1
|
Seifert J, Eckermann G, Heck J, Bleich S, Dabbert D, Grohmann R, Toto S. [Understanding and assessing the antidepressant drug-associated risk of bleeding]. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2024; 92:458-467. [PMID: 37327817 DOI: 10.1055/a-2089-3490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antidepressants, in particular selective serotonin reuptake inhibitors (SSRIs), are the most commonly prescribed psychopharmacological drug group. Thus, a precise knowledge of the expected adverse drug reactions is indispensable. The increased risk of bleeding events is well documented, especially in patients treated with SSRIs. However, many other antidepressant drug groups have also been implicated in increasing the risk of bleeding. In the following review, the thrombocytic serotonin system and the respective targets of the different antidepressants are explained. Subsequently, the available literature on bleeding under the respective antidepressant classes or individual substances is presented, using data from meta-analyses whenever possible. In addition to the risk of bleeding in general, individual bleeding entities are also considered, such as gastrointestinal and cerebral hemorrhages. Finally, the effects of other drugs that increase the risk of bleeding (i. e., nonsteroidal anti-inflammatory drugs, platelet aggregation inhibitors and anticoagulants) in combination with antidepressant drugs are discussed. The information presented here is meant to guide practitioner's decision making regarding an appropriate antidepressant pharmacotherapy based on the patient's individual risk constellation.
Collapse
Affiliation(s)
- Johanna Seifert
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Gabriel Eckermann
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie, Arbeitsgruppe Polypharmazie, München, Germany
| | - Johannes Heck
- Institut für Klinische Pharmakologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Stefan Bleich
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Dominik Dabbert
- Klinik für Forensische Psychiatrie und Psychotherapie, Klinikum Bremen-Ost gGmbH, Bremen, Germany
| | - Renate Grohmann
- Psychiatrie und Psychotherapie, Klinik und Poliklinik der Ludwig-Maximilians-Universität München, München, Germany
| | - Sermin Toto
- Klinik für Psychiatrie, Sozialpsychiatrie und Psychotherapie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
2
|
Beura SK, Yadav P, Panigrahi AR, Singh SK. Unveiling the mechanism of platelet dysfunction in Parkinson's disease: The effect of 6-hydroxydopamine on human blood platelets. Parkinsonism Relat Disord 2023; 112:105453. [PMID: 37244106 DOI: 10.1016/j.parkreldis.2023.105453] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Parkinson's disease (PD) is a progressive neuronal illness often linked to increased cardiovascular complications, such as myocardial infarction, cardiomyopathy, congestive heart failure, and coronary heart disease. Platelets, which are the essential components of circulating blood, are considered potential players in regulating these complications, as platelet dysfunction is evident in PD. These tiny blood cell fragments are supposed to play a crucial role in these complications, but the underlying molecular processes are still obscure. METHODS To gain a better understanding of platelet dysfunction in PD, we investigated the impact of 6-hydroxydopamine (6-OHDA), an analog of dopamine that simulates PD by destroying dopaminergic neurons, on human blood platelets. The levels of intraplatelet reactive oxygen species (ROS) were assessed using H2DCF-DA (20 μM), while mitochondrial ROS was evaluated using MitoSOX™ Red (5 μM), and intracellular Ca2+ was measured with Fluo-4-AM (5 μM). The data were acquired through the use of both a multimode plate reader and a laser-scanning confocal microscope. RESULTS Our findings showed that 6-OHDA treatment increased the production of ROS in human blood platelets. The increase in ROS was confirmed by the ROS scavenger, NAC, and was also reduced by inhibiting the NOX enzyme with apocynin. Additionally, 6-OHDA potentiated mitochondrial ROS production in platelets. Furthermore, 6-OHDA triggered the intraplatelet Ca2+ elevation. This effect was mitigated by the Ca2+ chelator BAPTA, which decreased the ROS production triggered by 6-OHDA in human blood platelets, while the IP3 receptor blocker, 2-APB, reduced the formation of ROS induced by 6-OHDA. CONCLUSION Our findings suggest that the 6-OHDA-induced ROS production is regulated by the IP3 receptor-Ca2+-NOX signaling axis in human blood platelets, where the platelet mitochondria also play a significant role. This observation provides a crucial mechanistic understanding of the altered platelet activities that are commonly observed in PD patients.
Collapse
Affiliation(s)
- Samir Kumar Beura
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Pooja Yadav
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Abhishek Ramachandra Panigrahi
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sunil Kumar Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Önder Narin G, Aydın B, Cabadak H. Studies on the role of alpha 7 nicotinic acetylcholine receptors in K562 cell proliferation and signaling. Mol Biol Rep 2021; 48:5045-5055. [PMID: 34143396 DOI: 10.1007/s11033-021-06498-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
The results we obtained from this study gave information about the determination of alpha 7 nicotinic acetylcholine receptor (α7-nACh) expression in human erythroleukemia cells, as well as whether it has a role in calcium release and cell proliferation in the presence of nicotinic agonist, antagonists. Determining the roles of α7 nicotinic receptors in erythroleukemia cells will also contribute to leukemia-related signal transduction studies. This study is primarily to determine the role of nicotinic agonists and antagonists in cell proliferation, α7 nicotinic acetylcholine receptor expression, and calcium release. The aim of this study, which is a continuation and an important part of our previous studies on the cholinergic system, has contributed to the literature on the human erythroleukemia cell signaling mechanism. Cell viability was evaluated by the trypan blue exclusion test and Bromodeoxyuridine/5-Bromo-2'-deoxyuridine (BrdU) labeling. Acetylcholine, nicotinic alpha 7 receptor antagonist methyllycaconitine citrate, and cholinergic antagonist atropine were used to determine the role of α7-nACh in K562 cell proliferation. In our experiments, the fluorescence spectrophotometer was used in Ca2+ measurements. The expression of nicotinic alpha 7 receptor was evaluated by western blot. The stimulating effect of acetylcholine in K562 cell proliferation was reversed by both the α7 nicotinic antagonist methyllycaconitine citrate and the cholinergic antagonist, atropine. Methyllycaconitine citrate inhibited K562 cell proliferation partially explained the roles of nicotinic receptors in signal transduction. While ACh caused an increase in intracellular Ca2+, methyllycaconitine citrate decreased intracellular Ca2+ level in K562 cell. The effects of nicotinic agonists and/or antagonists on erythroleukemic cells on proliferation, calcium level contributed to the interaction of nicotinic receptors with different signaling pathways. Proliferation mechanisms in erythroleukemic cells are under the control of the α7 nicotinic acetylcholine receptor via calcium influx and different signalling pathway.
Collapse
Affiliation(s)
- Gözde Önder Narin
- Department of Biophysics, Marmara University Institute of Health Sciences, Istanbul, Turkey
| | - Banu Aydın
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük Health Campus, Basic Medical Sciences Building, Maltepe, 34854, Istanbul, Turkey
| | - Hülya Cabadak
- Department of Biophysics, School of Medicine, Marmara University, Başıbüyük Health Campus, Basic Medical Sciences Building, Maltepe, 34854, Istanbul, Turkey.
| |
Collapse
|
4
|
Amadio P, Zarà M, Sandrini L, Ieraci A, Barbieri SS. Depression and Cardiovascular Disease: The Viewpoint of Platelets. Int J Mol Sci 2020; 21:E7560. [PMID: 33066277 PMCID: PMC7589256 DOI: 10.3390/ijms21207560] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a major cause of morbidity and low quality of life among patients with cardiovascular disease (CVD), and it is now considered as an independent risk factor for major adverse cardiovascular events. Increasing evidence indicates not only that depression worsens the prognosis of cardiac events, but also that a cross-vulnerability between the two conditions occurs. Among the several mechanisms proposed to explain this interplay, platelet activation is the more attractive, seeing platelets as potential mirror of the brain function. In this review, we dissected the mechanisms linking depression and CVD highlighting the critical role of platelet behavior during depression as trigger of cardiovascular complication. In particular, we will discuss the relationship between depression and molecules involved in the CVD (e.g., catecholamines, adipokines, lipids, reactive oxygen species, and chemokines), emphasizing their impact on platelet activation and related mechanisms.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanism, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.Z.); (L.S.)
| |
Collapse
|
5
|
|
6
|
Affiliation(s)
- Sibelnur Avcil
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Adnan Menderes University , Aydın, Turkey
| |
Collapse
|
7
|
Dietrich-Muszalska A, Wachowicz B. Platelet haemostatic function in psychiatric disorders: Effects of antidepressants and antipsychotic drugs. World J Biol Psychiatry 2017; 18:564-574. [PMID: 27112326 DOI: 10.3109/15622975.2016.1155748] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objectives Platelets, the smallest anucleated blood cells, play an essential role in the first step of complex haemostatic process. This review presents the haemostatic function of blood platelets related to their activation in psychiatric disorders (schizophrenia, depression), the role of antipsychotic and antidepressant medication, and introduces the mechanisms by which activated platelets may be involved in the pathophysiology of these disorders. Methods Platelets are interesting and easily accessible blood cells to study biochemical pathways related to schizophrenia and other psychiatric disorders, and their complex activation process might be useful as a diagnostic peripheral marker for studying psychiatric disorders and haemostatic complications. Results The excessive activation of platelets observed in patients with depression and schizophrenia is involved in cardiovascular diseases, stroke and increased risk of thrombotic complications that may be major causes of morbidity and mortality of patients. The use of antidepressants or antipsychotic drugs in depression and schizophrenia treatment is often associated with haematological side effects such as bleeding, venous thromboembolism and impaired platelet function. Conclusions Understanding the role of platelet activation in psychiatric disorders such as schizophrenia or depression and medication may improve therapies in the future.
Collapse
Affiliation(s)
- Anna Dietrich-Muszalska
- a Department of Biological Psychiatry of the Chair of Experimental and Clinical Physiology , Medical University of Lodz , Lodz , Poland
| | - Barbara Wachowicz
- b Department of General Biochemistry , University of Lodz , Lodz , Poland
| |
Collapse
|
8
|
Yu Z, Saito H, Otsuka H, Shikama Y, Funayama H, Sakai M, Murai S, Nakamura M, Yokochi T, Takada H, Sugawara S, Endo Y. Pulmonary platelet accumulation induced by catecholamines: Its involvement in lipopolysaccharide-induced anaphylaxis-like shock. Int Immunopharmacol 2016; 43:40-52. [PMID: 27939824 DOI: 10.1016/j.intimp.2016.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/29/2016] [Accepted: 11/29/2016] [Indexed: 11/15/2022]
Abstract
Intravenously injected lipopolysaccharides (LPS) rapidly induce pulmonary platelet accumulation (PPA) and anaphylaxis-like shock (ALS) in mice. Macrophages reportedly release catecholamines rapidly upon stimulation with LPS. Here, we examined the involvement of macrophage-derived catecholamines in LPS-induced PPA and ALS. A catecholamine or Klebsiella O3 (KO3) LPS was intravenously injected into mice, with 5-hydroxytryptamine in the lung being measured as a platelet marker. The tested catecholamines induced PPA, leading to shock. Their minimum shock-inducing doses were at the nmol/kg level. The effects of epinephrine and norepinephrine were inhibited by prazosin (α1 antagonist) and by yohimbine (α2 antagonist), while dopamine's were inhibited only by prazosin. Use of synthetic adrenergic α1- and/or α2-agonists, platelet- or macrophage-depleted mice, a complement C5 inhibitor and C5-deficient mice revealed that (a) α2-receptor-mediated PPA and shock depend on both macrophages and complements, while α1-receptor-mediated PPA and shock depend on neither macrophages nor complements, (b) the PPA and ALS induced by KO3-LPS depend on α1- and α2-receptors, macrophages, and complements, and (c) KO3-LPS-induced PPA is preceded by catecholamines decreasing in serum. Together, these results suggest the following. (i) Catecholamines may stimulate macrophages and release complement C5 via α2-receptors. (ii) Macrophage-derived catecholamines may mediate LPS-induced PPA and ALS. (iii) Moderate PPA may serve as a defense mechanism to remove excess catecholamines from the circulation by promoting their rapid uptake, thus preventing excessive systemic effects. (iv) The present findings might provide an insight into possible future pharmacological strategies against such diseases as shock and acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Zhiqian Yu
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Hiroko Saito
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Aomori University, 2-3-1 Koubata, Aomori 030-0943, Japan
| | - Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Yosuke Shikama
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Clinical Research Center for Diabetes, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hiromi Funayama
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Division of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; Department of Pediatric Dentistry, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Mai Sakai
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Shigeo Murai
- Laboratory of Pharmacology, Faculty of Pharmaceutical Science, Aomori University, 2-3-1 Koubata, Aomori 030-0943, Japan
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University, Nagakute, Aichi 48-1955, Japan
| | - Haruhiko Takada
- Division of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shunji Sugawara
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yasuo Endo
- Division of Molecular Regulation, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
9
|
Alexopoulos D. P2Y12 inhibitors adjunctive to primary PCI therapy in STEMI: Fighting against the activated platelets. Int J Cardiol 2013; 163:249-255. [DOI: 10.1016/j.ijcard.2011.11.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/24/2011] [Accepted: 11/26/2011] [Indexed: 12/13/2022]
|
10
|
Ait-Hsiko L, Kraaij T, Wedel J, Theisinger B, Theisinger S, Yard B, Bugert P, Schedel A. N-octanoyl-dopamine is a potent inhibitor of platelet function. Platelets 2012; 24:428-34. [PMID: 22916829 DOI: 10.3109/09537104.2012.715217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dopamine (DA) is a co-agonist for platelet activation; yet, donor DA treatment is associated with improved transplantation outcome in renal and heart recipients. Recently, N-octanoyl-dopamine (NOD) was developed which displays superior effects compared to DA in terms of graft protecting properties. Whereas DA is a known platelet co-agonist, the effect of NOD on platelet function is unknown. This is a hypothesis generating study with the aim to assess the effects and molecular mechanisms of NOD and NOD-like compounds on platelet function. The influence of DA, NOD, and NOD-like compounds on platelet responses to classical agonists (adenosine 5'-diphosphate (ADP), U46619) was investigated in six healthy donors by applying whole blood aggregometry (Multiplate®) and flow cytometry for Pac-1, CD62P, and CD63 expression. Changes in platelet cAMP concentrations were assessed by ELISA. While DA showed synergy in platelet activation by ADP and U46619, NOD caused significant inhibition of platelet function both in whole blood aggregometry and flow cytometry. The inhibitory effect of NOD was not mediated via cAMP levels. The nonredox-active NOD-analog N-octanoyl-tyramine had no effects on platelet function. Acetylated NOD conferred to NOD by intracellular esterases showed similar inhibitory effects as NOD. In contrast to DA, NOD is a potent inhibitor of platelet function most likely through intracellular redox-active processes. This adds to the overall protective effect of NOD on pre-transplantation injury and makes NOD an attractive candidate compound for donor or organ conditioning prior to transplantation.
Collapse
Affiliation(s)
- Lamia Ait-Hsiko
- Department of Nephrology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schedel A, Thornton S, Schloss P, Klüter H, Bugert P. Human platelets express functional alpha7-nicotinic acetylcholine receptors. Arterioscler Thromb Vasc Biol 2010; 31:928-34. [PMID: 21051662 DOI: 10.1161/atvbaha.110.218297] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Nicotinic acetylcholine receptors, especially α7 (nAChRα7), form Ca(2+) channels and are expressed on a variety of neuronal and nonneuronal cells. Also, megakaryocytic cells have been shown to contain components of a nonneuronal cholinergic system, including acetylcholine and acetylcholine esterase. However, the corresponding nAChRs and their role in platelet function have not been demonstrated until now. Our previous platelet transcriptome data indicated the presence of nAChR gene transcripts. METHODS AND RESULTS Here, we present evidence that human platelets and megakaryocytic precursor cells express nAChRα7 subunits, as revealed by mRNA and protein expression. The subunits form functional Ca(2+) channels, as demonstrated by Ca(2+) entry in platelets induced by the nAChRα7-selective agonist PNU-282987. PNU-282987 also enhanced fibrinogen receptor activation induced by classical platelet agonists (the thromboxane A(2) analog U46619 and ADP). Furthermore, agonist-induced platelet aggregation was significantly inhibited by the nAChRα7-selective antagonists α-bungarotoxin and methyllycaconitine. CONCLUSIONS Ca(2+) influx via nAChRα7 channels represents a novel pathway for human platelets with significant impact on platelet function. Because platelets were suggested to contain acetylcholine, we conclude that on activation, stored acetylcholine is released, which activates nAChRα7 channels and thereby contributes to maintaining intracellular Ca(2+) levels and supporting platelet activation.
Collapse
Affiliation(s)
- Angelika Schedel
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service of Baden-Württemberg-Hessen, Friedrich-Ebert-Straße 107, D-68167 Mannheim, Germany.
| | | | | | | | | |
Collapse
|
12
|
Schedel A, Thornton S, Klüter H, Bugert P. The Effect of Psychoactive Drugs on in vitro Platelet Function. ACTA ACUST UNITED AC 2010; 37:293-298. [PMID: 21113253 DOI: 10.1159/000319841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/24/2010] [Indexed: 11/19/2022]
Abstract
BACKGROUND: Neuro-hormonal and hemostatic mechanisms are important in a wide range of psychological and cardiovascular diseases. The use of psychoactive drugs in mental illnesses is often involved with hematologic side effects including impaired platelet function. Subsequently, the risk for the development of cardiovascular diseases may be higher in these patients. Interestingly, platelets that play a key role in cardiovascular complications contain quite a number of neuronal receptors which are involved in psychotic disorders. It has been widely discussed whether psychoactive drugs used in the therapy of psychotic disorders have a direct effect on platelet function and whether the effects are transmitted through the corresponding receptors on the platelet surface. MATERIAL AND METHODS: In this study, we tested several psychoactive drugs regarding their impact on whole blood platelet aggregation. RESULTS: Antidopaminergics preferentially inhibited ADP-induced aggregation whereas anticholinergics mainly inhibited U46619-induced aggregation. Because platelets respond selectively to different psychoactive drugs we assume that corresponding receptors have a functional aspect on platelets and that receptor blockade affects platelet aggregation through different mechanisms. CONCLUSION: The knowledge about the effects of psychoactive drugs on platelet function may help to characterize neuronal receptors on platelets and may contribute to a better understanding of altered platelet function during therapy with psychoactive drugs.
Collapse
Affiliation(s)
- Angelika Schedel
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, German Red Cross Blood Service of Baden-Württemberg - Hessen, Mannheim, Germany
| | | | | | | |
Collapse
|
13
|
Osmancik P, Jirmar R, Hulikova K, Peroutka Z, Pompachova A, Motovska Z, Widimsky P. A comparison of the VASP index between patients with hemodynamically complicated and uncomplicated acute myocardial infarction. Catheter Cardiovasc Interv 2010; 75:158-66. [DOI: 10.1002/ccd.22248] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Oruch R, Lund A, Pryme IF, Holmsen H. An intercalation mechanism as a mode of action exerted by psychotropic drugs: results of altered phospholipid substrate availabilities in membranes? J Chem Biol 2010; 3:67-88. [PMID: 21270935 PMCID: PMC2852515 DOI: 10.1007/s12154-009-0034-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/29/2009] [Accepted: 11/03/2009] [Indexed: 12/27/2022] Open
Abstract
Patients respond differently to psychotropic drugs, and this is currently a controversial theme among psychiatrists. The effects of 16 psychotropics on cell membrane parameters have been reported. These drugs belong to three major groups used in therapeutic psychiatry: antipsychotics, antidepressants, and anxiolytic/hypnotics. Human platelets, lacking dopamine (D(2)) receptors (proposed targets of most psychotropics), have been used as a cell model. Here we discuss the effects of these drugs on three metabolic phenomena and also results from Langmuir experiments. Diazepam, in contrast to the remaining drugs, had negligible effects on metabolic phenomena and had no effects in Langmuir experiments. Psychotropic drugs may work through intercalation in membrane phospholipids. It is possible that the fluidity of membranes, rich in essential fatty acids, the content being influenced by diet, could be a contributing factor to the action of psychotropics. This might in turn explain the observed major differences in therapeutic response among patients.
Collapse
Affiliation(s)
- Ramadhan Oruch
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Anders Lund
- MoodNet, Haukeland University Hospital, University of Bergen, Bergen, Norway
| | - Ian F. Pryme
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Holm Holmsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| |
Collapse
|
15
|
Oruch R, Hodneland E, Pryme IF, Holmsen H. In thrombin stimulated human platelets Citalopram, Promethazine, Risperidone, and Ziprasidone, but not Diazepam, may exert their pharmacological effects also through intercalation in membrane phospholipids in a receptor-independent manner. J Chem Biol 2009; 2:89-103. [PMID: 19568786 PMCID: PMC2701490 DOI: 10.1007/s12154-009-0018-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/31/2009] [Indexed: 10/31/2022] Open
Abstract
Intercalation of drugs in the platelet membrane affects phospholipid-requiring enzymatic processes according to the drugs' intercalation capability. We investigated effects of Promethazine, Citalopram, Ziprasidone, Risperidone, and Diazepam on phospholipase A(2) (PLA(2)) and polyphosphoinositide (PPI) metabolism in thrombin-stimulated human platelets. We also examined effects of the drugs on monolayers of glycerophospholipids using the Langmuir technique. Diazepam did not influence PLA( 2 ) activity, had no effects on PPI cycle, and caused no change in mean molecular area of phospholipid monolayers. The remaining psychotropic drugs affected these parameters in different ways and levels of potency suggesting that they act by being intercalated between the molecules of adjacent membrane phospholipids, thus causing changes in substrate availability for phospholipid-hydrolyzing enzymes (PLA(2) and Phospholipase C). We show that several psychotropic drugs can also have other cellular effects than receptor antagonism. These effects may be implicated in the psychotropic effects of the drugs and/or their side effects.
Collapse
Affiliation(s)
- Ramadhan Oruch
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway,
| | | | | | | |
Collapse
|