1
|
Scicchitano P, Tucci M, Bellino MC, Cortese F, Cecere A, De Palo M, Massari F, Caldarola P, Silvestris F, Ciccone MM. The Impairment in Kidney Function in the Oral Anticoagulation Era. A Pathophysiological Insight. Cardiovasc Drugs Ther 2021; 35:505-519. [PMID: 32535717 DOI: 10.1007/s10557-020-07004-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The need for anticoagulation in patients with atrial fibrillation (AF) is fundamental to prevent thromboembolic events. Direct oral anticoagulants (DOACs) recently demonstrated to be superior, or at least equal, to Warfarin in reducing the risk for stroke/systemic embolism and preventing major bleeding and intracranial hemorrhages. The AF population often suffers from chronic kidney disease (CKD). Indeed, the relationship between AF and renal function is bidirectional: AF can trigger kidney failure, while kidney impairment can promote alterations able to enhance AF. Therefore, there are concerns regarding prescriptions of anticoagulants to patients with AF and CKD. The worsening in kidney function can be effectively due to anticoagulants administration. Warfarin has been recognized to promote acute kidney injury in case of excessive anticoagulation levels. Nevertheless, further mechanisms can induce the chronic worsening of renal function, thus leading to terminal kidney failure as observed in post-hoc analysis from registration trials and dedicated observational studies. By contrast, DOACs seem to protect kidneys from injuries more efficiently than Warfarin, although they still continue to play a role in promoting some kidney lesions. However, the exact mechanisms remain unknown. This narrative review aimed to discuss the influence of oral anticoagulants on renal impairment as well as to overview potential pathophysiological mechanisms related to this clinical complication.
Collapse
Affiliation(s)
- Pietro Scicchitano
- Cardiology Department, Hospital "F. Perinei", SS. 96 Altamura - Gravina in Puglia Km. 73,800, 70022, Altamura, BA, Italy.
- Cardiology Department, University of Bari, Bari, Italy.
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
- National Cancer Research Center, Tumori Institute Giovanni Paolo II, Bari, Italy
| | | | | | | | | | - Francesco Massari
- Cardiology Department, Hospital "F. Perinei", SS. 96 Altamura - Gravina in Puglia Km. 73,800, 70022, Altamura, BA, Italy
| | | | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | | |
Collapse
|
2
|
Popov Aleksandrov A, Mirkov I, Ninkov M, Mileusnic D, Demenesku J, Subota V, Kataranovski D, Kataranovski M. Effects of warfarin on biological processes other than haemostasis: A review. Food Chem Toxicol 2018; 113:19-32. [PMID: 29353071 DOI: 10.1016/j.fct.2018.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/29/2017] [Accepted: 01/12/2018] [Indexed: 02/07/2023]
Abstract
Warfarin is the world's most widely used anticoagulant drug. Its anticoagulant activity is based on the inhibition of the vitamin K-dependent (VKD) step in the complete synthesis of a number of blood coagulation factors that are required for normal blood coagulation. Warfarin also affects synthesis of VKD proteins not related to haemostasis including those involved in bone growth and vascular calcification. Antithrombotic activity of warfarin is considered responsible for some aspects of its anti-tumour activity of warfarin. Some aspects of activities against tumours seem not to be related to haemostasis and included effects of warfarin on non-haemostatic VKD proteins as well as those not related to VKD proteins. Inflammatory/immunomodulatory effects of warfarin indicate much broader potential of action of this drug both in physiological and pathological processes. This review provides an overview of the published data dealing with the effects of warfarin on biological processes other than haemostasis.
Collapse
Affiliation(s)
- Aleksandra Popov Aleksandrov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Ivana Mirkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Marina Ninkov
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Dina Mileusnic
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Jelena Demenesku
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia
| | - Vesna Subota
- Institute for Medical Biochemistry, Military Medical Academy, 17 Crnotravska, 11000 Belgrade, Serbia
| | - Dragan Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; Institute of Zoology, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia
| | - Milena Kataranovski
- Immunotoxicology Group, Department of Ecology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, 142 Bulevar Despota Stefana, 11000 Belgrade, Serbia; Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, 16 Studentski trg, 11000 Belgrade, Serbia.
| |
Collapse
|
3
|
Hu WL, Dong HY, Li Y, Ojcius DM, Li SJ, Yan J. Bid-Induced Release of AIF/EndoG from Mitochondria Causes Apoptosis of Macrophages during Infection with Leptospira interrogans. Front Cell Infect Microbiol 2017; 7:471. [PMID: 29184851 PMCID: PMC5694448 DOI: 10.3389/fcimb.2017.00471] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Leptospirosis is a global zoonotic infectious disease caused by pathogenic Leptospira species. Leptospire-induced macrophage apoptosis through the Fas/FasL-caspase-8/3 pathway plays an important role in the survival and proliferation of the pathogen in hosts. Although, the release of mitochondrial apoptosis-inducing factor (AIF) and endonuclease G (EndoG) in leptospire-infected macrophages has been described, the mechanisms linking caspase and mitochondrion-related host-cell apoptosis has not been determined. Here, we demonstrated that leptospire-infection induced apoptosis through mitochondrial damages in macrophages. Apoptosis was caused by the mitochondrial release and nuclear translocation of AIF and/or EndoG, leading to nuclear DNA fragmentation. However, the mitochondrion-related CytC-caspase-9/3 pathway was not activated. Next, we found that the release and translocation of AIF and/or EndoG was preceded by the activation of the BH3-interacting domain death agonist (Bid). Furthermore, our data demonstrated that caspase-8 was activated during the infection and caused the activation of Bid. Meanwhile, high reactive oxygen species (ROS) trigged by the infection caused the dephosphorylation of Akt, which also activated Bid. In conclusion, Bid-mediated mitochondrial release of AIF and/or EndoG followed by nuclear translocation is a major mechanism of leptospire- induced apoptosis in macrophages, and this process is modulated by both caspase-8 and ROS-Akt signal pathways.
Collapse
Affiliation(s)
- Wei-Lin Hu
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hai-Yan Dong
- Department of Medical Microbiology and Immunology, Wenzhou Medical University, Wenzhou, China
| | - Yang Li
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, United States
| | - Shi-Jun Li
- Institute of Communicable Disease Control and Prevention, Guizhou Provincial Centre for Disease Control and Prevention, Guiyang, China
| | - Jie Yan
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, China.,Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Aktop S, Emekli-Alturfan E, Gönül O, Göçmen G, Garip H, Yarat A, Göker K. Effect of Ankaferd Blood Stopper on Skin Superoxide Dismutase and Catalase Activities in Warfarin-Treated Rats. Clin Appl Thromb Hemost 2016; 23:168-174. [PMID: 26354714 DOI: 10.1177/1076029615604049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM Ankaferd Blood Stopper (ABS) is a new promising local hemostatic agent, and its mechanism on hemostasis has been shown by many studies. However, the effects of ABS on skin superoxide dismutase (SOD) and catalase (CAT) activities have not been investigated before. The aim of this study was to evaluate the effects of this new generation local hemostatic agent on warfarin-treated rats focusing on its the antioxidant potential in short-term soft tissue healing. METHODS Twelve systemically warfarin treated (warfarin group) and 12 none treated Wistar Albino rats (control group) were selected for the trial. Rats in the warfarin group were treated intraperitonally with 0.1 mg/kg warfarin, and rats in the control group were given 1 mL/kg saline 3 days earlier to surgical procedure and continued until killing. All rats had incisions on dorsal dermal tissue, which was applied ABS or no hemostatic agent before suturing. Six of each group were killed on day 4, and the other 6 were killed on day 8. Blood and skin samples were taken. Prothrombin time (PT) in blood samples, CAT, and SOD activities in skin samples were determined. RESULTS Warfarin treatment dose was found to be convenient and warfarin treatment increased the PT levels as expected. Warfarin treatment decreased CAT activity significantly compared to the control group. The ABS treatment significantly increased SOD activities in the warfarin group at the end of the eighth day. CONCLUSION Ankaferd Blood Stopper acted positively in short-term tissue healing by increasing SOD activity in warfarin-treated rats. Therefore, ABS may be suggeted as a promoting factor in tissue healing.
Collapse
Affiliation(s)
- Sertaç Aktop
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ebru Emekli-Alturfan
- 2 Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Onur Gönül
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Gökhan Göçmen
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Hasan Garip
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Ayşen Yarat
- 2 Department of Biochemistry, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - Kamil Göker
- 1 Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG. The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction. NANOSCALE RESEARCH LETTERS 2009; 4:1409-20. [PMID: 20652105 PMCID: PMC2894345 DOI: 10.1007/s11671-009-9413-8] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/07/2009] [Indexed: 05/18/2023]
Abstract
Nanotechnology represents a new and enabling platform that promises to provide a range of innovative technologies for biological applications. ZnO nanoparticles of controlled size were synthesized, and their cytotoxicity toward different human immune cells evaluated. A differential cytotoxic response between human immune cell subsets was observed, with lymphocytes being the most resistant and monocytes being the most susceptible to ZnO nanoparticle-induced toxicity. Significant differences were also observed between previously activated memory lymphocytes and naive lymphocytes, indicating a relationship between cell-cycle potential and nanoparticle susceptibility. Mechanisms of toxicity involve the generation of reactive oxygen species, with monocytes displaying the highest levels, and the degree of cytotoxicity dependent on the extent of nanoparticle interactions with cellular membranes. An inverse relationship between nanoparticle size and cytotoxicity, as well as nanoparticle size and reactive oxygen species production was observed. In addition, ZnO nanoparticles induce the production of the proinflammatory cytokines, IFN-γ, TNF-α, and IL-12, at concentrations below those causing appreciable cell death. Collectively, these results underscore the need for careful evaluation of ZnO nanoparticle effects across a spectrum of relevant cell types when considering their use for potential new nanotechnology-based biological applications.
Collapse
Affiliation(s)
- Cory Hanley
- Department of Biological Sciences, Boise State University, Boise, ID, 83725, USA.
| | | | | | | | | | | |
Collapse
|