisms of epileptogenesis. Cell Stress Chaperones 2023; 28:599-619. [PMID: 37755620 PMCID: PMC10746656 DOI: 10.1007/s12192-023-01378-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Epilepsy is a group of neurological diseases which requires significant economic costs for the treatment and care of patients. The central point of epileptogenesis stems from the failure of synaptic signal transmission mechanisms, leading to excessive synchronous excitation of neurons and characteristic epileptic electroencephalogram activity, in typical cases being manifested as seizures and loss of consciousness. The causes of epilepsy are extremely diverse, which is one of the reasons for the complexity of selecting a treatment regimen for each individual case and the high frequency of pharmacoresistant cases. Therefore, the search for new drugs and methods of epilepsy treatment requires an advanced study of the molecular mechanisms of epileptogenesis. In this regard, the investigation of molecular chaperones as potential mediators of epileptogenesis seems promising because the chaperones are involved in the processing and regulation of the activity of many key proteins directly responsible for the generation of abnormal neuronal excitation in epilepsy. In this review, we try to systematize current data on the role of molecular chaperones in epileptogenesis and discuss the prospects for the use of chemical modulators of various chaperone groups' activity as promising antiepileptic drugs.
Collapse
Affiliation(s)
| | - Anna A Matveeva
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
- Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
| | - Inga I Poletaeva
- Biology Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - David G Garbuz
- Engelhardt Institute of Molecular Biology RAS, 119991, Moscow, Russia
| |
Collapse
|
2
|
von Rüden EL, Potschka H, Tipold A, Stein VM. The role of neuroinflammation in canine epilepsy. Vet J 2023; 298-299:106014. [PMID: 37393038 DOI: 10.1016/j.tvjl.2023.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
The lack of therapeutics that prevent the development of epilepsy, improve disease prognosis or overcome drug resistance represents an unmet clinical need in veterinary as well as in human medicine. Over the past decade, experimental studies and studies in human epilepsy patients have demonstrated that neuroinflammatory processes are involved in epilepsy development and play a key role in neuronal hyperexcitability that underlies seizure generation. Targeting neuroinflammatory signaling pathways may provide a basis for clinically relevant disease-modification strategies in general, and moreover, could open up new therapeutic avenues for human and veterinary patients with drug-resistant epilepsy. A sound understanding of the neuroinflammatory mechanisms underlying seizure pathogenesis in canine patients is therefore essential for mechanism-based discovery of selective epilepsy therapies that may enable the development of new disease-modifying treatments. In particular, subgroups of canine patients in urgent needs, e.g. dogs with drug-resistant epilepsy, might benefit from more intensive research in this area. Moreover, canine epilepsy shares remarkable similarities in etiology, disease manifestation, and disease progression with human epilepsy. Thus, canine epilepsy is discussed as a translational model for the human disease and epileptic dogs could provide a complementary species for the evaluation of antiepileptic and antiseizure drugs. This review reports key preclinical and clinical findings from experimental research and human medicine supporting the role of neuroinflammation in the pathogenesis of epilepsy. Moreover, the article provides an overview of the current state of knowledge regarding neuroinflammatory processes in canine epilepsy emphasizing the urgent need for further research in this specific field. It also highlights possible functional impact, translational potential and future perspectives of targeting specific inflammatory pathways as disease-modifying and multi-target treatment options for canine epilepsy.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany.
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU) Munich, Germany
| | - Andrea Tipold
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany
| | - Veronika M Stein
- Department for Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
3
|
Li J, Chen S, Wang F, Zhang J, Zeyghami MA, Koohsar F, Ayatollahi AA, Amini A. Effect of Rosiglitazone, the Peroxisome Proliferator-Activated Receptor (PPAR)-γ Agonist, on Apoptosis, Inflammatory Cytokines and Oxidative Stress in pentylenetetrazole-Induced Seizures in Kindled Mice. Neurochem Res 2023:10.1007/s11064-023-03951-7. [PMID: 37204549 DOI: 10.1007/s11064-023-03951-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/10/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
A growing body of evidence has shown that seizure can trigger inflammatory cascades through increasing the expression of several inflammatory cytokines. It has been proved that peroxisome proliferator-activated receptor-γ agonists have immunomodulatory, anti-inflammatory, and neuroprotective effects beyond the putative hypoglycemic effects. Thus, we investigated the inhibitory effect of rosiglitazone on the development of pentylenetetrazol (PTZ)-induced kindling via affecting the inflammatory pathway. Male C57BL/6 mice were randomly divided into vehicle group (0.1% DMSO), PTZ-group and rosiglitazone-PTZ-group. Kindling was induced by the administration of PTZ (40 mg/kg, i.p) every other day and mice were observed for 20 min after each PTZ injection. Twenty-four hours after the last dose, animals were euthanized and hippocampus was isolated. The level of Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Catalase (CAT) activity were quantified in hippocampus by biochemical methods. The protein levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, caspase-3, iNOS, PPAR-γ, Bcl-2, or Bax factors were measured with western blotting. Also, the quantitative real-time PCR were used to evaluate the mRNA expression of those factors. Pretreatment with rosiglitazone significantly prevented the progression of kindling in comparison with control group. The rosiglitazone significantly decreased the MDA level and increased the CAT, and SOD levels in the rosiglitazone treated mice compared to those in the PTZ group (P < 0.01). Using real-time PCR and Western blotting assay, similar results were obtained. The expression levels of IL-1β, IL-6, IL-10, IFN-γ, TNF-α, Bax or PPAR-γ were significantly changed in the brain. The results of this study suggest that effect of rosiglitazone may be crucial in its ability to protect against the neuronal damage caused by PTZ induced seizure.
Collapse
Affiliation(s)
- Jinliang Li
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Suping Chen
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Feilong Wang
- Department of Pediatrics, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China
| | - Jingyu Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, 524045, Guangdong, China.
| | - Mohammad Ali Zeyghami
- Neuroscience Research Center, Department of Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Faramarz Koohsar
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Asghar Ayatollahi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Department of Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
4
|
Adenosine A1 Receptor Agonist (R-PIA) before Pilocarpine Modulates Pro- and Anti-Apoptotic Factors in an Animal Model of Epilepsy. Pharmaceuticals (Basel) 2021; 14:ph14040376. [PMID: 33919533 PMCID: PMC8074097 DOI: 10.3390/ph14040376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022] Open
Abstract
We aimed to characterize the mechanisms involved in neuroprotection by R-PIA administered before pilocarpine-induced seizures. Caspase-1 and caspase-3 activities were assayed using fluorimetry, and cathepsin D, HSP-70, and AKT expression levels were assayed using Western Blot of hippocampal samples. R-PIA was injected before pilocarpine (PILO), and four groups were studied at 1 h 30 min and 7 days following initiation of status epilepticus (SE): PILO, R-PIA+PILO, SALINE, and R-PIA+SALINE. At 1 h 30 min, significantly higher activities of caspase-1 and -3 were observed in the PILO group than in the SALINE group. Caspase-1 and -3 activities were higher in the R-PIA+PILO group than in the PILO group. At 7 days following SE, caspase-1 and -3 activities were higher than in the initial post-seizure phase compared to the SALINE group. The pretreatment of rats receiving PILO significantly reduced caspase activities compared to the PILO group. Expression of HSP-70, AKT, and cathepsin D was significantly higher in the PILO group than in the SALINE. In the R-PIA+PILO group, the expression of AKT and HSP-70 was greater than in rats receiving only PILO, while cathepsin D presented decreased expression. Pretreatment with R-PIA in PILO-injected rats strongly inhibited caspase-1 and caspase-3 activities and cathepsin D expression. It also increased expression levels of the neuroprotective proteins HSP-70 and AKT, suggesting an important role in modulating the cellular survival cascade.
Collapse
|
5
|
Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, Takahashi Y, Matsumoto Y, Okamoto M, Ishihara T. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep 2020; 9:102-114. [PMID: 32760846 PMCID: PMC7390835 DOI: 10.1016/j.ibror.2020.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/11/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding the molecular and cellular mechanisms involved during the onset of epilepsy is crucial for elucidating the overall mechanism of epileptogenesis and therapeutic strategies. Previous studies, using a pentylenetetrazole (PTZ)-induced kindling mouse model, showed that astrocyte activation and an increase in perineuronal nets (PNNs) and extracellular matrix (ECM) molecules occurred within the hippocampus. However, the mechanisms of initiation and suppression of these changes, remain unclear. Herein, we analyzed the attenuation of astrocyte activation caused by dizocilpine (MK-801) administration, as well as the anticonvulsant effect of α-pinene on seizures and production of ECM molecules. Our results showed that MK-801 significantly reduced kindling acquisition, while α-pinene treatment prevented an increase in seizures incidences. Both MK-801 and α-pinene administration attenuated astrocyte activation by PTZ and significantly attenuated the increase in ECM molecules. Our results indicate that astrocyte activation and an increase in ECM may contribute to epileptogenesis and suggest that MK-801 and α-pinene may prevent epileptic seizures by suppressing astrocyte activation and ECM molecule production.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Medical Technology, Kawasaki University of Medical Welfare, Okayama, 701-0193, Japan
| | - Atsumi Shimada
- Division of Food and Nutrition, Nakamura Gakuen University Junior College, Fukuoka, 814-0198, Japan
| | - Shunsuke Suemitsu
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Shinji Murakami
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Naoya Kitamura
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Kenta Wani
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yu Takahashi
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| | - Yosuke Matsumoto
- Department of Neuropsychiatry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Motoi Okamoto
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, 700-8558, Japan
| | - Takeshi Ishihara
- Department of Psychiatry, Kawasaki Medical School, Okayama, 701-0192, Japan
| |
Collapse
|
6
|
Zeyghami MA, Hesam E, Khadivar P, Hesam HK, Ahmadnia A, Amini A. Effects of atorvastatin and metformin on development of pentylenetetrazole-induced seizure in mice. Heliyon 2020; 6:e03761. [PMID: 32382676 PMCID: PMC7203078 DOI: 10.1016/j.heliyon.2020.e03761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Recent studies have shown that statins and Metformin may have beneficial effects on seizure through different mechanisms. In the current study, we investigated whether Metformin, Atorvastatin, and concomitant uses of them have beneficial effects on pentylenetetrazole (PTZ)-induced kindling. Adult male C57BL/6 mice were randomly divided into four experimental groups with seven mice in each group. Group 1, control group; group 2, received Metformin (200 mg/kg, i.p); group 3, received Atorvastatin (10 mg/kg, i.p.); group 4, received Atorvastatin (10 mg/kg, i.p.) plus Metformin (200 mg/kg, i.p.). Twenty minutes after injection of the mentioned drugs, the experimented mice received 37/5 mg/kg of PTZ intraperitoneally on alternating days. Then the convulsive behavior signs were evaluated for 20 min after each PTZ injection. There were significant differences in the stage 2 latency parameter among group 2 (p = 0.033, F = 8.46)/group 3 (p = 0.032, F = 10.42)/group 4 (p = 0.008, F = 24.57) as compared to the control group, while no significant differences were found comparing only group 2,3, and 4 with eachother excluding the control group. Pretreatment with Atorvastatin (p = 0.002, F = 33), Atorvastatin + Metformin (p = 0.006, F = 20.77), and Metformin alone increased stage 5 latency as compared to the PTZ group, significantly. Also, our results have shown that pretreatment with Atorvastatin (p = 0.013, F = 14.48), Metformin (p = 0.015, F = 16.67), and concomitant usage of them significantly decreased stage 5 duration as compared to the control group. Our findings clearly demonstrate that concomitant use of Metformin and Atorvastatin has no more protective effect against the development of kindling as compare to these drugs alone. Thus, we concluded that, these drugs may inhibit kindling via a similar mechanism and we suggested that it is probably through regulation of autophagy.
Collapse
Affiliation(s)
- Mohammad Ali Zeyghami
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Dept. Pharmacology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Hesam
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Dept. Physiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parand Khadivar
- Dept. Medical Biotechnology, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Halimeh Khaton Hesam
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Ahmadnia
- Dept. Molecular Medicine, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abolfazl Amini
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Gualtieri F, Nowakowska M, von Rüden EL, Seiffert I, Potschka H. Epileptogenesis-Associated Alterations of Heat Shock Protein 70 in a Rat Post-Status Epilepticus Model. Neuroscience 2019; 415:44-58. [DOI: 10.1016/j.neuroscience.2019.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 02/02/2023]
|
8
|
von Rüden EL, Wolf F, Gualtieri F, Keck M, Hunt CR, Pandita TK, Potschka H. Genetic and Pharmacological Targeting of Heat Shock Protein 70 in the Mouse Amygdala-Kindling Model. ACS Chem Neurosci 2019; 10:1434-1444. [PMID: 30396268 DOI: 10.1021/acschemneuro.8b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammatory responses involving Toll-like receptor signaling represent a key factor contributing to epileptogenesis. Thus, it is of particular interest to explore the relevance of toll-like receptor ligands and modulators, such as heat shock protein 70 (HSP70). Motivated by recent findings demonstrating an upregulation of HSP70 in a model of epileptogenesis, we analyzed the consequences of genetic and pharmacological targeting of HSP70 expression in a mouse kindling paradigm. Lack of inducible HSP70 resulted in increased prekindling seizure thresholds. However, at threshold stimulation the deficiency-promoted seizure spread, as indicated by an increased seizure severity. Subsequent kindling stimulations elicited more severe seizures in knockout mice, whereas endogenous termination of seizure activity remained unaffected with duration of behavioral and electrographic seizure activity comparable to that of wild-type mice. Interestingly, HSP70 deficiency resulted in enhanced microglia activation in the CA1 region. Next, we assessed a pharmacological targeting approach aiming to promote HSP70 expression. Celastrol treatment had no impact on kindling progression but reduced postkindling seizure thresholds and enhanced microglia activation in CA1 and CA3. In conclusion, the findings from HSP70-knockout mice support a protective role of HSP70 with an effect on microglia activation and spread of seizure activity. Unexpectedly, celastrol administration resulted in detrimental consequences. These findings should be considered as a warning about the general safety of celastrol as a drug candidate. The impact of pathophysiological mechanisms on the quality of celastrol effects requires comprehensive future studies exploring influencing factors. Moreover, alternate strategies to increase HSP70 expression should be further developed and validated.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Fabio Wolf
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| | - Clayton R. Hunt
- Department of Radiation Oncology, The Houston Methodist Research Institute, 6550 Fannin Street SM8-024, Houston, Texas 77030, United States
| | - Tej K. Pandita
- Department of Radiation Oncology, The Houston Methodist Research Institute, 6550 Fannin Street SM8-024, Houston, Texas 77030, United States
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University Munich, Koeniginstraße 16, D-80539 Munich, Germany
| |
Collapse
|
9
|
Yi H, Huang G, Zhang K, Liu S, Xu W. HSP70 protects rats and hippocampal neurons from central nervous system oxygen toxicity by suppression of NO production and NF-κB activation. Exp Biol Med (Maywood) 2019; 243:770-779. [PMID: 29763367 DOI: 10.1177/1535370218773982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During diving, central nervous system oxygen toxicity may cause drowning or barotrauma, which has dramatically limited the working benefits of hyperbaric oxygen in underwater operations and clinical applications. The aim of this study is to understand the effects and the underlying mechanism of heat shock protein 70 on central nervous system oxygen toxicity and its mechanisms in vivo and in vitro. Rats were given geranylgeranylacetone (800 mg/kg) orally to induce hippocampal expression of heat shock protein 70 and then treated with hyperbaric oxygen. The time course of hippocampal heat shock protein 70 expression after geranylgeranylacetone administration was measured. Seizure latency and first electrical discharge were recorded to evaluate the effects of HSP70 on central nervous system oxygen toxicity. Effects of inhibitors of nitric oxide synthase and nuclear factor-κB on the seizure latencies and changes in nitric oxide, nitric oxide synthase, and nuclear factor-κB levels in the hippocampus tissues were examined. In cell experiments, hippocampal neurons were transfected with a virus vector carrying the heat shock protein 70 gene (H3445) before hyperbaric oxygen treatment. Cell viability, heat shock protein 70 expression, nitric oxide, nitric oxide synthase, and NF-κB levels in neurons were measured. The results showed that heat shock protein 70 expression significantly increased and peaked at 48 h after geranylgeranylacetone was given. Geranylgeranylacetone prolonged the first electrical discharge and seizure latencies, which was reversed by neuronal nitric oxide synthase, inducible nitric oxide synthase and NF-κB inhibitors. Nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels in the hippocampus were significantly increased after hyperbaric oxygen exposure, but reversed by geranylgeranylacetone, while heat shock protein 70 inhibitor quercetin could inhibit this effect of geranylgeranylacetone. In the in vitro study, heat shock protein 70-overexpression decreased the nitric oxide, nitric oxide synthase, and inducible nitric oxide synthase levels as well as the cytoplasm/nucleus ratio of nuclear factor-κB and protected neurons from hyperbaric oxygen-induced cell injury. In conclusion, overexpression of heat shock protein 70 in hippocampal neurons may protect rats from central nervous system oxygen toxicity by suppression of neuronal nitric oxide synthase and inducible nitric oxide synthase-mediated nitric oxide production and translocation of nuclear factor-κB to nucleus. Impact statement Because the pathogenesis of central nervous system oxygen toxicity (CNS-OT) remains unclear, there are few interventions available. To develop an efficient strategy against CNS-OT, it is necessary to understand its pathogenesis and in particular, the relevant key factors involved. This study examined the protective effects of heat shock protein 70 (HSP70) on CNS-OT via in vivo and in vitro experiments. Our results indicated that overexpression of HSP70 in hippocampal neurons may protect rats from CNS-OT by suppression of nNOS and iNOS-mediated NO production and the activation of NF-κB. These findings contribute to clarification of the role of HSP70 in CNS-OT and provide us a potential novel target to prevent CNS-OT. Clarification of the involvement of NO, NOS and NF-κB provides new insights into the mechanism of CNS-OT and may help us to develop new approach against it by interfering these molecules.
Collapse
Affiliation(s)
- Hongjie Yi
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Guoyang Huang
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Kun Zhang
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| | - Shulin Liu
- Department of Aviation Medicine, Naval Medical University, Shanghai 200433, China
| | - Weigang Xu
- Department of Diving Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
10
|
Inhibition of Hsp70 Suppresses Neuronal Hyperexcitability and Attenuates Epilepsy by Enhancing A-Type Potassium Current. Cell Rep 2019; 26:168-181.e4. [DOI: 10.1016/j.celrep.2018.12.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 10/06/2018] [Accepted: 12/06/2018] [Indexed: 01/03/2023] Open
|
11
|
Jin M, Sheng W, Han L, He Q, Ji X, Liu K. Activation of BDNF-TrkB signaling pathway-regulated brain inflammation in pentylenetetrazole-induced seizures in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2018; 83:26-36. [PMID: 30195910 DOI: 10.1016/j.fsi.2018.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/24/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Seizures are sustained neuronal hyperexcitability in brain that result in loss of consciousness and injury. Understanding how the brain responds to seizures is critical to help developing new therapeutic strategies for epilepsy, a neurological disorder characterized by recurrent and unprovoked seizures. However, the mechanisms underlying seizure-dependent alterations of biological properties are poorly understood. In this study, we analyzed gene expression profiles of the zebrafish heads that were undergoing seizures and identified 1776 differentially expressed genes. Gene-regulatory network analysis revealed that BDNF-TrkB signaling pathway positively regulated brain inflammation in zebrafish during seizures. Using K252a, a TrkB inhibitor to block BDNF-TrkB signaling pathway, attenuated pentylenetetrazole (PTZ)-induced seizures, which also confirmed BDNF-TrkB mediated inflammatory responses including regulation of il1β and nfκb, and neutrophil and macrophage infiltration of brain. Our results have provided novel insights into seizure-induced brain inflammation in zebrafish and anti-inflammatory related therapy for epilepsy.
Collapse
Affiliation(s)
- Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Xiuna Ji
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China; Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, 28789 East Jingshi Road, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
12
|
Ketogenic diet regulates the antioxidant catalase via the transcription factor PPARγ2. Epilepsy Res 2018; 147:71-74. [PMID: 30261354 DOI: 10.1016/j.eplepsyres.2018.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022]
Abstract
We have previously found that the transcription factor PPARγ2 contributes to the mechanism of action of the ketogenic diet (KD), an established treatment for pediatric refractory epilepsy. Among the wide-array of genes regulated by PPARγ, previous studies have suggested that antioxidants such as catalase may have prominent roles in KD neuroprotective and antiseizure effects. Here, we tested the hypothesis that the KD increases catalase through activation of PPARγ2, and that this action is part of the mechanism of antiseizure efficacy of the KD. We determined catalase mRNA and protein expression in hippocampal tissue from epileptic Kcna1-/- mice, Pparγ2+/+ mice and Pparγ2-/- mice. We found that a KD increases hippocampal catalase expression in Kcna1-/- and Pparγ2+/+ mice, but not Pparγ2-/- mice. Next, we determined whether catalase contributes to KD seizure protection. We found that the KD reduces pentylenetetrazole (PTZ)-induced seizures; however, pretreatment with a catalase inhibitor occluded KD effects on PTZ seizures. These results suggest that the KD regulates catalase expression through PPARγ2 activation, and that catalase may contribute to the KD antiseizure efficacy.
Collapse
|
13
|
von Rüden EL, Wolf F, Keck M, Gualtieri F, Nowakowska M, Oglesbee M, Potschka H. Genetic Modulation of HSPA1A Accelerates Kindling Progression and Exerts Pro-convulsant Effects. Neuroscience 2018; 386:108-120. [PMID: 29964156 DOI: 10.1016/j.neuroscience.2018.06.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/05/2018] [Accepted: 06/19/2018] [Indexed: 12/20/2022]
Abstract
Strong evidence exists that Toll-like receptor (TLR)-mediated effects on microglia functional states can promote ictogenesis and epileptogenesis. So far, research has focused on the role of high-mobility group box protein 1 as an activator of TLRs. However, the development of targeting strategies might need to consider a role of additional receptor ligands. Considering the fact that heat shock protein A1 (hsp70) has been confirmed as a TLR 2 and 4 ligand, we have explored the consequences of its overexpression in a mouse kindling paradigm. The genetic modulation enhanced seizure susceptibility with lowered seizure thresholds prior to kindling. In contrast to wildtype (WT) mice, HSPA1A transgenic (TG) mice exhibited generalized seizures very early during the kindling paradigm. Along with an increased seizure severity, seizure duration proved to be prolonged in TG mice during this phase. Toward the end of the stimulation phase seizure parameters of WT mice reached comparable levels. However, a difference between genotypes was still evident when comparing seizure parameters during the post-kindling threshold determination. Surprisingly, HSPA1A overexpression did not affect microglia activation in the hippocampus. In conclusion, the findings demonstrate that hsp70 can exert pro-convulsant effects promoting ictogenesis in naïve animals. The pronounced impact on the response to subsequent stimulations gives first evidence that genetic HSPA1A upregulation may also contribute to epileptogenesis. Thus, strategies inhibiting hsp70 or its expression might be of interest for prevention of seizures and epilepsy. However, conclusions about a putative pro-epileptogenic effect of hsp70 require further investigations in models with development of spontaneous recurrent seizures.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Fabio Wolf
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Keck
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Fabio Gualtieri
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Marta Nowakowska
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Michael Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, OH, USA
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
14
|
Hussein AM, Abbas KM, Abulseoud OA, El-Hussainy EHMA. Effects of ferulic acid on oxidative stress, heat shock protein 70, connexin 43, and monoamines in the hippocampus of pentylenetetrazole-kindled rats. Can J Physiol Pharmacol 2017; 95:732-742. [PMID: 28177659 DOI: 10.1139/cjpp-2016-0219] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effects of ferulic acid (FA) on pentylenetetrazole (PTZ)-induced seizures, oxidative stress markers (malondialdehyde (MDA), catalase, and reduced glutathione (GSH)), connexin (Cx) 43, heat shock protein 70 (Hsp 70), and monoamines (serotonin (5-HT) and norepinephrine (NE)) levels in a rat model of PTZ-induced kindling. Sixty Sprague Dawley rats were divided into 5 equal groups: (a) normal group; (b) FA group: normal rats received FA at a dose of 40 mg/kg daily; (c) PTZ group: normal rats received PTZ at a dose of 50 mg/kg i.p. on alternate days for 15 days; (d) FA-before group: treatment was the same as for the PTZ group, except rats received FA; and (e) FA-after group: rats received FA from sixth dose of PTZ. PTZ caused a significant increase in MDA, Cx43, and Hsp70 along with a significant decrease in GSH, 5-HT, and NE levels and CAT activity in the hippocampus (p < 0.05). Pre- and post-treatment with FA caused significant improvement in behavioral parameters, MDA, CAT, GSH, 5-HT, NE, Cx43 expression, and Hsp70 expression in the hippocampal region (p < 0.05). We conclude that FA has neuroprotective effects in PTZ-induced epilepsy, which might be due to attenuation of oxidative stress and Cx43 expression and upregulation of neuroprotective Hsp70 and neurotransmitters (5-HT and NE).
Collapse
Affiliation(s)
- Abdelaziz M Hussein
- a Faculty of Medicine, Mansoura University, El Gomhoria Street, Mansoura, Egypt
| | - Khaled M Abbas
- a Faculty of Medicine, Mansoura University, El Gomhoria Street, Mansoura, Egypt
| | - Osama A Abulseoud
- b Chemistry and Drug Metabolism, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | |
Collapse
|
15
|
Fedotova IB, Nikolaev GM, Kostyna ZA, Poletaeva II. Remote effects of short-term neonatal hyperthermia in Krushinsky-Molodkina rats prone to audiogenic seizures strain. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 472:1-3. [PMID: 28429263 DOI: 10.1134/s001249661701001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 06/07/2023]
Abstract
Using the audiogenic seizure prone Krushinsky-Molodkina rat strain, it was demonstrated that short-term (5 min) exposure of 14-day-old pups to an elevated temperature (42°C) resulted in a significant decrease in audiogenic seizure severity at the age of 1 month. Presumably, this effect is determined by the activation of the heat-shock protein system (stress proteins).
Collapse
Affiliation(s)
| | | | - Z A Kostyna
- Moscow State University, Moscow, 119992, Russia
| | | |
Collapse
|
16
|
Octreotide ameliorates inflammation and apoptosis in acute and kindled murine PTZ paradigms. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:61-68. [PMID: 27695956 DOI: 10.1007/s00210-016-1303-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022]
Abstract
In the present study, the role of octreotide (OCT) in pentylenetetrazole (PTZ) kindling as well as in acute convulsion models was evaluated. Mice were allocated in groups as (1) control saline; (2) acute PTZ (PTZ-a; 60 mg/kg, i.p.), as a single convulsive dose; and (3) kindled (PTZ-k) receiving nine subconvulsive doses of PTZ (40 mg/kg, i.p.) for 17 days. Groups 4-7 received either valproic acid (VPA) 50 mg/kg or OCT (50 μg/kg, Sandostatin®) 30 min by oral gavage before PTZ-a or PTZ-k. The median seizure stage, latency onset of first stage 4/5 seizures, and incidence of convulsing animals were recorded. Cortical dopamine (DA), tumor necrosis factor (TNF)-α, interleukin (IL)-10, caspase (Casp)-3, myeloperoxidase (MPO), and nitric oxide (NO) were assessed in addition to inducible nitric oxide synthase (iNOS) that was evaluated immunohistochemically in a different set of groups. OCT halted PTZ-induced epilepsy delaying convulsion latency via modulating MPO and TNF-α and normalizing IL-10 with both treatment regimens. In PTZ-k, it decreased Casp-3 activity, NO level, and iNOS immunoreactivity. OCT in both paradigms decreased DA concentration. The current investigation implicates a crucial role for OCT in modulating PTZ-induced kindling by regulating inflammatory and apoptotic effects.
Collapse
|
17
|
Naka K K, Vezyraki P, Kalaitzakis A, Zerikiotis S, Michalis L, Angelidis C. Hsp70 regulates the doxorubicin-mediated heart failure in Hsp70-transgenic mice. Cell Stress Chaperones 2014; 19:853-64. [PMID: 24748476 PMCID: PMC4389845 DOI: 10.1007/s12192-014-0509-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 01/31/2023] Open
Abstract
The aim of this study was to investigate the potential protective effect of the Hsp70 protein in the cardiac dysfunction induced by doxorubicin (DOX) and the mechanisms of its action. For this purpose, we used both wild-type mice (F1/F1) and Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70. Both types were subjected to chronic DOX administration (3 mg/kg intraperitoneally every week for 10 weeks, with an interval from weeks 4 to 6). Primary cell cultures isolated from embryos of these mice were also studied. During DOX administration, the mortality rate as well as weight reduction were lower in Tg/Tg compared to F1/F1 mice (P < 0.05). In vivo cardiac function assessment by transthoracic echocardiography showed that the reduction in left ventricular systolic function observed after DOX administration was lower in Tg/Tg mice (P < 0.05). The study in primary embryonic cell lines showed that the apoptosis after incubation with DOX was reduced in cells overexpressing Hsp70 (Tg/Tg), while the apoptotic pathway that was activated by DOX administration involved activated protein factors such as p53, Bax, caspase-9, caspase-3, and PARP-1. In myocardial protein extracts from identical mice with DOX-induced heart failure, the particular activated apoptotic pathway was confirmed, while the presence of Hsp70 appeared to inhibit the apoptotic pathway upstream of the p53 activation. Our results, in this DOX-induced heart failure model, indicate that Hsp70 overexpression in Tg/Tg transgenic mice provides protection from myocardial damage via an Hsp70-block in p53 activation, thus reducing the subsequent apoptotic mechanism.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Line
- Disease Models, Animal
- Doxorubicin
- HSP70 Heat-Shock Proteins/genetics
- HSP70 Heat-Shock Proteins/metabolism
- Heart Failure/chemically induced
- Heart Failure/genetics
- Heart Failure/metabolism
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Failure/prevention & control
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Transgenic
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Signal Transduction
- Systole
- Time Factors
- Tumor Suppressor Protein p53/metabolism
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
Collapse
Affiliation(s)
- Katerina Naka K
- />Department of Cardiology and Michaelidion Cardiac Center, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Patra Vezyraki
- />Laboratory of Physiology, Molecular and Cellular Physiology Unit, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Alexandros Kalaitzakis
- />Laboratory of General Biology, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Stelios Zerikiotis
- />Laboratory of Physiology, Molecular and Cellular Physiology Unit, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Lampros Michalis
- />Department of Cardiology and Michaelidion Cardiac Center, Medical School, University of Ioannina, Ioannina, 45110 Greece
| | - Charalampos Angelidis
- />Laboratory of General Biology, Medical School, University of Ioannina, Ioannina, 45110 Greece
| |
Collapse
|
18
|
Ekimova IV, Nitsinskaya LE, Romanova IV, Pastukhov YF, Margulis BA, Guzhova IV. Exogenous protein Hsp70/Hsc70 can penetrate into brain structures and attenuate the severity of chemically-induced seizures. J Neurochem 2010; 115:1035-44. [DOI: 10.1111/j.1471-4159.2010.06989.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Anticonvulsant potential of the peroxisome proliferator-activated receptor gamma agonist pioglitazone in pentylenetetrazole-induced acute seizures and kindling in mice. Brain Res 2010; 1351:246-253. [DOI: 10.1016/j.brainres.2010.06.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 01/21/2023]
|
20
|
Lee Y, Kim D, Kim YH, Lee H, Lee CJ. Improvement of pentylenetetrazol-induced learning deficits by valproic acid in the adult zebrafish. Eur J Pharmacol 2010; 643:225-31. [PMID: 20599908 DOI: 10.1016/j.ejphar.2010.06.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 06/03/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
Pentylenetetrazol (PTZ) has been shown to induce seizure-like behavior, learning deficits in passive avoidance response test, and an increase in hsp70 (heat shock protein 70) mRNA expression in the adult zebrafish; PTZ has been increasingly appreciated as an excellent model system for the study of seizures. In this study, we demonstrate that valproic acid (VPA), an antiepileptic drug, suppresses seizure-like behavior and improves learning ability in adult zebrafish treated with PTZ. Pretreatment with VPA significantly reduces rapid involuntary movement and abrupt changes in moving direction in the PTZ-treated zebrafish. PTZ-induced learning impairments were also improved in the zebrafish pretreated with 200 or 500 microM VPA. However, the scopolamine-induced impairments of learning ability were not improved by VPA pretreatment. It is worth noting that while the zebrafish treated with 500 microM VPA for 1-3 weeks learned the passive avoidance response, those treated with 1 or 2mM VPA for 3h didn't. Furthermore, the increased level of hsp70 expression induced by PTZ, a stress marker protein, was significantly reduced in the VPA-pretreated zebrafish brains. Collectively, our data show the antiepileptic effects of VPA in the adult zebrafish, which coincides with reduced hsp70 mRNA expression, rescued learning impairment under PTZ-treated conditions.
Collapse
Affiliation(s)
- Yunkyoung Lee
- Department of Biological Sciences, Institute of Molecular and Cellular Biology, Inha University, Incheon, Republic of Korea
| | | | | | | | | |
Collapse
|
21
|
Watanabe Y, Kaida Y, Takechi K, Kamei C. Anticonvulsant Effect of (RS)-1-Aminoindan-1,5-dicarboxylic Acid on Pentetrazol-Induced Kindled Seizures in Mice. Biol Pharm Bull 2010; 33:647-52. [DOI: 10.1248/bpb.33.647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yusuke Watanabe
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Yuko Kaida
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Kenshi Takechi
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Chiaki Kamei
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
22
|
Kim Y, Lee Y, Lee H, Jung MW, Lee C. Impaired avoidance learning and increased hsp70 mRNA expression in pentylenetetrazol‐treated zebrafish. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
23
|
Henshall DC, Murphy BM. Modulators of neuronal cell death in epilepsy. Curr Opin Pharmacol 2007; 8:75-81. [PMID: 17827063 DOI: 10.1016/j.coph.2007.07.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/30/2007] [Indexed: 10/22/2022]
Abstract
Experimental and human data have shown that certain seizures cause damage to brain. Such neuronal loss may result in cognitive impairments and perhaps contribute to the development or phenotype of emergent epilepsy. Recent work using genetically modified mice, Tat protein transduction, and viral vectors has shown functional effects of manipulating Bcl-2 and Bcl-w, heat shock proteins, caspases, and their regulators and endonucleases on neuronal death in models of status epilepticus. Ancillary effects on seizure induction and excitability thresholds have emerged for several genes suggesting additional properties of therapeutic potential. Differing hippocampal expression of certain Bcl-2 family genes, elevated endoplasmic reticulum stress chaperones, and death receptor pathway modulation in epilepsy patients support clinical relevance of this focus. These findings may yield potentially valuable adjunctive neuroprotective or anti-epileptogenic strategies.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| | | |
Collapse
|