1
|
Ladeji A, Olatunji S, Adebiyi K, Olajide M, Kuye O, Aborisade A. Diagnostic significance of NM23 protein in ameloblastoma and ameloblastic carcinoma: An immunohistochemical study. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101532. [PMID: 37295743 DOI: 10.1016/j.jormas.2023.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Clinico-histopathologic assessment of patients with ameloblastoma and ameloblastic carcinoma remains the best diagnostic modality for the tumors. However, in cases where the criteria for arriving at a definitive diagnosis are not clearcut, the pathologist is faced with a dilemma and thus an imperative need for adjunct diagnostic methods. OBJECTIVES To evaluate/compare the immunohistochemical expression of NM23 in classical, borderline (atypical) ameloblastoma and ameloblastic carcinoma and to assess usefulness of NM23 in closing diagnostic gaps between ameloblastoma and ameloblastic carcinoma. METHODS Twenty-four (24) cases of ameloblastoma, 10 ameloblastoma with classical histopathologic features, 8 with nonclassical histopathology [atypical], and 6 cases of ameloblastic carcinoma were selected from cases seen at the Oral Pathology Laboratory of the Lagos State University College of Medicine, Nigeria. NM23 immunostaining protocol was done on the selected tissue blocks and evaluated using Sinicrope method. Analysis was done using R language. RESULTS Positive NM23 staining was observed in all cases of ameloblastoma and ameloblastic carcinoma, with more intense staining observed in the stellate reticulum-like areas than in the ameloblast-like areas. Ameloblastic carcinoma stained intensely with NM23 (100%) compared with atypical cases (37.5%) and ameloblastoma (20.0%; p = 0.04). The mean aggregate score was also significantly higher in AC (11 ± 2.4; p = 0.01). The mean aggregate score was also significant amongst growth pattern of ameloblastoma (p = 0 0.02). CONCLUSIONS The findings in this study reveal the usefulness of NM23 in differentiating ameloblastoma from ameloblastic carcinoma; a more comprehensive study with a larger sample size is recommended to corroborate or refute the findings in this study.
Collapse
Affiliation(s)
- Adeola Ladeji
- Dept. of Oral Pathology and Oral Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Lagos, Nigeria
| | - Saheed Olatunji
- Dept. of Oral Pathology and Oral Medicine, Faculty of Dentistry, Obafemi Awolowo University, ILE-IFE, Nigeria
| | - Kehinde Adebiyi
- Dept. of Oral Pathology and Oral Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Lagos, Nigeria
| | - Mofoluwaso Olajide
- Dept. of Oral Pathology and Oral Medicine, Faculty of Dentistry, Lagos State University College of Medicine, Lagos, Nigeria
| | - Olasunkanmi Kuye
- Dept. of Oral and Maxillofacial Surgery, Faculty of Dentistry, Lagos State University College of Medicine, Lagos, Nigeria
| | - Adetayo Aborisade
- Department of Oral Diagnostic Sciences, Bayero University, Kano, Nigeria.
| |
Collapse
|
2
|
Extracellular Vesicle-Mediated Metastasis Suppressors NME1 and NME2 Modify Lipid Metabolism in Fibroblasts. Cancers (Basel) 2022; 14:cancers14163913. [PMID: 36010906 PMCID: PMC9406105 DOI: 10.3390/cancers14163913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Communication between cancer and stromal cells involves paracrine signalling mediated by extracellular vesicles (EVs). EVs transmit essential factors among cells of the tumour microenvironment. EVs derived from both cancer and stromal cells have been implicated in tumour progression. In this study, we focused on the first identified metastasis suppressor NME1, and on its close homolog NME2, and investigated their function in EVs in the interplay between cancer and stromal cells. Abstract Nowadays, extracellular vesicles (EVs) raise a great interest as they are implicated in intercellular communication between cancer and stromal cells. Our aim was to understand how vesicular NME1 and NME2 released by breast cancer cells influence the tumour microenvironment. As a model, we used human invasive breast carcinoma cells overexpressing NME1 or NME2, and first analysed in detail the presence of both isoforms in EV subtypes by capillary Western immunoassay (WES) and immunoelectron microscopy. Data obtained by both methods showed that NME1 was present in medium-sized EVs or microvesicles, whereas NME2 was abundant in both microvesicles and small-sized EVs or exosomes. Next, human skin-derived fibroblasts were treated with NME1 or NME2 containing EVs, and subsequently mRNA expression changes in fibroblasts were examined. RNAseq results showed that the expression of fatty acid and cholesterol metabolism-related genes was decreased significantly in response to NME1 or NME2 containing EV treatment. We found that FASN (fatty acid synthase) and ACSS2 (acyl-coenzyme A synthetase short-chain family member 2), related to fatty acid synthesis and oxidation, were underexpressed in NME1/2-EV-treated fibroblasts. Our data show an emerging link between NME-containing EVs and regulation of tumour metabolism.
Collapse
|
3
|
Wu F, Ma H, Wang X, Wei H, Zhang W, Zhang Y. The histidine phosphatase LHPP: an emerging player in cancer. Cell Cycle 2022; 21:1140-1152. [PMID: 35239447 PMCID: PMC9103355 DOI: 10.1080/15384101.2022.2044148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Cancers continue to have high incidence and mortality rates worldwide. Therefore, cancer control remains the main public health goal. Growing research evidence suggests that phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) plays an important role in inhibiting tumor cell progression. It has been reported in the literature that LHPP is expressed at low levels in tumor tissues and cells and that patients with low LHPP expression have a poorer prognosis. Functional studies have shown that LHPP can inhibit tumor cell proliferation, metastasis, and apoptosis by affecting different target genes. In addition, researchers have used iDPP nanoparticles to deliver LHPP plasmids to treat tumors, demonstrating the great potential of LHPP plasmids for cancer therapy. In our review, we highlight the biological functions and important downstream target genes of LHPP in tumors, providing a theoretical basis for the treatment of human cancers. Although not thoroughly studied in terms of tumor mechanisms, LHPP still represents a promising and effective anticancer drug target.
Collapse
Affiliation(s)
- Fahong Wu
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Hanwei Ma
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoli Wang
- Department of Gynaecology and Obstetrics, The Third Hospital of Xiamen, Xiamen, China
| | - Hangzhi Wei
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Youcheng Zhang
- Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, Gansu, China,CONTACT Youcheng Zhang Department of General Surgery, Hepatic-biliary-pancreatic Institute, Lanzhou University Second Hospital, Lanzhou, 730030Gansu, China
| |
Collapse
|
4
|
Hunter T. A journey from phosphotyrosine to phosphohistidine and beyond. Mol Cell 2022; 82:2190-2200. [PMID: 35654043 DOI: 10.1016/j.molcel.2022.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
Protein phosphorylation is a reversible post-translational modification. Nine of the 20 natural amino acids in proteins can be phosphorylated, but most of what we know about the roles of protein phosphorylation has come from studies of serine, threonine, and tyrosine phosphorylation. Much less is understood about the phosphorylation of histidine, lysine, arginine, cysteine, aspartate, and glutamate, so-called non-canonical phosphorylations. Phosphohistidine (pHis) was discovered 60 years ago as a mitochondrial enzyme intermediate; since then, evidence for the existence of histidine kinases and phosphohistidine phosphatases has emerged, together with examples where protein function is regulated by reversible histidine phosphorylation. pHis is chemically unstable and has thus been challenging to study. However, the recent development of tools for studying pHis has accelerated our understanding of the multifaceted functions of histidine phosphorylation, revealing a large number of proteins that are phosphorylated on histidine and implicating pHis in a wide range of cellular processes.
Collapse
Affiliation(s)
- Tony Hunter
- Molecular Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Dong Y, Han H, Li Y, Guo L. [Roles of Histidine Kinases and Histidine Phosphatases in Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 24:646-652. [PMID: 34455734 PMCID: PMC8503980 DOI: 10.3779/j.issn.1009-3419.2021.102.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
蛋白磷酸化修饰是最常见、最重要的蛋白质翻译后修饰方式。磷酸化修饰在细胞的增殖、分化、发育和代谢等生物学过程中发挥了重要的调控功能,与肿瘤的发生和发展也密切相关。蛋白激酶和磷酸酶对蛋白磷酸化修饰具有普遍的开/关调控作用。真核生物的蛋白磷酸化主要发生在丝氨酸、苏氨酸和酪氨酸残基,他们在肿瘤发生和发展中的作用已经得到了广泛的研究。但关于组氨酸磷酸化的研究受限于质谱分析和富集技术的发展研究较少。近年来,随着相关技术的快速发展和新的组氨酸磷酸酶的发现,使得研究人员越来越多关注到组氨酸磷酸化在肿瘤中的作用。因此,本文旨在对组氨酸磷酸化调控相关的组氨酸激酶和组氨酸磷酸酶在肿瘤中的作用作一综述。
Collapse
Affiliation(s)
- Yafang Dong
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Huimin Han
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Yafeng Li
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Lili Guo
- Key Laboratory of Kidney Disease, precision Medicine Center, The Shanxi Provincial People' s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
6
|
Sant’Anna-Silva ACB, Perez-Valencia JA, Sciacovelli M, Lalou C, Sarlak S, Tronci L, Nikitopoulou E, Meszaros AT, Frezza C, Rossignol R, Gnaiger E, Klocker H. Succinate Anaplerosis Has an Onco-Driving Potential in Prostate Cancer Cells. Cancers (Basel) 2021; 13:cancers13071727. [PMID: 33917317 PMCID: PMC8038717 DOI: 10.3390/cancers13071727] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Depending on the availability of nutrients and increased metabolic demands, tumor cells rearrange their metabolism to survive and, ultimately, proliferate. Here, the authors investigated the effect of succinate, a metabolite of the mitochondrial citric acid cycle, on malignant and non-malignant prostate cells. They analyzed uptake through membrane transporters and intracellular accumulation, which subsequently fuels metabolism and enhances oncogenic properties of the tumor cells. The findings shed light to the metabolic adaptations that prostate tumor cells undergo, providing a better understanding of metabolic rewiring and strategies for therapeutic intervention. Abstract Tumor cells display metabolic alterations when compared to non-transformed cells. These characteristics are crucial for tumor development, maintenance and survival providing energy supplies and molecular precursors. Anaplerosis is the property of replenishing the TCA cycle, the hub of carbon metabolism, participating in the biosynthesis of precursors for building blocks or signaling molecules. In advanced prostate cancer, an upshift of succinate-driven oxidative phosphorylation via mitochondrial Complex II was reported. Here, using untargeted metabolomics, we found succinate accumulation mainly in malignant cells and an anaplerotic effect contributing to biosynthesis, amino acid, and carbon metabolism. Succinate also stimulated oxygen consumption. Malignant prostate cells displayed higher mitochondrial affinity for succinate when compared to non-malignant prostate cells and the succinate-driven accumulation of metabolites induced expression of mitochondrial complex subunits and their activities. Moreover, extracellular succinate stimulated migration, invasion, and colony formation. Several enzymes linked to accumulated metabolites in the malignant cells were found upregulated in tumor tissue datasets, particularly NME1 and SHMT2 mRNA expression. High expression of the two genes was associated with shorter disease-free survival in prostate cancer cohorts. Moreover, in-vitro expression of both genes was enhanced in prostate cancer cells upon succinate stimulation. In conclusion, the data indicate that uptake of succinate from the tumor environment has an anaplerotic effect that enhances the malignant potential of prostate cancer cells.
Collapse
Affiliation(s)
- Ana Carolina B. Sant’Anna-Silva
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (A.T.M.); (E.G.)
- Oroboros Instruments GmbH, 6020 Innsbruck, Austria
- Correspondence: (A.C.B.S.-S.); (H.K.)
| | | | - Marco Sciacovelli
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; (M.S.); (L.T.); (E.N.); (C.F.)
| | - Claude Lalou
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1211, Bordeaux University, 33076 Bordeaux, France; (C.L.); (S.S.); (R.R.)
| | - Saharnaz Sarlak
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1211, Bordeaux University, 33076 Bordeaux, France; (C.L.); (S.S.); (R.R.)
| | - Laura Tronci
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; (M.S.); (L.T.); (E.N.); (C.F.)
| | - Efterpi Nikitopoulou
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; (M.S.); (L.T.); (E.N.); (C.F.)
| | - Andras T. Meszaros
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (A.T.M.); (E.G.)
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; (M.S.); (L.T.); (E.N.); (C.F.)
| | - Rodrigue Rossignol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1211, Bordeaux University, 33076 Bordeaux, France; (C.L.); (S.S.); (R.R.)
| | - Erich Gnaiger
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria; (A.T.M.); (E.G.)
- Oroboros Instruments GmbH, 6020 Innsbruck, Austria
| | - Helmut Klocker
- Department of Surgery, Division of Experimental Urology, University Hospital for Urology, Medical University Innsbruck, 6020 Innsbruck, Austria
- Correspondence: (A.C.B.S.-S.); (H.K.)
| |
Collapse
|
7
|
Activation of Nm23-H1 to suppress breast cancer metastasis via redox regulation. Exp Mol Med 2021; 53:346-357. [PMID: 33753879 PMCID: PMC8080780 DOI: 10.1038/s12276-021-00575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metastatic protein 23 H1 (Nm23-H1), a housekeeping enzyme, is a nucleoside diphosphate kinase-A (NDPK-A). It was the first identified metastasis suppressor protein. Nm23-H1 prolongs disease-free survival and is associated with a good prognosis in breast cancer patients. However, the molecular mechanisms underlying the role of Nm23-H1 in biological processes are still not well understood. This is a review of recent studies focusing on controlling NDPK activity based on the redox regulation of Nm23-H1, structural, and functional changes associated with the oxidation of cysteine residues, and the relationship between NDPK activity and cancer metastasis. Further understanding of the redox regulation of the NDPK function will likely provide a new perspective for developing new strategies for the activation of NDPK-A in suppressing cancer metastasis.
Collapse
|
8
|
Adam K, Ning J, Reina J, Hunter T. NME/NM23/NDPK and Histidine Phosphorylation. Int J Mol Sci 2020; 21:E5848. [PMID: 32823988 PMCID: PMC7461546 DOI: 10.3390/ijms21165848] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
The NME (Non-metastatic) family members, also known as NDPKs (nucleoside diphosphate kinases), were originally identified and studied for their nucleoside diphosphate kinase activities. This family of kinases is extremely well conserved through evolution, being found in prokaryotes and eukaryotes, but also diverges enough to create a range of complexity, with homologous members having distinct functions in cells. In addition to nucleoside diphosphate kinase activity, some family members are reported to possess protein-histidine kinase activity, which, because of the lability of phosphohistidine, has been difficult to study due to the experimental challenges and lack of molecular tools. However, over the past few years, new methods to investigate this unstable modification and histidine kinase activity have been reported and scientific interest in this area is growing rapidly. This review presents a global overview of our current knowledge of the NME family and histidine phosphorylation, highlighting the underappreciated protein-histidine kinase activity of NME family members, specifically in human cells. In parallel, information about the structural and functional aspects of the NME family, and the knowns and unknowns of histidine kinase involvement in cell signaling are summarized.
Collapse
Affiliation(s)
| | | | | | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; (K.A.); (J.N.); (J.R.)
| |
Collapse
|
9
|
Andolfo I, Lasorsa VA, Manna F, Rosato BE, Formicola D, Iolascon A, Capasso M. Kinome multigenic panel identified novel druggable EPHB4-V871I somatic variant in high-risk neuroblastoma. J Cell Mol Med 2020; 24:6459-6471. [PMID: 32336043 PMCID: PMC7294133 DOI: 10.1111/jcmm.15297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/28/2020] [Accepted: 03/20/2020] [Indexed: 01/09/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial neoplasm in children. The overall outcome for high‐risk NB patients is still unacceptable, therefore, it is critical to deeply understand molecular mechanisms associated with NB, which in turn can be utilized for developing drugs towards the treatment of NB. Protein kinases (TKs) play an essential role in the regulation of cell survival and proliferation. Different kinases, such as anaplastic lymphoma kinase (ALK), Aurora kinase, RET receptor tyrosine kinase, are potential therapeutic targets in various cancers, including NB. We analysed a cohort of 45 high‐risk NB patients and 9 NB cell lines by a targeted—(t)NGS custom gene panel (genes codifying for the kinase domains of 90 TKs). We identified somatic variants in four TK genes (ALK, EPHB4, LMTK3 and EPHB6) in NB patients and we functionally characterized an interesting somatic variant, V871I, in EPHB4 gene. EPHB4 plays a crucial role in cardiovascular development and regulates vascularization in cancer‐promoting angiogenesis, tumour growth and metastasis. Several EPHB4 mutations have previously been identified in solid and haematological tumour specimens but EPHB4 mutations were not described until now in NB. Interestingly, a re‐analysis of public CGH‐array showed that the EPHB4 gain is associated with advanced diseases in NB. We further demonstrated that higher EPHB4 expression is correlated to stage 4 of NB and with poor overall survival. Additionally, we also revealed that the EPHB4‐V871I accounts for increased proliferation, migration and invasion properties in two NB cell lines by acting on VEGF, c‐RAF and CDK4 target genes and by increasing the phosphorylation of ERK1‐2 pathway. The use of two EPHB4 inhibitors, JI‐101 and NVP‐BHG712, was able to rescue the phenotype driven by the variant. Our study suggested that EPHB4 is a promising therapeutic target in high‐risk NB.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Vito A Lasorsa
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Francesco Manna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Barbara E Rosato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | | | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Mario Capasso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE, Biotecnologie Avanzate, Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
10
|
Mátyási B, Farkas Z, Kopper L, Sebestyén A, Boissan M, Mehta A, Takács-Vellai K. The Function of NM23-H1/NME1 and Its Homologs in Major Processes Linked to Metastasis. Pathol Oncol Res 2020; 26:49-61. [PMID: 31993913 PMCID: PMC7109179 DOI: 10.1007/s12253-020-00797-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Metastasis suppressor genes (MSGs) inhibit different biological processes during metastatic progression without globally influencing development of the primary tumor. The first MSG, NM23 (non-metastatic clone 23, isoform H1) or now called NME1 (stands for non-metastatic) was identified some decades ago. Since then, ten human NM23 paralogs forming two groups have been discovered. Group I NM23 genes encode enzymes with evolutionarily highly conserved nucleoside diphosphate kinase (NDPK) activity. In this review we summarize how results from NDPKs in model organisms converged on human NM23 studies. Next, we examine the role of NM23-H1 and its homologs within the metastatic cascade, e.g. cell migration and invasion, proliferation and apoptosis. NM23-H1 homologs are well known inhibitors of cell migration. Drosophila studies revealed that AWD, the fly counterpart of NM23-H1 is a negative regulator of cell motility by modulating endocytosis of chemotactic receptors on the surface of migrating cells in cooperation with Shibire/Dynamin; this mechanism has been recently confirmed by human studies. NM23-H1 inhibits proliferation of tumor cells by phosphorylating the MAPK scaffold, kinase suppressor of Ras (KSR), resulting in suppression of MAPK signalling. This mechanism was also observed with the C. elegans homolog, NDK-1, albeit with an inverse effect on MAPK activation. Both NM23-H1 and NDK-1 promote apoptotic cell death. In addition, NDK-1, NM23-H1 and their mouse counterpart NM23-M1 were shown to promote phagocytosis in an evolutionarily conserved manner. In summary, inhibition of cell migration and proliferation, alongside actions in apoptosis and phagocytosis are all mechanisms through which NM23-H1 acts against metastatic progression.
Collapse
Affiliation(s)
- Barbara Mátyási
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary
| | - Zsolt Farkas
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary
| | - László Kopper
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary
| | - Mathieu Boissan
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France
- Service de Biochimie et Hormonologie, AP- HP, Hôpital Tenon, Paris, France
| | - Anil Mehta
- Division of Medical Sciences, Centre for CVS and Lung Biology, Ninewells Hospital Medical School, DD19SY, Dundee, UK
| | - Krisztina Takács-Vellai
- Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
11
|
Xi M, Wan S, Hua W, Zhou Y, Jiang W, Hu J. Correlation of SOX9 and NM23 genes with the incidence and prognosis of prostate cancer. Oncol Lett 2019; 17:2296-2302. [PMID: 30675295 PMCID: PMC6341668 DOI: 10.3892/ol.2018.9828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 11/08/2018] [Indexed: 01/11/2023] Open
Abstract
Correlation of sex determining region Y-box (SOX)9 and NM23 genes with the incidence and prognosis of prostate cancer (PC) was investigated. SOX9-small interfering ribonucleic acid (siRNA) and NM23-siRNA were constructed and transfected into PC-3 cells. The expression levels of SOX9 and NM23 messenger RNAs (mRNAs) and proteins in PC-3 cells were detected via reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting. MTT assay was adopted to examine the proliferation ability of the transfected cells, and Transwell assay was applied to detect the migration ability of the transfected cells. Sixty-three patients with PC and 56 patients with benign prostatic hyperplasia who were treated in Huadu District People's Hospital were enrolled. Correlation analyses were conducted for the relative expression levels of SOX9 and NM23 and the Gleason grade; and the survival curves of the patient SOX9/NM23 (S/N) Cq values were plotted. The proliferation and migration abilities of PC-3 cells were remarkably reduced after low expression of SOX9 (P<0.01), while those of PC-3 cells were significantly improved after low expression of NM23 (P<0.01). Compared with that in tissues of PC patients, the relative expression of SOX9 mRNA in patients with benign prostatic hyperplasia was obviously decreased (P<0.01), while that of NM23 mRNA was significantly elevated (P<0.01). The larger the S/N was, the shorter the patient's survival time would be (P<0.05). The low expression of SOX9 gene can significantly reduce the proliferation and migration abilities of PC cells, which is negatively associated with the incidence and prognosis of patients. The low expression of NM23 gene can markedly enhance the proliferation and migration abilities of PC cells, and it is positively related to the incidence and prognosis of patients.
Collapse
Affiliation(s)
- Ming Xi
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Song Wan
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Wei Hua
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Yulin Zhou
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Wencong Jiang
- Department of Urology, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510530, P.R. China
| | - Jianxin Hu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
12
|
Liu L, Li M, Zhang C, Zhang J, Li G, Zhang Z, He X, Fan M. Prognostic value and clinicopathologic significance of nm23 in various cancers: A systematic review and meta-analysis. Int J Surg 2018; 60:257-265. [PMID: 30389538 DOI: 10.1016/j.ijsu.2018.10.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/10/2018] [Accepted: 10/23/2018] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Extensive studies have been carried out to investigate the association between nm23 expression and the prognosis and clinicopathologic significance of various tumors. METHODS AND MATERIALS Eligible studies were searched from Embase, China National Knowledge Infrastructure (CNKI), PubMed and Web of Science up to May 2017. In this study, we calculated the pooled hazard ratios (HRs) with 95% confidence intervals (95%CIs) to determine the association between nm23 expression and the prognosis of various tumors. RESULTS A total of 49 studies were finally included in the meta-analysis. The pooled HRs were 2.00 (95% CIs: 1.44-2.78) for overall survival (OS), 1.23 (95% CIs: 1.04-1.46) for disease-specific survival or progression-free survival (DFS/PFS), and 2.21 (95% CIs: 1.38-3.57) for survival of recurrence-free survival or metastasis-free survival (RFS/MFS). Moreover, the results indicated that low nm23 expression was significantly correlated with the lymph node metastasis (P = 0.002). For the subgroup analysis, the expression of nm23 in patients at N0 stage was obviously higher than the patients with breast carcinoma at N1-N3 stage [Odds ratio (OR) = 2.07, 95%CI (1.31, 3.26), P = 0.002]. Moreover, the expression of nm23 in the patients at N0 stage was remarkably higher than those at N1-N3 stages in the Chinese patients with breast carcinoma and those with nasopharyngeal carcinoma (P < 0.05). Whereas, no statistical difference was noticed in the expression of nm23 in patients of various age, gender, T stage, histological degree, TNM stage, respectively (P > 0.05). CONCLUSION Our study suggests that down-regulation of nm23 is related to poor prognosis in many cancers. The expression of nm23 in cancer tissues may serve as an important factor for evaluating the presence of lymph node metastasis.
Collapse
Affiliation(s)
- Liang Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Man Li
- Department of Otolaryngology-Head and Neck Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Chengdong Zhang
- School of Life Sciences, Fudan University, Shanghai, 200082, PR China
| | - Junhua Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China
| | - Guoyi Li
- Department of Otolaryngology-Head and Neck Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Zhimin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, PR China
| | - Xinhong He
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Department of Interventional Radiology, Shanghai Cancer Center, Fudan University, 200032, PR China.
| | - Min Fan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
13
|
A competitive cell-permeable peptide impairs Nme-1 (NDPK-A) and Prune-1 interaction: therapeutic applications in cancer. J Transl Med 2018; 98:571-581. [PMID: 29449633 DOI: 10.1038/s41374-017-0011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/14/2023] Open
Abstract
The understanding of protein-protein interactions is crucial in order to generate a second level of functional genomic analysis in human disease. Within a cellular microenvironment, protein-protein interactions generate new functions that can be defined by single or multiple modes of protein interactions. We outline here the clinical importance of targeting of the Nme-1 (NDPK-A)-Prune-1 protein complex in cancer, where an imbalance in the formation of this protein-protein complex can result in inhibition of tumor progression. We discuss here recent functional data using a small synthetic competitive cell-permeable peptide (CPP) that has shown therapeutic efficacy for impairing formation of the Nme-1-Prune-1 protein complex in mouse preclinical xenograft tumor models (e.g., breast, prostate, colon, and neuroblastoma). We thus believe that further discoveries in the near future related to the identification of new protein-protein interactions will have great impact on the development of new therapeutic strategies against various cancers.
Collapse
|
14
|
Kumar A, Hatwal D, Batra N, Verma N. Role of nm23H1 in predicting metastases in prostatic carcinoma. INDIAN J PATHOL MICR 2018; 61:70-75. [PMID: 29567887 DOI: 10.4103/ijpm.ijpm_520_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Non-metastatic nm23H1 gene is thought to play a critical role in cell proliferation. Studies of nm23H1 have been done in many other malignancies. But none of these studies took up nm23H1 gene as predictor in the metastases of prostatic carcinoma. Aims and Objectives To study the expression of nm23H1 in prostatic lesion and to correlate nm23H1 expression with presence of metastases, tumour stage, tumour grade and with PSA level serum. Setting and Design Tertiary hospital based retrospective and prospective study done in a period of one year from thirty patients having prostatic lesion confirmed by biopsy. Material and Methods Immunohistochemistry for nm23H1 was performed on unstained coated sections of prostatic lesions to study the relation with prostatic lesion and their correlation with age, PSA level, tumour stage, grading. Clinical data was collected from medical records. Statistical Analysis SPSS Version 15 analysis software was used. The value were presented in number(%) and Mean ± SD. Results Majority of patients belong to age group 61 to 70yrs.Gleason score >7 were seen in 55% of patients of adenocarcinoma with and without metastasis. The difference in PSA levels between BPH and adenocarcinoma was significant (P < 0.001). IHC expression for nm23H1 gene showed positive findings in all the cases (P = 1). PSA values >20ng/ml showed maximum % mean expression (98.64%) as compared to PSA levels <10 ng/ml (96.91%). Conclusion IHC expression of nm23H1 is not an effective tool to distinguish among the cases of BPH, adenocarcinoma of prostate with and without metastasis. Hence nm23H1 gene does not behave like an antimetastatic gene in prostatic lesions.
Collapse
Affiliation(s)
- Arvind Kumar
- Department of Pathology, Veer Chandra Singh Garhwali, Government Medical Science and Research Institute, Garhwal, India
| | - Deepa Hatwal
- Department of Pathology, Veer Chandra Singh Garhwali, Government Medical Science and Research Institute, Garhwal, India
| | - Neha Batra
- Department of Pathology, Veer Chandra Singh Garhwali, Government Medical Science and Research Institute, Garhwal, India
| | - Nidhi Verma
- Department of Pathology, MAMC, New Delhi, India
| |
Collapse
|
15
|
Puts GS, Leonard MK, Pamidimukkala NV, Snyder DE, Kaetzel DM. Nuclear functions of NME proteins. J Transl Med 2018; 98:211-218. [PMID: 29058704 PMCID: PMC6136249 DOI: 10.1038/labinvest.2017.109] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
The NME family of proteins is composed of 10 isoforms, designated NME1-10, which are diverse in their enzymatic activities and patterns of subcellular localization. Each contains a conserved domain associated with a nucleoside diphosphate kinase (NDPK) function, although not all are catalytically active. Several of the NME isoforms (NME1, NME5, NME7, and NME8) also exhibit a 3'-5' exonuclease activity, suggesting roles in DNA proofreading and repair. NME1 and NME2 have been shown to translocate to the nucleus, although they lack a canonical nuclear localization signal. Binding of NME1 and NME2 to DNA does not appear to be sequence-specific in a strict sense, but instead is directed to single-stranded regions and/or other non-B-form structures. NME1 and NME2 have been identified as potential canonical transcription factors that regulate gene transcription through their DNA-binding activities. Indeed, the NME1 and NME2 isoforms have been shown to regulate gene expression programs in a number of cellular settings, and this regulatory function has been proposed to underlie their well-recognized ability to suppress the metastatic phenotype of cancer cells. Moreover, NME1 and, more recently, NME3, have been implicated in repair of both single- and double-stranded breaks in DNA. This suggests that reduced expression of NME proteins could contribute to the genomic instability that drives cancer progression. Clearly, a better understanding of the nuclear functions of NME1 and possibly other NME isoforms could provide critical insights into mechanisms underlying malignant progression in cancer. Indeed, clinical data indicate that the subcellular localization of NME1 may be an important prognostic marker in some cancers. This review summarizes putative functions of nuclear NME proteins in DNA binding, transcription, and DNA damage repair, and highlights their possible roles in cancer progression.
Collapse
|
16
|
The dosage-dependent effect exerted by the NM23-H1/H2 homolog NDK-1 on distal tip cell migration in C. elegans. J Transl Med 2018; 98:182-189. [PMID: 28920944 DOI: 10.1038/labinvest.2017.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/19/2022] Open
Abstract
Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in ndk-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.
Collapse
|
17
|
A therapeutic approach to treat prostate cancer by targeting Nm23-H1/h-Prune interaction. Naunyn Schmiedebergs Arch Pharmacol 2014; 388:257-69. [PMID: 25138575 DOI: 10.1007/s00210-014-1035-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/11/2014] [Indexed: 01/05/2023]
Abstract
Nm23-H1 is a metastasis suppressor gene whose overexpression is associated with both reduced cell motility in various cancers and increased metastatic potential in neuroblastomas, osteosarcomas, and hematological malignances. We previously reported that Nm23-H1 exerts tumor suppressor action in prostate cancer cells and that h-Prune, which is overexpressed in various tumor types, binds Nm23-H1. Moreover, blockage of the Nm23-H1/h-Prune interaction with a competitive permeable peptide (CPP) attenuates migration of breast and neuroblastoma cells. This series of events suggests that the Nm23-H1/h-Prune protein complex regulates cancer progression and that its specific impairment could be a new therapeutic strategy in oncology. We found that CPP leads to inhibition of the AKT/mTORv and NF-kBv signaling pathways and also activates apoptosis. To obtain a proof-of-concept of our hypothesis, we used a xenograft model of prostate cancer to evaluate whether impairment of this complex using CPP results in an anti-tumoral effect. Using a mouse orthotopic model with bioluminescent imaging, we show evidences that CPP reduces prostate cancer metastases formation. In conclusion, CPP being able to impair formation of the h-Prune/Nm23-H1 complex holds promise for the treatment of prostate cancer.
Collapse
|
18
|
Hu W, Wang J, Luo G, Luo B, Wu C, Wang W, Xiao Y, Li J. Proteomics-based analysis of differentially expressed proteins in the CXCR1-knockdown gastric carcinoma MKN45 cell line and its parental cell. Acta Biochim Biophys Sin (Shanghai) 2013; 45:857-66. [PMID: 23924695 DOI: 10.1093/abbs/gmt086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
C-X-C chemokine receptor types 1 (CXCR1), a cell-surface G-protein-coupled receptor has been found to be associated with tumorigenesis, development, and progression of some tumors. Previously, we have found that CXCR1 overexpression is associated with late-stage gastric adenocarcinoma. We also have demonstrated that knockdown of CXCR1 could inhibit cell proliferation in vitro and in vivo. In this study, we compared the changes of protein expression profile between gastric carcinoma MKN45 cell line and CXCR1-knockdown MKN45 cell line by 2D electrophoresis. Among the 101 quantified proteins, 29 spots were significantly different, among which 13 were down-regulated and 16 were up-regulated after CXCR1 knockdown. These proteins were further identified by mass spectrometry analysis. Among them, several up-regulated proteins such as hCG2020155, Keratin8, heterogeneous nuclear ribonucleoprotein C (C1/C2), and several down-regulated proteins such as Sorcin, heat shock protein 27, serpin B6 isoform b, and heterogeneous nuclear ribonucleoprotein K were confirmed. These proteins are related to cell cycle, the transcription regulation, cell adherence, cellular metabolism, drug resistance, and so on. These results provide an additional support to the hypothesis that CXCR1 might play an important role in proliferation, invasion, metastasis, and prognosis, and drug resistance of gastric carcinoma.
Collapse
Affiliation(s)
- Wanming Hu
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Terfenadine induces anti-proliferative and apoptotic activities in human hormone-refractory prostate cancer through histamine receptor-independent Mcl-1 cleavage and Bak up-regulation. Naunyn Schmiedebergs Arch Pharmacol 2013; 387:33-45. [PMID: 24048439 DOI: 10.1007/s00210-013-0912-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Although the results of several studies have underscored the regulatory effect of H1-histamine receptors in cell proliferation of some cancer cell types, its effect in prostate cancers remains unclear. We have therefore studied the effect of terfenadine (an H1-histamine receptor antagonist) in prostate cancer cell lines. Our data demonstrate that terfenadine was effective against PC-3 and DU-145 cells (two prostate cancer cell lines). In contrast, based on the sulforhodamine B assay, loratadine had less potency while fexofenadine and diphenhydramine had little effect. Terfenadine induced the cleavage of Mcl-1 cleavage into a pro-apoptotic 28-kDa fragment and up-regulation of Bak, resulting in the loss of mitochondrial membrane potential (ΔΨm) and the release of cytochrome c and apoptosis-inducing factor into the cytosol. The activation of caspase cascades was detected to be linked to terfenadine action. Bak up-regulation was also examined at both the transcriptional and translational levels, and Bak activation was validated based on conformational change to expose the N terminus. Terfenadine also induced an indirect-but not direct-DNA damage response through the cleavage and activation of caspase-2, phosphorylation and activation of Chk1 and Chk2 kinases, phosphorylation of RPA32 and acetylation of Histone H3; these processes were highly correlated to severe mitochondrial dysfunction and the activation of caspase cascades. In conclusion, terfenadine induced apoptotic signaling cascades against HRPCs in a sequential manner. The exposure of cells to terfenadine caused the up-regulation and activation of Bak and the cleavage of Mcl-1, leading to the loss of ΔΨm and activation of caspase cascades which further resulted in DNA damage response and cell apoptosis.
Collapse
|
20
|
Masoudi N, Fancsalszky L, Pourkarimi E, Vellai T, Alexa A, Reményi A, Gartner A, Mehta A, Takács-Vellai K. The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans. Development 2013; 140:3486-95. [PMID: 23900546 PMCID: PMC3737725 DOI: 10.1242/dev.094011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2013] [Indexed: 11/21/2022]
Abstract
The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis.
Collapse
Affiliation(s)
- Neda Masoudi
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Luca Fancsalszky
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Ehsan Pourkarimi
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Anita Alexa
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary
| | - Attila Reményi
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary
| | - Anton Gartner
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anil Mehta
- Division of Medical Sciences, Centre for CVS and Lung Biology, Ninewells Hospital Medical School, Dundee DD1 9SY, UK
| | - Krisztina Takács-Vellai
- Department of Genetics, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
21
|
Marino N, Nakayama J, Collins JW, Steeg PS. Insights into the biology and prevention of tumor metastasis provided by the Nm23 metastasis suppressor gene. Cancer Metastasis Rev 2013; 31:593-603. [PMID: 22706779 DOI: 10.1007/s10555-012-9374-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metastatic disease is the major cause of death among cancer patients. A class of genes, named metastasis suppressors, has been described to specifically regulate the metastatic process. The metastasis suppressor genes are downregulated in the metastatic lesion compared to the primary tumor. In this review, we describe the body of research surrounding the first metastasis suppressor identified, Nm23. Nm23 overexpression in aggressive cancer cell lines reduced their metastatic potential in vivo with no significant reduction in primary tumor size. A complex mechanism of anti-metastatic action is unfolding involving several known Nm23 enzymatic activities (nucleotide diphosphate kinase, histidine kinase, and 3'-5' exonuclease), protein-protein interactions, and downstream gene regulation properties. Translational approaches involving Nm23 have progressed to the clinic. The upregulation of Nm23 expression by medroxyprogesterone acetate has been tested in a phase II trial. Other approaches with significant preclinical success include gene therapy using traditional or nanoparticle delivery, and cell permeable Nm23 protein. Recently, based on the inverse correlation of Nm23 and LPA1 expression, a LPA1 inhibitor has been shown to both inhibit metastasis and induce metastatic dormancy.
Collapse
Affiliation(s)
- Natascia Marino
- Women's Cancers Section, Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1122, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
22
|
Correlation of serum β2-microglobulin levels with prostate-specific antigen, Gleason score, clinical stage, tumor metastasis and therapy efficacy in prostate cancer. Arch Med Res 2013; 44:259-65. [PMID: 23707648 DOI: 10.1016/j.arcmed.2013.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/12/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Despite previous reports implying a role of β2-microglobulin (β2M) in the development of prostate cancer (PCa), the correlation of serum β2M with the clinicopathological features, therapy efficacy and prognosis of patients with PCa have not been fully clarified. The present study aims to investigate the serum levels of β2M in patients with PCa and explore the potential use of β2M as a tumor marker for diagnosis, treatment and prognosis of PCa. METHODS Serum β2M levels in 120 patients with PCa, 50 patients with benign prostate hyperplasia (BPH) and 85 healthy age-matched controls were measured by enzyme immunoassay. The correlation of serum β2M with the clinicopathological features, therapy efficacy and the prognosis of PCa were subsequently assessed. RESULTS Our results showed that: (i) PCa patients had significantly higher levels of β2M compared to those of patients with BPH or those of healthy controls. (ii) Serum β2M were markedly elevated in patients with high stage or grade PCa as compared to patients with low stage or grade PCa. (iii) We measured significantly higher levels of β2M in patients with metastasis as compared to patients lacking metastasis. (iv) During follow-up, serum β2M showed a marked decrease after successful therapy and a significant further increase in recurrent disease. CONCLUSIONS Our results demonstrate that serum β2M is correlated closely with the clinical stage, Gleason grade, PSA, distant metastasis and therapy efficacy in patients with PCa. Serum β2M may be a useful biomarker for clinical diagnosis, follow-up and prognosis of PCa.
Collapse
|
23
|
Takadate T, Onogawa T, Fujii K, Motoi F, Mikami S, Fukuda T, Kihara M, Suzuki T, Takemura T, Minowa T, Hanagata N, Kinoshita K, Morikawa T, Shirasaki K, Rikiyama T, Katayose Y, Egawa S, Nishimura T, Unno M. Nm23/nucleoside diphosphate kinase-A as a potent prognostic marker in invasive pancreatic ductal carcinoma identified by proteomic analysis of laser micro-dissected formalin-fixed paraffin-embedded tissue. Clin Proteomics 2012; 9:8. [PMID: 22892044 PMCID: PMC3582529 DOI: 10.1186/1559-0275-9-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/12/2012] [Indexed: 12/11/2022] Open
Abstract
Background Pancreatic cancer is among the most lethal malignancies worldwide. This study aimed to identify a novel prognostic biomarker, facilitating treatment selection, using mass spectrometry (MS)-based proteomic analysis with formalin-fixed paraffin-embedded (FFPE) tissue. Results The two groups with poor prognosis (n = 4) and with better prognosis (n = 4) had been carefully chosen among 96 resected cases of pancreatic cancer during 1998 to 2007 in Tohoku University Hospital. Although those 2 groups had adjusted background (UICC-Stage IIB, Grade2, R0, gemcitabine adjuvant), there was a significant difference in postoperative mean survival time (poor 21.0 months, better 58.1 months, P = 0.0067). Cancerous epithelial cells collected from FFPE tissue sections by laser micro-dissection (LMD) were processed for liquid chromatography-tandem mass spectrometry (LC-MS/MS). In total, 1099 unique proteins were identified and 6 proteins showed different expressions in the 2 groups by semi-quantitative comparison. Among these 6 proteins, we focused on Nm23/Nucleoside Diphosphate Kinase A (NDPK-A) and immunohistochemically confirmed its expression in the cohort of 96 cases. Kaplan-Meier analysis showed high Nm23/NDPK-A expression to correlate with significantly worse overall survival (P = 0.0103). Moreover, in the multivariate Cox regression model, Nm23/NDPK-A over-expression remained an independent predictor of poor survival with a hazard ratio of 1.97 (95% CI 1.16-3.56, P = 0.0110). Conclusions We identified 6 candidate prognostic markers for postoperative pancreatic cancer using FFPE tissues and immunohistochemically demonstrated high Nm23/NDPK-A expression to be a useful prognostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Tatsuyuki Takadate
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, 980-8574, Miyagi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Steeg PS, Zollo M, Wieland T. A critical evaluation of biochemical activities reported for the nucleoside diphosphate kinase/Nm23/Awd family proteins: opportunities and missteps in understanding their biological functions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 384:331-9. [PMID: 21611737 PMCID: PMC10153102 DOI: 10.1007/s00210-011-0651-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
|