1
|
Lu F, Mai Z, Zhang L, Luo H, Wang L, Li S, Zhong M. Differential Expression of Disulfidptosis-Related Genes in Spinal Cord Injury and Their Role in the Immune Microenvironment. Mol Neurobiol 2025:10.1007/s12035-025-04931-4. [PMID: 40237950 DOI: 10.1007/s12035-025-04931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Spinal cord injury (SCI) often results in severe sensory, motor, and autonomic dysfunction, with limited treatment options due to complex underlying mechanisms. Disulfidptosis, a recently discovered form of cell death driven by disulfide bond accumulation, has been linked to various diseases, but its role in SCI remains unexplored. This study investigates the involvement of disulfidptosis-related genes (DRGs) in SCI to identify potential diagnostic markers and therapeutic targets. Using SCI datasets from the Gene Expression Omnibus (GEO), we conducted differential gene expression analysis, identifying key disulfidptosis-related differentially expressed genes (DRDEGs). Further analysis through gene set enrichment (GSEA) and Bayesian pathway enrichment highlighted significant involvement in pathways such as NF-κB, PI3K/Akt, and MAPK, with an emphasis on nephrin family interactions. Three core DRDEGs-HK2, Map3k8, and S100a6-were identified, and a diagnostic model built on these genes demonstrated strong predictive performance (AUC: 0.896 in training, 0.850 in validation). Additionally, real-time PCR (qRT-PCR) in an animal model validated the elevated expression of these DRDEGs in SCI samples. This research provides novel insights into disulfidptosis in SCI, suggesting these genes as promising targets for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Feng Lu
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Zifeng Mai
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Longfei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Hao Luo
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Lifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Shihong Li
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Maolin Zhong
- Department of Anesthesiology, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Ganzhou, Jiangxi, China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
2
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
3
|
Shen CL, Castro L, Fang CY, Castro M, Sherali S, White S, Wang R, Neugebauer V. Bioactive compounds for neuropathic pain: An update on preclinical studies and future perspectives. J Nutr Biochem 2022; 104:108979. [PMID: 35245654 DOI: 10.1016/j.jnutbio.2022.108979] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Among different types of chronic pain, neuropathic pain (NP), arising from damage to the nervous system, including peripheral fibers and central neurons, is notoriously difficult to treat and affects 7-10% of the general population. Currently available treatment options for NP are limited and opioid analgesics have severe side effects and can result in opioid use disorder. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of NP. Here, we assessed the effects of commonly consumed bioactive compounds (ginger, curcumin, omega-3 polyunsaturated fatty acids, epigallocatechin gallate, resveratrol, soy isoflavones, lycopene, and naringin) on NP and NP-related neuroinflammation. Cellular studies demonstrated that these bioactive compounds reduce inflammation via suppression of NF-κB and MAPK signaling pathways that regulate apoptosis/cell survival, antioxidant, and anti-inflammatory responses. Animal studies strongly suggest that these regularly consumed bioactive compounds have a pronounced anti-NP effect as shown by decreased mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia, and cold hyperalgesia. The proposed molecular mechanisms include (1) the enhancement of neuron survival, (2) the reduction of neuronal hyperexcitability by activation of antinociceptive cannabinoid 1 receptors and opioid receptors, (3) the suppression of sodium channel current, and (4) enhancing a potassium outward current in NP-affected animals, triggering a cascade of chemical changes within, and between neurons for pain relief. Human studies administered in this area have been limited. Future randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in patients with NP.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | - Luis Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Chih-Yu Fang
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Maribel Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Samir Sherali
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Steely White
- Department of Microbiology, Texas Tech University, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
4
|
Campos J, Silva NA, Salgado AJ. Nutritional interventions for spinal cord injury: preclinical efficacy and molecular mechanisms. Nutr Rev 2021; 80:1206-1221. [PMID: 34472615 DOI: 10.1093/nutrit/nuab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition that leads to motor, sensory, and autonomic impairments. Its intrinsic pathophysiological complexity has hindered the establishment of effective treatments for decades. Nutritional interventions (NIs) for SCI have been proposed as a route to circumvent some of the problems associated with this condition. Results obtained in animal models point to a more holistic effect, rather than to specific modulation, of several relevant SCI pathophysiological processes. Indeed, published data have shown NI improves energetic imbalance, oxidative damage, and inflammation, which are promoters of improved proteostasis and neurotrophic signaling, leading ultimately to neuroprotection and neuroplasticity. This review focuses on the most well-documented Nis. The mechanistic implications and their translational potential for SCI are discussed.
Collapse
Affiliation(s)
- Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
5
|
Menegazzi M, Campagnari R, Bertoldi M, Crupi R, Di Paola R, Cuzzocrea S. Protective Effect of Epigallocatechin-3-Gallate (EGCG) in Diseases with Uncontrolled Immune Activation: Could Such a Scenario Be Helpful to Counteract COVID-19? Int J Mol Sci 2020; 21:ijms21145171. [PMID: 32708322 PMCID: PMC7404268 DOI: 10.3390/ijms21145171] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/22/2023] Open
Abstract
Some coronavirus disease 2019 (COVID-19) patients develop acute pneumonia which can result in a cytokine storm syndrome in response to Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) infection. The most effective anti-inflammatory drugs employed so far in severe COVID-19 belong to the cytokine-directed biological agents, widely used in the management of many autoimmune diseases. In this paper we analyze the efficacy of epigallocatechin 3-gallate (EGCG), the most abundant ingredient in green tea leaves and a well-known antioxidant, in counteracting autoimmune diseases, which are dominated by a massive cytokines production. Indeed, many studies registered that EGCG inhibits signal transducer and activator of transcription (STAT)1/3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factors, whose activities are crucial in a multiplicity of downstream pro-inflammatory signaling pathways. Importantly, the safety of EGCG/green tea extract supplementation is well documented in many clinical trials, as discussed in this review. Since EGCG can restore the natural immunological homeostasis in many different autoimmune diseases, we propose here a supplementation therapy with EGCG in COVID-19 patients. Besides some antiviral and anti-sepsis actions, the major EGCG benefits lie in its anti-fibrotic effect and in the ability to simultaneously downregulate expression and signaling of many inflammatory mediators. In conclusion, EGCG can be considered a potential safe natural supplement to counteract hyper-inflammation growing in COVID-19.
Collapse
Affiliation(s)
- Marta Menegazzi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
- Correspondence:
| | - Rachele Campagnari
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Mariarita Bertoldi
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, School of Medicine, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy; (R.C.); (M.B.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Polo Universitario dell’Annunziata, I-98168 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy; (R.D.P.); (S.C.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
6
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
7
|
Gurunathan S, Kang MH, Kim JH. Role and Therapeutic Potential of Melatonin in the Central Nervous System and Cancers. Cancers (Basel) 2020; 12:cancers12061567. [PMID: 32545820 PMCID: PMC7352348 DOI: 10.3390/cancers12061567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Melatonin (MLT) is a powerful chronobiotic hormone that controls a multitude of circadian rhythms at several levels and, in recent times, has garnered considerable attention both from academia and industry. In several studies, MLT has been discussed as a potent neuroprotectant, anti-apoptotic, anti-inflammatory, and antioxidative agent with no serious undesired side effects. These characteristics raise hopes that it could be used in humans for central nervous system (CNS)-related disorders. MLT is mainly secreted in the mammalian pineal gland during the dark phase, and it is associated with circadian rhythms. However, the production of MLT is not only restricted to the pineal gland; it also occurs in the retina, Harderian glands, gut, ovary, testes, bone marrow, and lens. Although most studies are limited to investigating the role of MLT in the CNS and related disorders, we explored a considerable amount of the existing literature. The objectives of this comprehensive review were to evaluate the impact of MLT on the CNS from the published literature, specifically to address the biological functions and potential mechanism of action of MLT in the CNS. We document the effectiveness of MLT in various animal models of brain injury and its curative effects in humans. Furthermore, this review discusses the synthesis, biology, function, and role of MLT in brain damage, and as a neuroprotective, antioxidative, anti-inflammatory, and anticancer agent through a collection of experimental evidence. Finally, it focuses on the effect of MLT on several neurological diseases, particularly CNS-related injuries.
Collapse
|
8
|
Zhang H, Gong M, Luo X. Methoxytetrahydro-2H-pyran-2-yl)methyl benzoate inhibits spinal cord injury in the rat model via PPAR-γ/PI3K/p-Akt activation. ENVIRONMENTAL TOXICOLOGY 2020; 35:714-721. [PMID: 32149473 DOI: 10.1002/tox.22902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/28/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Spinal cord injury (SCI) is the most commonly seen trauma leading to disability in people worldwide. The purpose of current study was to determine the protective effect of methoxytetrahydro-2H-pyran-2-yl)methyl benzoate (HMPB) on SCI in rat model. TUNEL staining was used to examine apoptotic changes in spinal cord of SCI rats. The ELISA kits were employed to assess inflammatory processes and oxidative factors in the spinal cord tissues. Behavioral changes in SCI rats were assessed using Basso, Beattie, and Bresnahan (BBB) scoring system. Western blotting was used for assessment of proteins. The HMPB treatment of SCI rats reduced apoptotic cell number based on the concentration of dose administered. Treatment of SCI rats with HMPB enhanced BBB score and decreased accumulation of water content in SCI rats significantly. On treatment with HMPB the TNF-α and interleukin-6/1β/18 levels were suppressed in SCI rats. Treatment with HMPB induced excessive release of SOD, CAT, and GSH molecules and decreased overproduction of MDA. The SCI induced upregulation of caspase-3/9 activity was completely alleviated by HMPB at 2 mg/kg dose. The HMPB treatment of SCI rats promoted peroxisome proliferator-activated receptor γ (PPAR-γ) expression, reduced cyclooxygenase (COX)-2 production and increased expression of p-Akt and phosphoinositide 3-kinase (p-PI3K). The study demonstrated that HMPB suppressed apoptosis, raised BBB score and inhibited inflammation in SCI rats. Moreover, activation of PI3K/Akt in the spinal cord tissues of SCI rats was promoted by HMPB. Therefore, HMPB has protective effect on SCI in the rat model.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Spinal surgery, The People's Hospital of Longhua, Shenzhen, China
| | - Ming Gong
- Department of Spinal surgery, The People's Hospital of Longhua, Shenzhen, China
| | - Xinle Luo
- Department of Spinal surgery, The People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
9
|
Liu S, Yu G, Song G, Zhang Q. Green tea polyphenols protect PC12 cells against H 2O 2-induced damages by upregulating lncRNA MALAT1. Int J Immunopathol Pharmacol 2020; 33:2058738419872624. [PMID: 31456460 PMCID: PMC6713953 DOI: 10.1177/2058738419872624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is of significance to alleviate oxidative damages for the treatment of spinal cord injury (SCI). Studies have ascertained that green tea polyphenols (GTPs) exert protective activities against oxidative damages. In this study, we aimed to investigate the protective effects of GTP against H2O2-caused injuries in PC12 cells as well as the molecular underpinnings associated with long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). PC12 cells were preincubated with GTP prior to H2O2 stimulation. Furthermore, MALAT1-deficient PC12 cells were constructed by transfection and identified by quantitative real-time polymerase chain reaction (qRT-PCR) assay. Next, viability and apoptosis were detected by cell counting kit-8 and flow cytometry, respectively. Meanwhile, Western blot assay was carried out to monitor the expression alteration of proteins associated with apoptosis (Bcl-2, Bax, pro-Caspase-3/9, and cleaved Caspase-3/9) and autophagy (microtubule-associated protein 1 light chain 3 (LC3)-II, LC3-I, Beclin-1, and p62). Moreover, we examined the expression of β-catenin and dissected the phosphorylation of phosphatidylinositol 3′-kinase (PI3K) and protein kinase B (AKT). We found that H2O2 decreased the viability of PC12 cells while initiated apoptosis and autophagy processes. GTP-preincubated PC12 cells maintained the viability and resisted the apoptosis and autophagy induced by H2O2. Pointedly, GTP-pretreated PC12 cells showed an increase in MALAT1 after H2O2 stimulation. Of note, the protective effects of GTP were buffered in MALAT1-deficient cells in response to H2O2. The expression of β-catenin and phosphorylation of PI3K and AKT were upregulated by GTP, while MALAT1 knockdown led to opposite results. To sum up, GTP protected PC12 cells from H2O2-induced damages by the upregulation of MALAT1. This process might be through activating Wnt/β-catenin and PI3K/AKT signal pathways.
Collapse
Affiliation(s)
- Shuheng Liu
- 1 Department of Spine Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Guisheng Yu
- 2 Department of Orthopaedics, Heze Municipal Hospital, Heze, China
| | - Guohua Song
- 2 Department of Orthopaedics, Heze Municipal Hospital, Heze, China
| | - Qingguo Zhang
- 1 Department of Spine Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
10
|
Goodus MT, Sauerbeck AD, Popovich PG, Bruno RS, McTigue DM. Dietary Green Tea Extract Prior to Spinal Cord Injury Prevents Hepatic Iron Overload but Does Not Improve Chronic Hepatic and Spinal Cord Pathology in Rats. J Neurotrauma 2018; 35:2872-2882. [PMID: 30084733 DOI: 10.1089/neu.2018.5771] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spinal cord injury (SCI) disrupts autonomic regulation of visceral organs. As a result, a leading cause of mortality in the SCI population is metabolic dysfunction, and an organ central to metabolic control is the liver. Our recent work showed that rodent SCI promotes Kupffer cell (hepatic macrophage) activation, pro-inflammatory cytokine expression, and liver steatosis. These are symptoms of nonalcoholic steatohepatitis (NASH), the hepatic manifestation of metabolic syndrome, and these pre-clinical data replicate aspects of post-SCI human metabolic dysfunction. Because metabolic profile is highly dependent on lifestyle, including diet, it is likely that lifestyle choices prior to injury influence metabolic and hepatic outcomes after SCI. Therefore, in this study we tested if a diet rich in green tea extract (GTE), a known hepatoprotective agent, that began 3 weeks before SCI and was maintained after injury, reduced indices of liver pathology or metabolic dysfunction. GTE treatment significantly reduced post-SCI hepatic iron accumulation and blunted circulating glucose elevation compared with control-diet rats. However, GTE pre-treatment did not prevent Kupffer cell activation, hepatic lipid accumulation, increased serum alanine transaminase, or circulating non-esterified fatty acids, which were all significantly increased 6 weeks post-injury. Spinal cord pathology also was unchanged by GTE. Thus, dietary GTE prior to and after SCI had only a minor hepatoprotective effect. In general, for optimal health of SCI individuals, it will be important for future studies to evaluate how other lifestyle choices made before or after SCI positively or negatively impact systemic and intraspinal outcomes and the overall metabolic health of SCI individuals.
Collapse
Affiliation(s)
- Matthew T Goodus
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Andrew D Sauerbeck
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Phillip G Popovich
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Richard S Bruno
- 4 Human Nutrition Program, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| | - Dana M McTigue
- 1 The Center for Brain and Spinal Cord Repair, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,2 Department of Neuroscience, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio.,3 Belford Center for Spinal Cord Injury, Wexner Medical Center, College of Education and Human Ecology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
11
|
Chen Y, Wang B, Zhao H. Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways. Exp Ther Med 2018; 15:4987-4994. [PMID: 29904397 DOI: 10.3892/etm.2018.6072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023] Open
Abstract
The present study used a mild contusion injury in rat spinal cord to determine that thymoquinone reduces inflammatory response, oxidative stress and apoptosis in a spinal cord injury (SCI) rat model and to demonstrate its possible molecular mechanisms. The rats in the thymoquinone group received 30 mg/kg thymoquinone once daily by intragastric administration from 3 weeks after surgery. Hematoxylin and eosin staining, Basso, Beattie and Bresnahan (BBB) scale and tissue water content detection were used in the present study to analyze the effect of thymoquinone on SCI. The activity of inflammatory response mediators, oxidative stress factors and caspase-3/9 was measured using ELISA kits. Furthermore, western blotting was performed to analyzed the protein expression levels of prostaglandin E2, suppressed cyclooxygenase-2 (COX-2) and activated peroxisome proliferator-activated receptor γ (PPAR-γ), PI3K and Akt. The results from the study demonstrated that thymoquinone increased Basso, Beattie and Bresnahan score and decreased water content in spinal cord tissue. Treatment with thymoquinone decreased inflammatory response [measured by levels of tumor necrosis factor α, interleukin (IL)-1β, IL-6 and IL-18], oxidative stress (measured by levels of superoxide dismutase, catalase, glutathione and malondialdehyde) and cell apoptosis (measured by levels of caspase-3 and caspase-9) in SCI rats. Thymoquinone treatment inhibited prostaglandin E2 activity, suppressed COX-2 protein expression and activated PPAR-γ, PI3K and p-Akt protein expression in SCI rats. These data revealed that thymoquinone reduces inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways in an SCI rat model.
Collapse
Affiliation(s)
- Yinming Chen
- Department of Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Benlong Wang
- Department of Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Hai Zhao
- Department of Orthopedics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| |
Collapse
|
12
|
Song HL, Zhang X, Wang WZ, Liu RH, Zhao K, Liu MY, Gong WM, Ning B. Neuroprotective mechanisms of rutin for spinal cord injury through anti-oxidation and anti-inflammation and inhibition of p38 mitogen activated protein kinase pathway. Neural Regen Res 2018; 13:128-134. [PMID: 29451217 PMCID: PMC5840978 DOI: 10.4103/1673-5374.217349] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rutin has anti-inflammatory, antioxidant, anti-viral, anti-tumor and immune regulatory effects. However, the neuroprotective effects of rutin in spinal cord injury are unknown. The p38 mitogen activated protein kinase (p38 MAPK) pathway is the most important member of the MAPK family that controls inflammation. We assumed that the mechanism of rutin in the repair of spinal cord injury is associated with the inhibition of p38 MAPK pathway. Allen's method was used to establish a rat model of spinal cord injury. The rat model was intraperitoneally injected with rutin (30 mg/kg) for 3 days. After treatment with rutin, Basso, Beattie and Bresnahan locomotor function scores increased. Water content, tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6 levels, p38 MAPK protein expression and caspase-3 and -9 activities in T8–9 spinal cord decreased. Oxidative stress related markers superoxide dismutase and glutathione peroxidase levels increased in peripheral blood. Rutin exerts neuroprotective effect through anti-oxidation, anti-inflammation, anti-apoptosis and inhibition of p38 MAPK pathway.
Collapse
Affiliation(s)
- Hong-Liang Song
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Xiang Zhang
- Hospital Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Wen-Zhao Wang
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Rong-Han Liu
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Kai Zhao
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Ming-Yuan Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital, Jinan, Shandong Province, China
| | - Wei-Ming Gong
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| | - Bin Ning
- Department of Spinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
13
|
Charles OA, Patrick IS, Godwin AO. Jobelyn® Supplement Lowered Neuronal Degeneration: Significance of Altered p53 and ɤ-Enolase Protein Expressions in Prefrontal Cortex of Rat Exposed to Ethanol. Ann Neurosci 2016; 23:139-148. [PMID: 27721582 PMCID: PMC5043160 DOI: 10.1159/000449179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 09/27/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Alcohol-induced neurodegeneration, a consequence of chronic ethanol exposure, is a neuroadaptation that drives the progression of alcohol use disorder (AUD). Unfortunately, conventional drugs for AUDs do not prevent neurodegeneration as part of their pharmacological repertoire. Multimodal neuroprotective therapeutic agents are hypothesized to have high therapeutic utility in the treatment of central nervous system. Interestingly, nutraceuticals by nature are multimodal in mechanisms of action. PURPOSE This study examined the neuroprotective potential of Jobelyn in prefrontal cortex (PFC) of a binge-alcohol rat model of AUD. METHODS Three groups of rats were fed thrice daily through an orogastric tube with 5 g/kg ethanol (25% w/v), 5 g/kg ethanol (25% w/v) plus Jobelyn (4 mg/kg body weight), and 5 g/kg of a nutritionally complete diet (50% v/v), respectively. Cytoarchitectural study of the PFC was done in slides stained with haematoxylin and eosin. Immunohistochemical analyses were performed with mice monoclonal anti-p53 and anti-neuron specific enolase (NSE) antibodies to detect the degree of apoptosis and necrosis in the PFC. In addition, the degree of tissue damage and the level of lipid peroxidation were evaluated. RESULTS Jobelyn supplementation significantly lowered the levels of histologic and biochemical indices of neurodegeneration, and caused an increased expression of p53 protein and a decreased expression of NSE immunoreactivity (NSE-IR). CONCLUSIONS Jobelyn supplementation ameliorates neurodegeneration in the PFC of AUD rats by reducing the oxidative stress, reducing the NSE-IR, and by increasing the expression of cellular tumor antigen p53 in the cortical neurons.
Collapse
Affiliation(s)
- Oyinbo A. Charles
- Department of Human Anatomy, Faculty of Basic Medical Sciences, College of Health Sciences, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria
- Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Igbigbi S. Patrick
- Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Avwioro O. Godwin
- Department of Anatomy and Cell Biology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
14
|
Therapeutic Effects of Traditional Chinese Medicine on Spinal Cord Injury: A Promising Supplementary Treatment in Future. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:8958721. [PMID: 27118982 PMCID: PMC4826935 DOI: 10.1155/2016/8958721] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/22/2016] [Indexed: 11/28/2022]
Abstract
Objective. Spinal cord injury (SCI) is a devastating neurological disorder caused by trauma. Pathophysiological events occurring after SCI include acute, subacute, and chronic phases, while complex mechanisms are comprised. As an abundant source of natural drugs, Traditional Chinese Medicine (TCM) attracts much attention in SCI treatment recently. Hence, this review provides an overview of pathophysiology of SCI and TCM application in its therapy. Methods. Information was collected from articles published in peer-reviewed journals via electronic search (PubMed, SciFinder, Google Scholar, Web of Science, and CNKI), as well as from master's dissertations, doctoral dissertations, and Chinese Pharmacopoeia. Results. Both active ingredients and herbs could exert prevention and treatment against SCI, which is linked to antioxidant, anti-inflammatory, neuroprotective, or antiapoptosis effects. The detailed information of six active natural ingredients (i.e., curcumin, resveratrol, epigallocatechin gallate, ligustrazine, quercitrin, and puerarin) and five commonly used herbs (i.e., Danshen, Ginkgo, Ginseng, Notoginseng, and Astragali Radix) was elucidated and summarized. Conclusions. As an important supplementary treatment, TCM may provide benefits in repair of injured spinal cord. With a general consensus that future clinical approaches will be diversified and a combination of multiple strategies, TCM is likely to attract greater attention in SCI treatment.
Collapse
|
15
|
Neuroprotective Effect of Natural Products on Peripheral Nerve Degeneration: A Systematic Review. Neurochem Res 2015; 41:647-58. [DOI: 10.1007/s11064-015-1771-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 10/15/2015] [Accepted: 11/11/2015] [Indexed: 12/12/2022]
|
16
|
Dudzińska D, Boncler M, Watala C. The cardioprotective power of leaves. Arch Med Sci 2015; 11:819-39. [PMID: 26322095 PMCID: PMC4548035 DOI: 10.5114/aoms.2015.53303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/29/2013] [Accepted: 08/21/2013] [Indexed: 12/19/2022] Open
Abstract
Lack of physical activity, smoking and/or inappropriate diet can contribute to the increase of oxidative stress, in turn affecting the pathophysiology of cardiovascular diseases. Strong anti-oxidant properties of plant polyphenolic compounds might underlie their cardioprotective activity. This paper reviews recent findings on the anti-oxidant activity of plant leaf extracts and emphasizes their effects on blood platelets, leukocytes and endothelial cells - the targets orchestrating the development and progression of cardiovascular diseases. We also review the evidence linking supplementation with plant leaf extracts and the risk factors defining the metabolic syndrome. The data point to the importance of leaves as an alternative source of polyphenolic compounds in the human diet and their role in the prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Dominika Dudzińska
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Álvarez-Pérez B, Homs J, Bosch-Mola M, Puig T, Reina F, Verdú E, Boadas-Vaello P. Epigallocatechin-3-gallate treatment reduces thermal hyperalgesia after spinal cord injury by down-regulating RhoA expression in mice. Eur J Pain 2015; 20:341-52. [DOI: 10.1002/ejp.722] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2015] [Indexed: 12/30/2022]
Affiliation(s)
- B. Álvarez-Pérez
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - J. Homs
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
- Department of Physical Therapy; EUSES - Universitat de Girona; Spain
| | - M. Bosch-Mola
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - T. Puig
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - F. Reina
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - E. Verdú
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| | - P. Boadas-Vaello
- Research Group of Clinical Anatomy; Embryology; Neuroscience and Molecular Oncology (NEOMA); Department of Medical Sciences; Universitat de Girona; Spain
| |
Collapse
|
18
|
Abstract
Polyphenols have been shown to have some of the neuroprotective effects against neurodegenerative diseases. These effects are attributed to a variety of biological activities, including free radical scavenging/antioxidant and anti-inflammatory and anti-apoptotic activities. In this regard, many efforts have been made to study the effects of various well-known dietary polyphenols on spinal cord injury (SCI) and to explore the mechanisms behind the neuroprotective effects. The aim of this paper is to present the mechanisms of neuroprotection of natural polyphenols used in animal models of SCI.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, 18KM Khazar Blvd, Khazar Sq. Sari, Iran. m
| |
Collapse
|
19
|
Role of melatonin in traumatic brain injury and spinal cord injury. ScientificWorldJournal 2014; 2014:586270. [PMID: 25587567 PMCID: PMC4283270 DOI: 10.1155/2014/586270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 01/03/2023] Open
Abstract
Brain and spinal cord are implicated in incidences of two of the most severe injuries of central nervous system (CNS). Traumatic brain injury (TBI) is a devastating neurological deficit involving primary and secondary injury cascades. The primary and secondary mechanisms include complex consequences of activation of proinflammatory cytokines, cerebral edema, upregulation of NF-κβ, disruption of blood-brain barrier (BBB), and oxidative stress. Spinal cord injury (SCI) includes primary and secondary injury cascades. Primary injury leads to secondary injury in which generation of free radicals and oxidative or nitrative damage play an important pathophysiological role. The indoleamine melatonin is a hormone secreted or synthesized by pineal gland in the brain which helps to regulate sleep and wake cycle. Melatonin has been shown to be a versatile hormone having antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. It has a special characteristic of crossing BBB. Melatonin has neuroprotective role in the injured part of the CNS after TBI and SCI. A number of studies have successfully shown its therapeutic value as a neuroprotective agent in the treatment of neurodegenerative diseases. Here in this review we have compiled the literature supporting consequences of CNS injuries, TBI and SCI, and the protective role of melatonin in it.
Collapse
|
20
|
Kolarcik CL, Catt K, Rost E, Albrecht IN, Bourbeau D, Du Z, Kozai TDY, Luo X, Weber DJ, Cui XT. Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. J Neural Eng 2014; 12:016008. [PMID: 25485675 DOI: 10.1088/1741-2560/12/1/016008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The dorsal root ganglion is an attractive target for implanting neural electrode arrays that restore sensory function or provide therapy via stimulation. However, penetrating microelectrodes designed for these applications are small and deliver low currents. For long-term performance of microstimulation devices, novel coating materials are needed in part to decrease impedance values at the electrode-tissue interface and to increase charge storage capacity. APPROACH Conductive polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and multi-wall carbon nanotubes (CNTs) were coated on the electrode surface and doped with the anti-inflammatory drug, dexamethasone. Electrode characteristics and the tissue reaction around neural electrodes as a result of stimulation, coating and drug release were characterized. Hematoxylin and eosin staining along with antibodies recognizing Iba1 (microglia/macrophages), NF200 (neuronal axons), NeuN (neurons), vimentin (fibroblasts), caspase-3 (cell death) and L1 (neural cell adhesion molecule) were used. Quantitative image analyses were performed using MATLAB. MAIN RESULTS Our results indicate that coated microelectrodes have lower in vitro and in vivo impedance values. Significantly less neuronal death/damage was observed with coated electrodes as compared to non-coated controls. The inflammatory response with the PEDOT/CNT-coated electrodes was also reduced. SIGNIFICANCE This study is the first to report on the utility of these coatings in stimulation applications. Our results indicate PEDOT/CNT coatings may be valuable additions to implantable electrodes used as therapeutic modalities.
Collapse
Affiliation(s)
- Christi L Kolarcik
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shrestha RP, Qiao JM, Shen FG, Bista KB, Zhao ZN, Yang J. Intra-Spinal Bone Marrow Mononuclear Cells Transplantation Inhibits the Expression of Nuclear Factor-κB in Acute Transection Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2014; 56:375-82. [PMID: 25535513 PMCID: PMC4272994 DOI: 10.3340/jkns.2014.56.5.375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/09/2014] [Accepted: 08/16/2014] [Indexed: 11/27/2022] Open
Abstract
Objective To assess the effect of bone marrow mononuclear cells (BMMNCs) transplantation in the expression of nuclear factor-κB (NF-κB) in spinal cord injury (SCI) in rats. Methods BMMNCs were isolated from tibia and femur by a density gradient centrifugation. After establishment of acute transection SCI, rats were divided into experiment (BMMNCs), experiment control (0.1 M PBS infused) and sham surgery groups (laminectomy without any SCI). Locomotor function was assessed weekly for 5 weeks post-injury using BBB locomotor score and urinary bladder function daily for 4 weeks post-injury. Activity of NF-κB in spinal cord was assessed by immunohistochemistry and reverse transcriptase polymerase chain reaction. Results At each time point post-injury, sham surgery group had significantly higher Basso, Beattie, Bresnahan locomotor and urinary bladder function scores than experiment and experiment control group (p<0.05). At subsequent time interval there were gradual improvement in both experiment and experiment control group, but experiment group had higher score in comparison to experiment control group (p<0.05). Comparisons were also made for expression of activated NF-κB positive cells and level of NF-κB messenger RNA in spinal cord at various time points between the groups. Activated NF-κB immunoreactivity and level of NF-κB mRNA expression were significantly higher in control group in comparison to experiment and sham surgery group (p<0.05). Conclusion BMMNCs transplantation attenuates the expression of NF-κB in injured spinal cord tissue and thus helps in recovery of neurological function in rat models with SCI.
Collapse
Affiliation(s)
- Rajiv Prasad Shrestha
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Jian Min Qiao
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Fu Guo Shen
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Krishna Bahadur Bista
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Zhong Nan Zhao
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| | - Jianhua Yang
- Department of Orthopaedics, First Affiliated Hospital of Jiamusi University, Heilongjiang, China
| |
Collapse
|
22
|
Assis LC, Hort MA, de Souza GV, Martini AC, Forner S, Martins DF, Silva JC, Horst H, dos Santos ARS, Pizzolatti MG, Rae GA, Koepp J, de Bem AF, do Valle RMR. Neuroprotective effect of the proanthocyanidin-rich fraction in experimental model of spinal cord injury. J Pharm Pharmacol 2014; 66:694-704. [PMID: 24438047 DOI: 10.1111/jphp.12177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/10/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVES In this study, we evaluated the effect of the proanthocyanidins-rich fraction (PRF) obtained from Croton celtidifolius bark in an experimental animal model of spinal cord injury and cell death induced by glutamate. METHODS Experiments were conducted using adult male Wistar rats (10 weeks old and weighing 270-300g). Experimental groups were randomly allocated into the following groups: spinal cord injury (SCI) + vehicle group: rats were subjected to SCI plus intraperitoneal administration of vehicle (saline 10 ml/kg); SCI + PRF: rats were subjected to SCI plus intraperitoneal administration of PRF (10 mg/kg) at 1 and 6 h after injury and sham operated. KEY FINDINGS The treatment with the proanthocyanidin-rich fraction significantly improved not only motor recovery and grip force but also H2 O2 or glutamate-induced cell death and reactive oxygen species generation induced by glutamate in dorsal root ganglion cells. In this study we demonstrate that the neuroprotective effect triggered by the proanthocyanidins-rich fraction appears to be mediated in part by the inhibition of N-methyl-D-aspartate-type glutamate receptors. CONCLUSIONS Taken together, our results demonstrate that PRF treatment ameliorates spinal cord injury and glutamatergic excitotoxicity and could have a potential therapeutic use.
Collapse
Affiliation(s)
- Lara Clemes Assis
- Departamento de Farmacologia, Centro de Ciências Biológicas, SC, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Renno WM, Al-Khaledi G, Mousa A, Karam SM, Abul H, Asfar S. (-)-Epigallocatechin-3-gallate (EGCG) modulates neurological function when intravenously infused in acute and, chronically injured spinal cord of adult rats. Neuropharmacology 2013; 77:100-19. [PMID: 24071567 DOI: 10.1016/j.neuropharm.2013.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/13/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) causes severe and long lasting motor and sensory deficits, chronic pain, and autonomic dysreflexia. (-)-epigallocatechin-3-gallate (EGCG) has shown to produce neuroprotective effect in a broad range of neurodegenerative disease animal models. This study designed to test the efficacy of intravenous infusion of EGCG for 36 h, in acutely injured rats' spinal cord: within first 4 h post-injury and, in chronically SC injured rats: after one year of injury. Functional outcomes measured using standard BBB scale, The Louisville Swim Scale (LSS) and, pain behavior assessment tests. 72 Female adult rats subjected to moderate thoracic SCI using MASCIS Impactor, blindly randomized as the following: (I) Acute SCI + EGCG (II) Acute SCI + saline. (III) Chronic SCI + EGCG. (IV) Chronic SCI + saline and, sham SCI animals. EGCG i.v. treatment of acute and, chronic SCI animals resulted in significantly better recovery of motor and sensory functions, BBB and LSS (P < 0.005) and (P < 0.05) respectively. Tactile allodynia, mechanical nociception (P < 0.05) significantly improved. Paw withdrawal and, tail flick latencies increase significantly (P < 0.05). Moreover, in the EGCG treated acute SCI animals the percentage of lesion size area significantly reduced (P < 0.0001) and, the number of neurons in the spinal cord increased (P < 0.001). Percent areas of GAP-43 and GFAP immunohistochemistry showed significant (P < 0.05) increase. We conclude that the therapeutic window of opportunity for EGCG to depict neurological recovery in SCI animals, is viable up to one year post SCI when intravenously infused for 36 h.
Collapse
Affiliation(s)
- Waleed M Renno
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait.
| | - Ghanim Al-Khaledi
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Kuwait University, Faculty of Medicine, Kuwait
| | - Shaima M Karam
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Habib Abul
- Department of Pharmacology, Kuwait University, Faculty of Medicine, Kuwait
| | - Sami Asfar
- Department of Surgery, Kuwait University, Faculty of Medicine, Kuwait
| |
Collapse
|
24
|
Butein inhibits NF-κB activation and reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 2013; 542:87-91. [DOI: 10.1016/j.neulet.2013.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/02/2013] [Accepted: 03/05/2013] [Indexed: 11/22/2022]
|
25
|
Kolarcik CL, Bourbeau D, Azemi E, Rost E, Zhang L, Lagenaur CF, Weber DJ, Cui XT. In vivo effects of L1 coating on inflammation and neuronal health at the electrode-tissue interface in rat spinal cord and dorsal root ganglion. Acta Biomater 2012; 8:3561-75. [PMID: 22750248 PMCID: PMC3429718 DOI: 10.1016/j.actbio.2012.06.034] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023]
Abstract
The spinal cord (SC) and dorsal root ganglion (DRG) are target implantation regions for neural prosthetics, but the tissue-electrode interface in these regions is not well-studied. To improve understanding of these locations, the tissue reactions around implanted electrodes were characterized. L1, an adhesion molecule shown to maintain neuronal density and reduce gliosis in brain tissue, was then evaluated in SC and DRG implants. Following L1 immobilization onto neural electrodes, the bioactivities of the coatings were verified in vitro using neuron, astrocyte and microglia cultures. Non-modified and L1-coated electrodes were implanted into adult rats for 1 or 4 weeks. Hematoxylin and eosin staining along with cell-type specific antibodies were used to characterize the tissue response. In the SC and DRG, cells aggregated at the electrode-tissue interface. Microglia staining was more intense around the implant site and decreased with distance from the interface. Neurofilament staining in both locations decreased or was absent around the implant, compared with surrounding tissue. With L1, neurofilament staining was significantly increased while neuronal cell death decreased. These results indicate that L1-modified electrodes may result in an improved chronic neural interface and will be evaluated in recording and stimulation studies.
Collapse
Affiliation(s)
| | - Dennis Bourbeau
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - Erdrin Azemi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
| | - Erika Rost
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Ling Zhang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Carl F. Lagenaur
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Douglas J. Weber
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA USA
| | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
26
|
Han X, Lu M, Wang S, Lv D, Liu H. Targeting IKK/NF-κB pathway reduces infiltration of inflammatory cells and apoptosis after spinal cord injury in rats. Neurosci Lett 2012; 511:28-32. [DOI: 10.1016/j.neulet.2012.01.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 12/21/2022]
|
27
|
Kell DB. Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson's, Huntington's, Alzheimer's, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 2010; 84:825-89. [PMID: 20967426 PMCID: PMC2988997 DOI: 10.1007/s00204-010-0577-x] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/14/2010] [Indexed: 12/11/2022]
Abstract
Exposure to a variety of toxins and/or infectious agents leads to disease, degeneration and death, often characterised by circumstances in which cells or tissues do not merely die and cease to function but may be more or less entirely obliterated. It is then legitimate to ask the question as to whether, despite the many kinds of agent involved, there may be at least some unifying mechanisms of such cell death and destruction. I summarise the evidence that in a great many cases, one underlying mechanism, providing major stresses of this type, entails continuing and autocatalytic production (based on positive feedback mechanisms) of hydroxyl radicals via Fenton chemistry involving poorly liganded iron, leading to cell death via apoptosis (probably including via pathways induced by changes in the NF-κB system). While every pathway is in some sense connected to every other one, I highlight the literature evidence suggesting that the degenerative effects of many diseases and toxicological insults converge on iron dysregulation. This highlights specifically the role of iron metabolism, and the detailed speciation of iron, in chemical and other toxicology, and has significant implications for the use of iron chelating substances (probably in partnership with appropriate anti-oxidants) as nutritional or therapeutic agents in inhibiting both the progression of these mainly degenerative diseases and the sequelae of both chronic and acute toxin exposure. The complexity of biochemical networks, especially those involving autocatalytic behaviour and positive feedbacks, means that multiple interventions (e.g. of iron chelators plus antioxidants) are likely to prove most effective. A variety of systems biology approaches, that I summarise, can predict both the mechanisms involved in these cell death pathways and the optimal sites of action for nutritional or pharmacological interventions.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and the Manchester Interdisciplinary Biocentre, The University of Manchester, Manchester M1 7DN, UK.
| |
Collapse
|
28
|
Khalatbary AR, Tiraihi T, Boroujeni MB, Ahmadvand H, Tavafi M, Tamjidipoor A. Effects of epigallocatechin gallate on tissue protection and functional recovery after contusive spinal cord injury in rats. Brain Res 2009; 1306:168-75. [PMID: 19815005 DOI: 10.1016/j.brainres.2009.09.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/28/2009] [Accepted: 09/29/2009] [Indexed: 01/14/2023]
Abstract
Recent studies revealed the neuroprotective effects of epigallocatechin gallate (EGCG) on a variety of neural injury .The purpose of this study was to determine the effects of EGCG on the tissue protection and behavioral improvement after spinal cord injury (SCI). Rats were randomly divided into four groups of 18 rats each as follows: sham-operated group, trauma group, and EGCG treatment groups (50 mg/kg, i.p., immediately and 1 hour after SCI). Spinal cord samples were taken 24 hours after injury and studied for determination of malodialdehyde (MDA) levels, immunohistochemistry of Bax and Bcl-2, and TUNEL reaction. Behavioral testing was performed weekly up to 6 weeks post-injury. Then, the rats were euthanized for histopathological assessment. The results showed that MDA levels were significantly decreased in EGCG treatment groups. Greater Bcl-2 and attenuated Bax expression could be detected in the EGCG-treated rats. EGCG significantly reduced TUNEL-positive rate. Also, EGCG significantly reduced the percentage of lesion area and improved behavioral function than the trauma group. On the basis of these findings, we propose that EGCG may be effective in protecting rat spinal cord from secondary injury.
Collapse
Affiliation(s)
- Ali Reza Khalatbary
- Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khoramabad, Iran.
| | | | | | | | | | | |
Collapse
|
29
|
Kim WM, Bae HB, Choi JI. The Effect of Intrathecal Epigallocatechin Gallate on the Development of Antinociceptive Tolerance to Morphine. Korean J Pain 2009. [DOI: 10.3344/kjp.2009.22.3.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Woong Mo Kim
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chonnam National University, Gwangju, Korea
| | - Hong Beom Bae
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chonnam National University, Gwangju, Korea
| | - Jeong Il Choi
- Department of Anesthesiology and Pain Medicine, College of Medicine, Chonnam National University, Gwangju, Korea
| |
Collapse
|